Nothing Special   »   [go: up one dir, main page]

JPH0223782A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH0223782A
JPH0223782A JP63174490A JP17449088A JPH0223782A JP H0223782 A JPH0223782 A JP H0223782A JP 63174490 A JP63174490 A JP 63174490A JP 17449088 A JP17449088 A JP 17449088A JP H0223782 A JPH0223782 A JP H0223782A
Authority
JP
Japan
Prior art keywords
solid
elements
state image
image pickup
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63174490A
Other languages
Japanese (ja)
Inventor
Naoki Yuya
直毅 油谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63174490A priority Critical patent/JPH0223782A/en
Publication of JPH0223782A publication Critical patent/JPH0223782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To remove the loss of a picture element at a connection part between elements in a solid-state image pickup device in which the number of the picture elements is increased by combining plural pieces of solid-state image pickup elements by arranging the solid-state image pickup elements so that surfaces formed by their photoelectric converting parts face each other. CONSTITUTION:Infrared rays made incident from the back of the solid-state image pickup element 1 is detected by the photoelectric converting array 4 of the element 1 after passing through the element 1. Besides, the infrared rays made incident to an area other than the array 4 is transmitted through the substrate of the element 1 as it is, and reaches the photoelectric converting arrays 5, 6 of the solid-state image pickup elements 2, 3, and is detected. Here, supposing the pitch of the picture element of the elements 1 to 3 is d0, if the elements 1 to 3 are arranged so that distance (d) between the centers of the picture elements at the ends of the arrays 4 and 5 comes equal to d0, the photoelectric converting arrays of the elements 1 and 3 is connected continuously. Therefore, an image can be picked up by the area of large area formed by the arrays 4 and 5, and a picture free from the loss of the picture at the connection part between the elements can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、固体撮像装置に関するもので、特に赤外線
を撮像するものの構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solid-state imaging device, and particularly to the configuration of an infrared imaging device.

〔従来の技術〕[Conventional technology]

光電変換素子アレイ及び電気信号を読出す機構を同一半
導体基板上に集積した固体撮像素子は、可視領域におい
てはすでにビデオカメラ等に利用されている。一方赤外
線領域の固体撮像素子の開発も進んでおり、特にシリコ
ンショットキバリアダイオードを、光電変換部とした赤
外線固体撮像素子については可視の固体撮像素子と同等
の解像度を持つものが開発されている。
Solid-state imaging devices in which a photoelectric conversion element array and a mechanism for reading electrical signals are integrated on the same semiconductor substrate are already used in video cameras and the like in the visible region. On the other hand, the development of solid-state imaging devices in the infrared region is also progressing, and in particular, infrared solid-state imaging devices that use silicon Schottky barrier diodes as photoelectric conversion parts have been developed that have the same resolution as visible solid-state imaging devices.

最近、さらによい解像度を持った固体撮像素子の要求が
ある。可視域の固体撮像素子では画素の微細化をさらに
進めることによりこの要求に応えられるが、赤外域の固
体撮像素子は赤外光の波長が長いため回折限界を考慮す
ると、画素の微細化には限界がある。そのため、赤外線
固体撮像素子では画素数を増やすと素子は大面積になっ
てしまい、チンブサイズの増大により歩留りが低下して
しまう。また縮小投写型の露光装置を使ってパタ−ンを
形成する場合転写できる面積に限界があるため、チップ
サイズを大きくできない。そこで、赤外線固体撮像素子
の解像度を上げる方法として第4図に示す方法が考えら
れる。
Recently, there has been a demand for solid-state imaging devices with even better resolution. Solid-state imaging devices in the visible range can meet this demand by further miniaturizing pixels, but solid-state imaging devices in the infrared region have long wavelengths of infrared light, so considering the diffraction limit, it is difficult to miniaturize pixels. There is a limit. Therefore, in an infrared solid-state imaging device, increasing the number of pixels results in an increase in the area of the device, resulting in a decrease in yield due to an increase in chimney size. Furthermore, when a pattern is formed using a reduction projection type exposure device, there is a limit to the area that can be transferred, so the chip size cannot be increased. Therefore, a method shown in FIG. 4 can be considered as a method of increasing the resolution of an infrared solid-state image sensor.

第4図において、11,12.13は第1.第2、第3
の固体撮像素子、14,15.16はそれぞれ第1.第
2.第3の固体撮像素子のアレイ状に並んだ光電変換部
である。固体撮像素子11゜12.13は素子間の間隙
が非常に小さくなるように並べて配置しである。そのた
め素子11,12.13で構成された固体撮像装置は、
実効的に14.15.16の3つの光電変換アレイを持
つことになり、1個の固体撮像素子だけで構成した場合
に比べて撮像面積が3倍となり、ひいては3倍の解像度
を持つことができる。
In FIG. 4, 11, 12, 13 are the 1st. 2nd, 3rd
The solid-state image sensors 14, 15, and 16 are the first solid-state image sensors, respectively. Second. This is a photoelectric conversion section of a third solid-state image sensor arranged in an array. The solid-state imaging devices 11, 12, and 13 are arranged side by side so that the gaps between the devices are extremely small. Therefore, the solid-state imaging device composed of elements 11, 12, and 13 is
Effectively, it has three photoelectric conversion arrays (14, 15, and 16), and the imaging area is tripled compared to the case where it is configured with only one solid-state image sensor, and in turn, it can have three times the resolution. can.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の固体撮像装置は、以上のように構成されており、
各素子間の間隙の部分は光を検出できないため、素子の
つなぎの部分で画素が欠損するという問題点があった。
Conventional solid-state imaging devices are configured as described above.
Since light cannot be detected in the gaps between the elements, there is a problem in that pixels are lost at the junctions between the elements.

この発明は、上記のような従来のものの問題点を解消す
るためになされたもので、複数個の固体撮像素子を組み
合わせて画素数を増やした固体撮像装置において、各素
子間のつなぎの部分の画素の欠損をなくした固体撮像装
置を得ることを目的とする。
This invention was made to solve the problems of the conventional devices as described above.In a solid-state imaging device in which the number of pixels is increased by combining a plurality of solid-state imaging devices, the connection between each element is The purpose of this invention is to obtain a solid-state imaging device that eliminates pixel defects.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る固体撮像装置は、基板となる固体撮像素
子の光電変換アレイ部以外の領域の上に1個もしくは複
数個の固体撮像素子を互いの光電変換部形成面が向かい
合わせに、かつ互いの光電変換部の配列された領域が一
部重なるか、もしくは重ならないように配置したもので
ある。
The solid-state imaging device according to the present invention has one or more solid-state imaging devices on an area other than the photoelectric conversion array portion of the solid-state imaging device serving as a substrate, with their photoelectric conversion portion forming surfaces facing each other and each other. The areas where the photoelectric conversion units are arranged are arranged so that they partially overlap or do not overlap.

〔作用〕[Effect]

この発明においては、上述のように固体撮像素子を配置
するようにしたので、各固体撮像素子の光電変換アレイ
部で素子のつなぎの部分が連続につながるように素子を
配置することが可能となり、複数の固体撮像素子を組み
合わせて画素数を増やす際に、素子のつなぎの部分の画
像の欠損をなくすごとが可能になる。
In this invention, since the solid-state image sensors are arranged as described above, it is possible to arrange the elements so that the connecting parts of the elements in the photoelectric conversion array part of each solid-state image sensor are connected continuously. When increasing the number of pixels by combining multiple solid-state image sensors, it is possible to eliminate image loss at the connection between the elements.

〔実施例〕〔Example〕

以下、この発明の一実施例を図に・ついて説明する。第
1図はこの発明の一実施例による固体撮像装置の断面図
である。また第2図はその平面図である。図において、
1は基板となる固体撮像素子、2.3は固体撮像素子、
4,5.6はそれぞれ固体撮像素子1,2.3の光電変
換アレイ部である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a solid-state imaging device according to an embodiment of the present invention. FIG. 2 is a plan view thereof. In the figure,
1 is a solid-state image sensor serving as a substrate, 2.3 is a solid-state image sensor,
4, 5.6 are photoelectric conversion array sections of the solid-state image sensors 1, 2.3, respectively.

素子1の光電変換部形成面に対し、素子2,3はその光
電変換部形成面が向かい合わせになるように配置されて
おり、赤外光は素子1の裏面より入射する。
Elements 2 and 3 are arranged so that their photoelectric conversion part forming surfaces face the photoelectric conversion part forming surface of element 1, and infrared light enters from the back surface of element 1.

素子2,3の光電変換アレイ部5,6は第1図。Photoelectric conversion array sections 5 and 6 of elements 2 and 3 are shown in FIG.

第2図に示したように素子1の光電変換アレイ部4と接
する位置で端の画素の中心間の距離がdになるように配
置されている。固体撮像素子1.23は例えばSi半導
体上にショットキバリアダイオードの赤外線検出器アレ
イ4,5.6とその光信号を読出す手段とをモノリシッ
クに形成した赤外線固体撮像素子である。
As shown in FIG. 2, the elements 1 are arranged so that the distance between the centers of the end pixels is d at the position in contact with the photoelectric conversion array section 4. The solid-state image sensor 1.23 is an infrared solid-state image sensor in which an infrared detector array 4, 5.6 of Schottky barrier diodes and means for reading out optical signals thereof are monolithically formed on a Si semiconductor, for example.

赤外線固体撮像素子1と2,3とはお互いに検出器形成
面が向かい合っている。このような構成を実現する実装
方法として赤外線固体撮像素子1と2.3を接着剤等で
はり合わせてもよいし、また第3図に示すようにバンブ
を使ってはり合わせてもよい。この第3図において、6
はチップ1のI10パッド、7.8はチップ2または3
上に形成されたパッド、9はパッド6と7とを結びなお
かつチップ1と3を固定するInバンプである。
The infrared solid-state imaging devices 1, 2, and 3 have their detector forming surfaces facing each other. As a mounting method for realizing such a configuration, the infrared solid-state imaging devices 1 and 2.3 may be bonded together with an adhesive or the like, or may be bonded together using a bump as shown in FIG. In this figure 3, 6
is I10 pad of chip 1, 7.8 is chip 2 or 3
The pad 9 formed on the top is an In bump that connects the pads 6 and 7 and fixes the chips 1 and 3.

パッド7.8はチップ1の!10バッドとなる。Pad 7.8 is chip 1! It becomes 10 bad.

また10はチップ2または3のI10パッドである。Further, 10 is the I10 pad of chip 2 or 3.

次に動作について説明する。St半導体が赤外光に対し
透明であることから光の入射方向は検出器形成面でもそ
の裏面でもよい。素子1の裏面より入射した赤外光は素
子1を通過し、素子1の光電変換アレイ4によって検出
される。また光電変換アレイ4以外の領域に入射した赤
外光はそのまま素子1の基板を透過して素子2,3の光
電変換アレイ5と6に達し、検出される。また固体撮像
素子1,2.3の画素のピッチをd。とすると、光電変
換アレイ4と5の端の画素同士の中心間の距離dがdo
に等しくなるように素子1,2.3を配置すれば、素子
1と2.素子1と3の光電変換アレイが連続につながる
。そのため光電変換アレイ4と5と6によって形成され
る大面積の領域で撮像でき、素子の間のつなぎの部分で
の画像の欠損のない画像が得られる。
Next, the operation will be explained. Since the St semiconductor is transparent to infrared light, the direction of light incidence may be either the detector forming surface or the back surface thereof. Infrared light incident from the back surface of the element 1 passes through the element 1 and is detected by the photoelectric conversion array 4 of the element 1. Further, infrared light incident on a region other than the photoelectric conversion array 4 passes through the substrate of the element 1 as it is, reaches the photoelectric conversion arrays 5 and 6 of the elements 2 and 3, and is detected. Furthermore, the pixel pitch of the solid-state image sensors 1, 2, and 3 is d. Then, the distance d between the centers of the pixels at the ends of the photoelectric conversion arrays 4 and 5 is do
If elements 1, 2.3 are arranged so that they are equal to , then elements 1 and 2. The photoelectric conversion arrays of elements 1 and 3 are connected in series. Therefore, an image can be captured in a large area formed by the photoelectric conversion arrays 4, 5, and 6, and an image can be obtained without any image defects at the joints between the elements.

このように、本実施例によれば、基板となる固体撮像素
子の光電変換アレイ部以外の領域の上に1個もしくは複
数個の固体撮像素子を互いの画素形成面が向かい合わせ
になるように配置したので、各素子間の画素のつなぎの
部分が連続につながるようにすることが可能となり、素
子を増やして解像度を向上させる際の素子のつなぎの部
分での画像の欠損をなくすことができる。
As described above, according to this embodiment, one or more solid-state image sensors are placed on an area other than the photoelectric conversion array section of a solid-state image sensor serving as a substrate so that their pixel forming surfaces face each other. Because of this arrangement, it is possible to ensure that the pixel connections between each element are connected continuously, and it is possible to eliminate image loss at the pixel connection areas when increasing the number of elements to improve resolution. .

なお、上記実施例では光電変換アレイ4,5゜6が重な
らず、各素子の端の画素間の距離が画素ピッチと同じに
なるように配置したものを示したが、この距離は画素ピ
ンチと異なってもよく、またいくつかの端の画素が重な
っていてもよい。
In the above embodiment, the photoelectric conversion arrays 4, 5゜6 do not overlap and are arranged so that the distance between the pixels at the end of each element is the same as the pixel pitch, but this distance is determined by the pixel pinch. The pixels may be different from each other, or some edge pixels may overlap.

また、上記実施例では3個の固体撮像素子で構成された
ものを示したが、これは2個でも3個以上でもよく、ま
たこの並べ方も上記実施例に限定されるものではない。
Further, although the above embodiment shows an arrangement including three solid-state image sensors, the number may be two or three or more, and the arrangement is not limited to the above embodiment.

また、上記実施例では基板がSi半導体の場合を示した
が、これは他の半導体、例えばHgCdTeやInSb
でもよく、上記実施例と同様の効果を奏する。
Furthermore, although the above embodiments show the case where the substrate is a Si semiconductor, it is also possible to use other semiconductors such as HgCdTe or InSb.
However, the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る固体撮像装置によれば、
第1の固体撮像素子の光電変換アレイ部以外の領域の上
に1個もしくは複数個の固体撮像素子を互いの画素形成
面が向かい合わせになるように配置したので、各素子間
の画素のつなぎの部分が連続につながるようにすること
が可能となり、素子を増やして解像度を向上させる際の
素子のつなぎの部分での画像の欠損をなくすことが可能
となる。
As described above, according to the solid-state imaging device according to the present invention,
One or more solid-state image sensors are arranged on an area other than the photoelectric conversion array section of the first solid-state image sensor so that their pixel formation surfaces face each other, so that the pixels between each element are connected. It becomes possible to make the parts connected continuously, and it becomes possible to eliminate image loss at the part where the elements connect when increasing the number of elements and improving the resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による固体撮像装置の断面図
、第2図は第1図の装置の平面図、第3図は第1図の構
成を実現する実装方法の一例を示す図、第4図は従来の
固体撮像装置の平面図である。 図において、1,2.3は固体撮像素子、45.6は光
電変換アレイである。
FIG. 1 is a sectional view of a solid-state imaging device according to an embodiment of the present invention, FIG. 2 is a plan view of the device shown in FIG. 1, and FIG. 3 is a diagram showing an example of a mounting method for realizing the configuration of FIG. 1. , FIG. 4 is a plan view of a conventional solid-state imaging device. In the figure, 1 and 2.3 are solid-state image sensors, and 45.6 is a photoelectric conversion array.

Claims (1)

【特許請求の範囲】[Claims] (1)固体撮像装置において、 半導体基板上に1次元または2次元に配列され赤外線に
対し感度を有する光電変換部と該光電変換部からの電気
信号を読出す機構とを有する複数の固体撮像素子を備え
、 複数の固体撮像素子のうちの第1の固体撮像素子上に残
りの固体撮像素子を、前記第1の固体撮像素子と残りの
固体撮像素子の光電変換部形成面が互いに向かい合わせ
になる向きで、 かつ前記第1の固体撮像素子と残りの固体撮像素子の光
電変換部の配列された領域が互いに一部重なるか、もし
くは重ならないように配置してなることを特徴とする固
体撮像装置。
(1) In a solid-state imaging device, a plurality of solid-state imaging devices are arranged one-dimensionally or two-dimensionally on a semiconductor substrate and have a photoelectric conversion section sensitive to infrared rays and a mechanism for reading out electrical signals from the photoelectric conversion section. The remaining solid-state image sensors are placed on top of the first solid-state image sensor of the plurality of solid-state image sensors so that the photoelectric conversion portion forming surfaces of the first solid-state image sensor and the remaining solid-state image sensors face each other. The solid-state imaging device is arranged such that the photoelectric conversion sections of the first solid-state imaging device and the remaining solid-state imaging devices partially overlap or do not overlap with each other. Device.
JP63174490A 1988-07-12 1988-07-12 Solid-state image pickup device Pending JPH0223782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63174490A JPH0223782A (en) 1988-07-12 1988-07-12 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174490A JPH0223782A (en) 1988-07-12 1988-07-12 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH0223782A true JPH0223782A (en) 1990-01-25

Family

ID=15979399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174490A Pending JPH0223782A (en) 1988-07-12 1988-07-12 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH0223782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902174A2 (en) 1997-09-12 1999-03-17 Honda Giken Kogyo Kabushiki Kaisha Outboard marine drive powered by an air-cooled internal combustion engine
WO2000062344A1 (en) * 1999-04-13 2000-10-19 Hamamatsu Photonics K.K. Semiconductor device
WO2012111851A1 (en) * 2011-02-18 2012-08-23 日本電気株式会社 Infrared detection sensor array and infrared detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902174A2 (en) 1997-09-12 1999-03-17 Honda Giken Kogyo Kabushiki Kaisha Outboard marine drive powered by an air-cooled internal combustion engine
WO2000062344A1 (en) * 1999-04-13 2000-10-19 Hamamatsu Photonics K.K. Semiconductor device
US6872992B2 (en) 1999-04-13 2005-03-29 Hamamatsu Photonics K.K. Semiconductor device for detecting wide wavelength ranges
JP4786035B2 (en) * 1999-04-13 2011-10-05 浜松ホトニクス株式会社 Semiconductor device
WO2012111851A1 (en) * 2011-02-18 2012-08-23 日本電気株式会社 Infrared detection sensor array and infrared detection device
CN103415758A (en) * 2011-02-18 2013-11-27 日本电气株式会社 Infrared detection sensor array and infrared detection device

Similar Documents

Publication Publication Date Title
US6107618A (en) Integrated infrared and visible image sensors
US7535073B2 (en) Solid-state imaging device, camera module and electronic equipment module
US8541730B2 (en) Solid-state imaging device, imaging apparatus, and method for manufacturing solid-state imaging device
US8786739B2 (en) Photoelectric conversion device and imaging system
JP4881833B2 (en) Solid-state image sensor for imaging color images
JPH0821703B2 (en) Solid-state imaging device
JPH05335531A (en) Solid-state imaging device
WO2000062344A1 (en) Semiconductor device
JP2007053324A (en) Solid-state imaging device and manufacturing method thereof
US5120960A (en) Infrared image detecting device and method
JPWO2010100897A1 (en) Solid-state imaging device and imaging apparatus
JP2000323692A (en) Solid-state image sensing device
JP6732043B2 (en) TDI linear image sensor
JP2023169112A (en) Expanded image sensor pixel array
JPH0222973A (en) Solid-state image pickup device
JP2010021573A (en) Solid-state imaging apparatus, and method of manufacturing the same
JPH0223782A (en) Solid-state image pickup device
JPH0226080A (en) Semiconductor device
JP2005151077A (en) Two-plate color solid-state imaging device and digital camera
JP7402021B2 (en) Image sensor and imaging device
US20080173791A1 (en) Image sensor with three sets of microlenses
JPH0682813B2 (en) Method for manufacturing infrared detection solid-state imaging device
JPS61154283A (en) Solid image pick-up element
JP2005252411A (en) Solid-state imaging device and electronic information apparatus
US6873361B1 (en) Image sensor having a plurality of chips