Nothing Special   »   [go: up one dir, main page]

JPH02230722A - Vapor growth method of compound semiconductor - Google Patents

Vapor growth method of compound semiconductor

Info

Publication number
JPH02230722A
JPH02230722A JP4991189A JP4991189A JPH02230722A JP H02230722 A JPH02230722 A JP H02230722A JP 4991189 A JP4991189 A JP 4991189A JP 4991189 A JP4991189 A JP 4991189A JP H02230722 A JPH02230722 A JP H02230722A
Authority
JP
Japan
Prior art keywords
group
raw material
region
substrate
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4991189A
Other languages
Japanese (ja)
Inventor
Akira Usui
彰 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4991189A priority Critical patent/JPH02230722A/en
Publication of JPH02230722A publication Critical patent/JPH02230722A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize the high purity ALE growth of chloride and a simple raw-material carrying method in an MO-ALE method by repeating a step wherein the chloride of a group III element which is obtained by the reaction of an organic metal compound and hydrogen chloride is carried into a substrate crystal region with a carrier gas and a step wherein a group V raw material is carried into said substrate crystal region. CONSTITUTION:As a group II organic metal raw material 11, Ga(CH3)3(TMG) is used. As a group V raw material 16, AsH3 is used. The mixed region of the TMG and the hydrogen chloride is heated to 650 deg.C. The region of a substrate crystal 15 is heated to 450 deg.C. the TMG and the hydrogen chloride gas 12 are mixed at the high temperature part in a reacting tube 13. The result is carried into the region of the substrate crystal 15 as GaCl with an H2 carrier gas. The GaCl is adsorbed in the upper part of the substrate crystal. Thereafter, the supply of the GaCl and HCl gas is stopped. Then, excessive chloride in the reacting tube is purged only with H2 gas. Then, AsH3 of the group V raw material gas 16 is fed into the reacting tube. A GaAs layer is grown by the reaction with the GaCl which is adsorbed in the substrate crystal. Thereafter, the excessive AsH3 is purged from the substrate region only with the H2 gas. The atomic layer epitaxy(ALE) growth advances by repeating these steps.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は化合物半導体の気相成長方法に関し、さらに詳
しくは原子層エピタキシ( ALE : atomic
ayer epltaXV)に関するもので、特に従来
の■族元素の塩化物を用いた高純度結晶成長が可能な塩
化物ALEと、簡便な原料輸送ができる有機金属を原料
とする80 (metal organic ) −A
LEの特徴を両方備え持った新しいALE成長方法に関
するもので必る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for vapor phase growth of compound semiconductors, and more specifically to atomic layer epitaxy (ALE).
ayer eplta
It must be related to a new ALE growth method that has both the characteristics of LE.

[従来の技術およびその課題] ■−v族化合物半導体のALE成長方法としては、Ga
(,pのような■族元素の塩化物を用いる方法(クロラ
イドALE法)と、Ga (CH3 ) 3 (tri
−methylgal I ium:THG)のような
■族元素有機金属を用いる方法( 80−ALE法)が
試みられてきた。
[Prior art and its problems] As an ALE growth method for -v group compound semiconductors, Ga
(, p) (chloride ALE method) and Ga (CH3) 3 (tri
A method (80-ALE method) using a group Ⅰ element organic metal such as -methylgal Iium (THG) has been attempted.

これらの方法について図面を用いて簡単に説明する。These methods will be briefly explained using drawings.

第2図はGaCIl−^sH3 − H2系による2室
反応管を用いたGaASの塩化物ALE成長装置の概略
構成図である。この方法では、上部反応管21上流部に
Ga金属用のソースポート22を設置し、塩化水素との
反応によってGaCf!を生じせしめ、水素キャリアガ
スによって基板領域に輸送する。一方、AsH3を下部
反応管23に導入する。このガスは基板領域に達するま
でに反応管の熱によってほぼAs4に分解する。基板結
晶24はこの2つの反応管の間を移動する。図中、26
に基板ホルダ27の軌跡を示した。
FIG. 2 is a schematic diagram of a GaAS chloride ALE growth apparatus using a two-chamber reaction tube based on the GaCl-^sH3-H2 system. In this method, a source port 22 for Ga metal is installed upstream of the upper reaction tube 21, and GaCf! is generated and transported to the substrate region by a hydrogen carrier gas. Meanwhile, AsH3 is introduced into the lower reaction tube 23. This gas is almost decomposed into As4 by the heat of the reaction tube before reaching the substrate region. The substrate crystal 24 moves between the two reaction tubes. In the figure, 26
2 shows the trajectory of the substrate holder 27.

このプロセスに従って基板結晶表面がGaCJ2、As
4雰囲気に交互に晒され、1サイクルでGaAsの1分
子層単位の成長が生ずる。
According to this process, the substrate crystal surface becomes GaCJ2, As
The substrate is exposed alternately to four atmospheres, and one cycle of growth causes growth of one molecular layer of GaAs.

この塩化物ALE法の特徴として、次のような点が挙げ
られる。まず、GaCiJが広い基板温度、GaCJl
流量範囲で極めて安定な単層吸着層を形成するために、
1分子層単位の成長が後で述べる有機金属を用いるAL
E法に比較して実坦しやすい。ざらに、この塩化物AL
E法では重金属を含む不純物が原料に用いる塩化水素に
より、蒸発可能な塩化物に変換されるために結晶中に取
り込まれにくくなり、その結果、高純度の結晶が得られ
る、などである。
Characteristics of this chloride ALE method include the following points. First, GaCiJ has a wide substrate temperature, GaCJl
To form an extremely stable monolayer adsorption layer over a range of flow rates,
AL using organic metals, which will be described later in terms of single-molecular-layer growth
Easier to achieve results than E method. In general, this chloride AL
In Method E, impurities containing heavy metals are converted into evaporable chloride by the hydrogen chloride used as a raw material, making them difficult to incorporate into the crystal, and as a result, highly pure crystals are obtained.

その反面、■族元素金属と塩化水素の反応が必要であり
、また、1塩化物の発生は塩化水素の供給を停止しても
、■族金属ソースに溶け込んだαが徐々に飛び出すため
すぐに止まらず、ALEの交互供給のプロセスをガスの
切り換えだけで行うことができない。このために、複雑
な基板結晶の移動が必要になるという欠点を有していた
On the other hand, it is necessary to react the group III element metal with hydrogen chloride, and even if the supply of hydrogen chloride is stopped, the generation of monochloride is immediate because α dissolved in the group III metal source gradually jumps out. The process of alternate supply of ALE cannot be performed simply by switching the gas. For this reason, there is a drawback that a complicated movement of the substrate crystal is required.

一方、T}IG − As}13 − 82系によるG
aAs ALE装置の概略構成図を第3図に示す。この
方法では■族有機原料31は、恒温槽32で制御ざれた
蒸気圧を利用して水素キャリアガスで反応管33に輸送
されるために、反応管33内にはハロゲン輸送法のよう
なソース領域を必要としない。ALE成長は、バルブ3
7a−gを利用して、TMGのような■族有機原料31
、AsH3のようなV族原料ガス35、およびパジ用の
H2ガスの切り換えだけで実坦できるという大きな特徴
を有している。
On the other hand, G by T}IG-As}13-82 system
A schematic diagram of the aAs ALE device is shown in FIG. In this method, the group (III) organic raw material 31 is transported to the reaction tube 33 with a hydrogen carrier gas using the vapor pressure controlled in the constant temperature bath 32, so there is no source in the reaction tube 33, such as a halogen transport method. Does not require space. ALE growth is valve 3
Using 7a-g, group II organic raw materials such as TMG 31
, AsH3, or other V group raw material gas 35, and purge H2 gas.

ところで、この方法における問題点は、有機金属の分解
が基板結晶34上の極めて近傍で起きるために、分解し
たハイドロカーボンが成長表面上に吸着して、その結果
、カーボンが成長結晶の中に大量に取り込まれることで
ある。このために、成長結晶は高いキャリア濃度を有す
るp型結晶となりやすい。そして、このカーボンの影響
を少なくするためには原料ガス流速の高速化などの成長
条件の厳密な制御が必要であった。また、原料ガス中に
含まれているSiのような不純物に対しては、ハロゲン
輸送法のような純化の機構が働かず、高純度結晶を得る
ためには不利であった。
However, the problem with this method is that since the decomposition of the organometallic occurs very close to the substrate crystal 34, the decomposed hydrocarbons are adsorbed onto the growing surface, and as a result, a large amount of carbon is deposited inside the growing crystal. It is to be taken into account. For this reason, the grown crystal tends to be a p-type crystal with a high carrier concentration. In order to reduce the influence of carbon, it is necessary to strictly control the growth conditions, such as increasing the flow rate of the raw material gas. Further, the purification mechanism such as the halogen transport method does not work for impurities such as Si contained in the raw material gas, which is disadvantageous for obtaining high-purity crystals.

本発明は、従来のALE法におけるこのような欠点を取
り除き、クロライドALEの高純度成長と、}to−A
LE法の簡便な原料輸送方法の両方の特徴を兼ね備えた
、従来にない新しいALE法による化合物半導体の気相
成長方法を提供することを目的とする。
The present invention eliminates such drawbacks in the conventional ALE method, and achieves high purity growth of chloride ALE and }to-ALE.
The object of the present invention is to provide a method for vapor phase growth of compound semiconductors using a new and unprecedented ALE method, which combines the features of the LE method as a simple material transportation method.

[課題を解決するための手段] 本発明は、■族元素原料と■族元素原料を交互に反応管
内の基板結晶領域に供給して基板結晶上にエピタキシャ
ル結晶成長を行う化合物半導体の気相成長方法において
、■族元素を含有する有機金属化合物を■族元素原料と
して用い、該有機金属化合物と塩化水素とを反応ざぜて
■族元素の塩化物とした後、該塩化物を基板結晶領域に
輸送する工程と、前記基板結晶領域を水素キャリアガス
で置換する工程と、V族元索原料を前記基板結晶領域に
輸送する工程と、前記基板結晶領域を水素キャリアガス
で置換する工程とを順次繰り返してなることを特徴とす
る化合物半導体の気相成長方法である。
[Means for Solving the Problems] The present invention provides a method for vapor phase growth of a compound semiconductor in which a group (III) element raw material and a group (III) element raw material are alternately supplied to a substrate crystal region in a reaction tube to grow epitaxial crystals on a substrate crystal. In the method, an organometallic compound containing a group (III) element is used as a group (III) element raw material, the organometallic compound and hydrogen chloride are reacted to form a chloride of the group (III) element, and then the chloride is applied to a crystal region of a substrate. A step of transporting, a step of substituting the substrate crystal region with a hydrogen carrier gas, a step of transporting the V group element base material to the substrate crystal region, and a step of substituting the substrate crystal region with a hydrogen carrier gas are sequentially carried out. This is a method for vapor phase growth of compound semiconductors characterized by repeated growth.

なお、本発明の方法によって成長できる化合物半導体と
しては、GaAs,  InP等の他、゜3元,4元を
含むIII−V族化合物半導体が挙げられ、ざらに、I
I−Vl族化合物半導体の成長にも応用することができ
る。
Compound semiconductors that can be grown by the method of the present invention include GaAs, InP, etc., as well as III-V compound semiconductors containing tertiary and quaternary elements;
It can also be applied to the growth of I-Vl group compound semiconductors.

[作用] 第1図は本発明の方法の実施に用いられる装置の概略構
成図で、ここでは■族有機原料11としてTMGを用い
たGaAs ALE成長を例にとって本発明の作用につ
いて説明する。
[Function] FIG. 1 is a schematic diagram of an apparatus used to carry out the method of the present invention.Here, the function of the present invention will be explained by taking as an example GaAs ALE growth using TMG as the group Ⅰ organic material 11.

TMGは塩化水素12と共に反応管13に導入ざれる。TMG is introduced into the reaction tube 13 together with hydrogen chloride 12.

反応管13は抵抗加熱炉14により全体が加熱ざれる。The entire reaction tube 13 is heated by a resistance heating furnace 14.

1FIGは反応管中ですぐに(1)式のようにGaとメ
タンに分解する。
1FIG immediately decomposes into Ga and methane in the reaction tube as shown in equation (1).

Ga (CH3 ) 3 + 3/2H2 ←Ga+ 
3CH4 ・(1)ここで分解したGaは同時に供給さ
れたHC1と反応してGacIlを生じる。
Ga (CH3) 3 + 3/2H2 ←Ga+
3CH4 ・(1) Ga decomposed here reacts with HC1 supplied at the same time to generate GacIl.

Ga+HCJ    GaCj!+1/282    
  =・(2)これが、水素キャリアガスで下流の基板
結晶15領域に運ばれ、基板結晶15上にGaαが吸着
する。
Ga+HCJ GaCj! +1/282
=・(2) This is carried by the hydrogen carrier gas to the downstream region of the substrate crystal 15, and Gaα is adsorbed onto the substrate crystal 15.

ここで、THGと塩化水素とはほぼ同モル数だけ供給す
る。もし、T}IGのほうが多ければ、上流側でGaの
析出が生じ、逆に塩化水素が多ければ余分な塩化水素が
下流の基板結晶15領域に輸送され、Gaαの吸着阻害
を引き起こす。
Here, THG and hydrogen chloride are supplied in approximately the same number of moles. If there is more T}IG, Ga will precipitate on the upstream side, and if there is more hydrogen chloride, excess hydrogen chloride will be transported downstream to the substrate crystal 15 region, causing inhibition of Gaα adsorption.

本発明の方法では、バルブ17a−iの操作により原料
の反応管への供給を停止すれば、GaCiのような塩化
物の基板領域への輸送を止めることができる。そこで、
ALE成長プロセスを進めるためには、■族元素の塩化
物を基板結晶上に吸着させた後、■族有機金属とHαガ
スの供給を停止し、次に、H2ガスだけで反応管中の余
分な塩化物のパジを行う。続いて、■族原料ガス16の
AsH3を反応管中に供給し、基板結晶に吸着していた
GaCl2との反応によりGaAs層を成長させる。こ
の後、再び■2ガスのみで基板結晶領域から余分なAS
H3をパージする。ALE成長はこれらのステップを繰
り返しながら進む。
In the method of the present invention, if the supply of raw materials to the reaction tube is stopped by operating the valves 17a-i, the transport of chlorides such as GaCi to the substrate region can be stopped. Therefore,
In order to proceed with the ALE growth process, after adsorbing the chloride of the group III element onto the substrate crystal, the supply of the group III organic metal and Hα gas is stopped, and then the excess in the reaction tube is removed using only H2 gas. Do a chloride purge. Subsequently, AsH3, which is the Group 1 raw material gas 16, is supplied into the reaction tube, and a GaAs layer is grown by reaction with GaCl2 adsorbed on the substrate crystal. After this, again ■ Excess AS is removed from the substrate crystal region using only 2 gases.
Purge H3. ALE growth progresses by repeating these steps.

このように、本発明により、■族有機原料と塩化水素を
用いることによって、■族元素の塩化物を吸着物質とし
ながら、ガスの切り換えだけでALEプロセスを実現す
ることができる。同時に、クロライドALE法における
■族金属ソース枯渇の問題を避けることができ、また■
族有機原料の分解反応(反応式(1))、および塩化水
素との反応(反応式(2))は600〜700℃程度の
温度でも充分に進行するため、クロライドALE法のよ
うに■族ソース領域を高温に上げる必要性もない。また
、T}IQなどの有機原料は抵抗加熱方式のために充分
に分解し、炭化水素はほとんどメタンやエタンとなり高
次のハイドロカーボンの発生は極めて低い。
As described above, according to the present invention, by using the group (I) organic raw material and hydrogen chloride, it is possible to realize the ALE process by simply switching the gas while using the chloride of the group (I) element as the adsorbent. At the same time, the problem of group III metal source depletion in the chloride ALE method can be avoided, and
The decomposition reaction of group organic raw materials (reaction formula (1)) and the reaction with hydrogen chloride (reaction formula (2)) proceed satisfactorily even at temperatures of about 600 to 700°C. There is also no need to raise the source region to high temperatures. In addition, organic raw materials such as T}IQ are sufficiently decomposed due to the resistance heating method, and most of the hydrocarbons become methane and ethane, and the generation of higher-order hydrocarbons is extremely low.

また、基板表面上に吸着しやすいラジカルも、下流まで
に輸送される間に安定なものに変わり、80−ALE法
で見られるような成長結晶へのカーボン汚染は極めて小
さい。この結果、高純度エピタキシャル結晶を得ること
ができる。
In addition, radicals that are easily adsorbed onto the substrate surface are converted into stable ones while being transported downstream, and carbon contamination of the growing crystal as seen in the 80-ALE method is extremely small. As a result, a highly pure epitaxial crystal can be obtained.

[実施例コ 次に本発明の実施例について図面を参照して詳細に説明
する。
[Embodiments] Next, embodiments of the present invention will be described in detail with reference to the drawings.

実施例1 ここでは、GaAs ALEに本発明を適用した実施例
について、第1図を用いて説明する。■族有機金属原料
HにはTHG, V族原料16にはASH3を用いた。
Example 1 Here, an example in which the present invention is applied to GaAs ALE will be described with reference to FIG. THG was used as the group (2) organic metal raw material H, and ASH3 was used as the group V raw material 16.

反応管13は横型の石英管で、抵抗加熱炉14により、
■族有機原料と塩化水素の混合領域は650゜Cに、基
板結晶15領域は450℃にhl熱される。
The reaction tube 13 is a horizontal quartz tube, and is heated by a resistance heating furnace 14.
The area where the group (Ⅰ) organic raw material and hydrogen chloride are mixed is heated to 650°C, and the substrate crystal 15 area is heated to 450°C.

TMGの供給量は、恒温槽18による原料容器の温度制
御と水素キャリアガス流量により制御し、1分間に1 
XIO−4 molとした。一方、塩化水素12は流量
をマスフローコントローラ19cにより制御し、■族有
機原料11と同じ< 1 x 10−4 IIlot/
minで供給した。両者を反応管13内の高温部で混合
し、GaCflとしてH2キャリアガスにより基板結晶
15@滅に輸送する。AsH3は導入管20より5X1
0−4mol/minの割合で反応管13に導入ざれる
。基板結晶15領域における全流量は7 12 /mi
nである。
The supply amount of TMG is controlled by the temperature control of the raw material container by the constant temperature bath 18 and the hydrogen carrier gas flow rate, and is controlled at a rate of 1 per minute.
It was set as XIO-4 mol. On the other hand, the flow rate of the hydrogen chloride 12 is controlled by the mass flow controller 19c, and the flow rate is the same as the group II organic raw material 11 < 1 x 10-4 IIlot/
It was supplied at min. Both are mixed in a high temperature section within the reaction tube 13 and transported as GaCfl to the substrate crystal 15 by H2 carrier gas. AsH3 is 5X1 from the introduction pipe 20
It is introduced into the reaction tube 13 at a rate of 0-4 mol/min. The total flow rate in the substrate crystal 15 region is 7 12 /mi
It is n.

基板結晶15としては、GaAS(100)高抵抗結晶
を用いた。結晶基板15を反応管13にセットしたのち
、AsH3を供給しながら昇温し、所定の温度に達した
ところで、ALEプロセスを開始する。それぞれのステ
ップの時間は次の通りとした。
As the substrate crystal 15, a GaAS (100) high resistance crystal was used. After setting the crystal substrate 15 in the reaction tube 13, the temperature is raised while supplying AsH3, and when a predetermined temperature is reached, the ALE process is started. The time for each step was as follows.

TMG+ HCi供給 :1秒 H2によるパージ:3秒 AsH3供給   :2秒 112によるパージ:3秒 このように9秒を1サイクルとして1000サイクルの
GaAs成長を行った。1サイクルに換算した成長速度
は2. 8A 7サイクルであり、単分子成長が実現ざ
れていることがわかった。また、4.2Kでホトルミネ
ッセンス測定を行った結果、フリーエキシトンピークが
明瞭に観測ざれ、カーボンに起因するアクセプターレベ
ルを介した発光はきわめて弱いものであった。
TMG + HCi supply: 1 second H2 purge: 3 seconds AsH3 supply: 2 seconds 112 purge: 3 seconds In this way, 1000 cycles of GaAs growth were performed with 9 seconds as one cycle. The growth rate converted to one cycle is 2. 8A 7 cycles, and it was found that single molecule growth was achieved. Further, as a result of photoluminescence measurement at 4.2K, a free exciton peak was clearly observed, and the light emission via the acceptor level due to carbon was extremely weak.

実施例2 ここでは、InP ALEに本発明を適用した実施例に
ついて、第1図を用いて説明する。■族有機金属原料1
1には、TEI ( triethylindium 
:In  (C2  H5)3)、V族原料16にはP
I−13を用いた。反応管13は横型の石英管で、抵抗
加熱炉14により、■族有機原料11と塩化水素12の
混合領域は650’Cに、基板結晶15領域は400゜
Cにhロ熱ざれる。
Example 2 Here, an example in which the present invention is applied to InP ALE will be described with reference to FIG. ■Group organometallic raw material 1
1 includes TEI ( triethylindium
:In(C2H5)3), P for group V raw material 16
I-13 was used. The reaction tube 13 is a horizontal quartz tube, and a resistance heating furnace 14 heats the area where the organic material 11 and the hydrogen chloride 12 are mixed to 650°C, and the area where the substrate crystal 15 is heated to 400°C.

丁EIの供給量を、恒温槽18による原料容器の温度制
御と、水素キャリアガス流量により制御し、1分間に1
 XIO−4 molの割合で反応管13に供給する。
The supply amount of Ding EI is controlled by controlling the temperature of the raw material container using the constant temperature bath 18 and the flow rate of the hydrogen carrier gas, and is controlled at a rate of 1 per minute.
It is supplied to the reaction tube 13 at a ratio of XIO-4 mol.

一方、塩化水素12は流量をマスフローコントローラ1
9cにより制御し、■族有機原料11と同じ< 1 x
 10−4 mol/minで供給した。両者を反応管
13内の高温部で混合し、InrUとしてH2キャリア
ガスにより基板結晶15領域に輸送する。PH3は導入
管20より5xlO−4 not/minの割合で反応
管13に導入ざれる。基板結晶15領域における全流量
は7(2 /minである。
On the other hand, the flow rate of hydrogen chloride 12 is controlled by the mass flow controller 1.
Controlled by 9c, same as group Ⅰ organic raw material 11 < 1 x
It was supplied at a rate of 10-4 mol/min. Both are mixed in a high temperature section within the reaction tube 13 and transported as InrU to the substrate crystal 15 region by H2 carrier gas. PH3 is introduced into the reaction tube 13 from the introduction tube 20 at a rate of 5xlO-4 not/min. The total flow rate in the substrate crystal 15 region is 7 (2 2 /min).

基板結晶15としては、InP(100)高抵抗結晶を
用いた。結晶基板15を反応管13にセットしたのち、
PH3を供給しながら昇温し、所定の温度に達したとこ
ろで、ALEプロセスを開始する。それぞれのステップ
の時間は次の通りとした。
As the substrate crystal 15, an InP (100) high resistance crystal was used. After setting the crystal substrate 15 in the reaction tube 13,
The temperature is raised while supplying PH3, and when a predetermined temperature is reached, the ALE process is started. The time for each step was as follows.

TEI十HIJ供給 =1秒 ■2によるパージ:3秒 PH3供給    =2秒 ■2によるパージ:3秒 このように9秒を1サイクルとして1000サイクルの
InP成長を行った。1サイクルに換算した成長速度は
2.9人/サイクルであり、単分子成長か実現ざれてい
ることがわかった。また、4.2Kでホトルミネツセン
ス測定を行った結果、フリーエキシトンピークが明瞭に
観測され、カーボンに起因するアクセプターレベルを介
した発光はきわめて弱いものであった。
TEI + HIJ supply = 1 second ■ Purge by 2: 3 seconds PH3 supply = 2 seconds ■ Purge by 2: 3 seconds In this way, InP growth was performed for 1000 cycles with 9 seconds as one cycle. The growth rate converted to one cycle was 2.9 people/cycle, indicating that single molecule growth was achieved. Furthermore, as a result of photoluminescence measurement at 4.2K, a free exciton peak was clearly observed, and the light emission via the acceptor level due to carbon was extremely weak.

なお、本実施例では、GaAs,  InPについての
ALE成長例を示したが、この他にも、3元,4元を含
む■−v族化合物半導体のエピタキシャル成長、ざらに
は、n − Vl族化合物半導体の成長にも本手法を適
用できることは明らかである。
In addition, in this example, ALE growth examples of GaAs and InP are shown, but in addition to these, epitaxial growth of ■-V group compound semiconductors including ternary and quaternary elements, and more specifically, n-Vl group compound semiconductors are also possible. It is clear that this method can also be applied to the growth of semiconductors.

[発明の効果] 以上説明したように、本発明の方法によれば、クロライ
ドALE法による時の高純度成長の特徴と、NO−AL
E法の簡便な成長系の特徴を両方兼ね備えたALE成長
方法による化合物半導体の気相成長方法が達成される。
[Effects of the Invention] As explained above, according to the method of the present invention, the characteristics of high purity growth when using the chloride ALE method and the
A compound semiconductor vapor phase growth method using the ALE growth method that has both the features of the simple growth system of the E method is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の実施に用いられる成長装置の一
例の概略構成図、第2図は従来技術におけるクロライド
ALE装置の概略構成図、第3図は従来技術におけるN
O−ALE装置の概略構成図である。 11. 31・・・■族有機原料  12・・・塩化水
素(HCi)13. 33・・・反応管     14
・・・抵抗加熱炉15, 24. 34・・・基板結晶
  16. 35・・・V族原料17a −i , 3
7a〜9・・・バルブ18. 32・・・恒温槽 19a〜9,36・・・マスフローコントローラ20・
・・導入管       21・・・上部反応管22・
・・Gaソースボート   23・・・下部反応管26
・・・基板ホルダの移動の軌跡 27・・・基板ホルダ
FIG. 1 is a schematic block diagram of an example of a growth apparatus used to carry out the method of the present invention, FIG. 2 is a schematic block diagram of a chloride ALE apparatus in the prior art, and FIG.
FIG. 1 is a schematic configuration diagram of an O-ALE device. 11. 31...Group organic raw material 12...Hydrogen chloride (HCi)13. 33...Reaction tube 14
...Resistance heating furnace 15, 24. 34...Substrate crystal 16. 35... Group V raw material 17a-i, 3
7a-9...Valve 18. 32... Constant temperature chamber 19a-9, 36... Mass flow controller 20.
...Introduction tube 21...Upper reaction tube 22.
...Ga source boat 23...Lower reaction tube 26
...Trajectory of substrate holder movement 27...Substrate holder

Claims (1)

【特許請求の範囲】[Claims] (1)III族元素原料とV族元素原料を交互に反応管内
の基板結晶領域に供給して基板結晶上にエピタキシャル
結晶成長を行う化合物半導体の気相成長方法において、
III族元素を含有する有機金属化合物をIII族元素原料と
して用い、該有機金属化合物と塩化水素とを反応させて
III族元素の塩化物とした後、該塩化物を基板結晶領域
に輸送する工程と、前記基板結晶領域を水素キャリアガ
スで置換する工程と、V族元素原料を前記基板結晶領域
に輸送する工程と、前記基板結晶領域を水素キャリアガ
スで置換する工程とを順次繰り返してなることを特徴と
する化合物半導体の気相成長方法。
(1) In a compound semiconductor vapor phase growth method in which a group III element raw material and a group V element raw material are alternately supplied to a substrate crystal region in a reaction tube to grow epitaxial crystals on a substrate crystal,
An organometallic compound containing a group III element is used as a group III element raw material, and the organometallic compound and hydrogen chloride are reacted.
After converting the group III element into a chloride, a step of transporting the chloride to the crystalline region of the substrate, a step of replacing the crystalline region of the substrate with a hydrogen carrier gas, and a step of transporting the group V element raw material to the crystalline region of the substrate. A method for vapor phase growth of a compound semiconductor, comprising sequentially repeating the steps of: and substituting the substrate crystal region with a hydrogen carrier gas.
JP4991189A 1989-03-03 1989-03-03 Vapor growth method of compound semiconductor Pending JPH02230722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4991189A JPH02230722A (en) 1989-03-03 1989-03-03 Vapor growth method of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4991189A JPH02230722A (en) 1989-03-03 1989-03-03 Vapor growth method of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH02230722A true JPH02230722A (en) 1990-09-13

Family

ID=12844197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4991189A Pending JPH02230722A (en) 1989-03-03 1989-03-03 Vapor growth method of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH02230722A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167569A1 (en) * 2000-06-24 2002-01-02 IPS Limited Apparatus and method for depositing thin film on wafer using atomic layer deposition
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182299A (en) * 1987-01-21 1988-07-27 Nec Corp Vapor growth method for iii-v compound semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182299A (en) * 1987-01-21 1988-07-27 Nec Corp Vapor growth method for iii-v compound semiconductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167569A1 (en) * 2000-06-24 2002-01-02 IPS Limited Apparatus and method for depositing thin film on wafer using atomic layer deposition
US6579372B2 (en) 2000-06-24 2003-06-17 Ips, Ltd. Apparatus and method for depositing thin film on wafer using atomic layer deposition
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers

Similar Documents

Publication Publication Date Title
US6632725B2 (en) Process for producing an epitaxial layer of gallium nitride by the HVPE method
EP2570523B1 (en) Method for producing gallium trichloride gas and method for producing nitride semiconductor crystal
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
JP2006073578A (en) METHOD AND EQUIPMENT FOR VAPOR PHASE EPITAXIAL GROWTH IN AlGaN
JPH02230722A (en) Vapor growth method of compound semiconductor
JPH04132681A (en) Device for epitaxial growth of compound semiconductor
JPH01252776A (en) Formation of aluminum film by vapor growth
JP2687371B2 (en) Vapor growth of compound semiconductors
JPS6115150B2 (en)
JP4265073B2 (en) Method for producing FeSi2
JPH0574717A (en) Compound semiconductor crystal growth method
JPS5829615B2 (en) How to get the job done right
JPH0529228A (en) Atomic layer crystal deposition method and device
Murota et al. Control of germanium atomic layer formation on silicon using flash heating in germanium CVD
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
KR850001945B1 (en) Method for producing semiconductor grade silicon
JPH02230723A (en) Vapor growth method of compound semiconductor
JPS6143411A (en) Single crystal thin film forming device
JPH01136971A (en) Vapor phase growth device
JPH01313395A (en) Method for growing silicon in vapor phase
JPH01179312A (en) Vapor growth of iii-v compound semiconductor
JPH01239087A (en) Process for vapor-phase epitaxial growth of compound semiconductor
JPH04261016A (en) Vapor phase growing device and method thereof
JPS63248797A (en) Device for vapor phase epitaxy
JPH01141899A (en) Vapor growth method for iii-v compound semiconductor