JPH0223782A - Solid-state image pickup device - Google Patents
Solid-state image pickup deviceInfo
- Publication number
- JPH0223782A JPH0223782A JP63174490A JP17449088A JPH0223782A JP H0223782 A JPH0223782 A JP H0223782A JP 63174490 A JP63174490 A JP 63174490A JP 17449088 A JP17449088 A JP 17449088A JP H0223782 A JPH0223782 A JP H0223782A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- elements
- state image
- image pickup
- photoelectric conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 238000003384 imaging method Methods 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000003491 array Methods 0.000 abstract description 10
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、固体撮像装置に関するもので、特に赤外線
を撮像するものの構成に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solid-state imaging device, and particularly to the configuration of an infrared imaging device.
光電変換素子アレイ及び電気信号を読出す機構を同一半
導体基板上に集積した固体撮像素子は、可視領域におい
てはすでにビデオカメラ等に利用されている。一方赤外
線領域の固体撮像素子の開発も進んでおり、特にシリコ
ンショットキバリアダイオードを、光電変換部とした赤
外線固体撮像素子については可視の固体撮像素子と同等
の解像度を持つものが開発されている。Solid-state imaging devices in which a photoelectric conversion element array and a mechanism for reading electrical signals are integrated on the same semiconductor substrate are already used in video cameras and the like in the visible region. On the other hand, the development of solid-state imaging devices in the infrared region is also progressing, and in particular, infrared solid-state imaging devices that use silicon Schottky barrier diodes as photoelectric conversion parts have been developed that have the same resolution as visible solid-state imaging devices.
最近、さらによい解像度を持った固体撮像素子の要求が
ある。可視域の固体撮像素子では画素の微細化をさらに
進めることによりこの要求に応えられるが、赤外域の固
体撮像素子は赤外光の波長が長いため回折限界を考慮す
ると、画素の微細化には限界がある。そのため、赤外線
固体撮像素子では画素数を増やすと素子は大面積になっ
てしまい、チンブサイズの増大により歩留りが低下して
しまう。また縮小投写型の露光装置を使ってパタ−ンを
形成する場合転写できる面積に限界があるため、チップ
サイズを大きくできない。そこで、赤外線固体撮像素子
の解像度を上げる方法として第4図に示す方法が考えら
れる。Recently, there has been a demand for solid-state imaging devices with even better resolution. Solid-state imaging devices in the visible range can meet this demand by further miniaturizing pixels, but solid-state imaging devices in the infrared region have long wavelengths of infrared light, so considering the diffraction limit, it is difficult to miniaturize pixels. There is a limit. Therefore, in an infrared solid-state imaging device, increasing the number of pixels results in an increase in the area of the device, resulting in a decrease in yield due to an increase in chimney size. Furthermore, when a pattern is formed using a reduction projection type exposure device, there is a limit to the area that can be transferred, so the chip size cannot be increased. Therefore, a method shown in FIG. 4 can be considered as a method of increasing the resolution of an infrared solid-state image sensor.
第4図において、11,12.13は第1.第2、第3
の固体撮像素子、14,15.16はそれぞれ第1.第
2.第3の固体撮像素子のアレイ状に並んだ光電変換部
である。固体撮像素子11゜12.13は素子間の間隙
が非常に小さくなるように並べて配置しである。そのた
め素子11,12.13で構成された固体撮像装置は、
実効的に14.15.16の3つの光電変換アレイを持
つことになり、1個の固体撮像素子だけで構成した場合
に比べて撮像面積が3倍となり、ひいては3倍の解像度
を持つことができる。In FIG. 4, 11, 12, 13 are the 1st. 2nd, 3rd
The solid-state image sensors 14, 15, and 16 are the first solid-state image sensors, respectively. Second. This is a photoelectric conversion section of a third solid-state image sensor arranged in an array. The solid-state imaging devices 11, 12, and 13 are arranged side by side so that the gaps between the devices are extremely small. Therefore, the solid-state imaging device composed of elements 11, 12, and 13 is
Effectively, it has three photoelectric conversion arrays (14, 15, and 16), and the imaging area is tripled compared to the case where it is configured with only one solid-state image sensor, and in turn, it can have three times the resolution. can.
従来の固体撮像装置は、以上のように構成されており、
各素子間の間隙の部分は光を検出できないため、素子の
つなぎの部分で画素が欠損するという問題点があった。Conventional solid-state imaging devices are configured as described above.
Since light cannot be detected in the gaps between the elements, there is a problem in that pixels are lost at the junctions between the elements.
この発明は、上記のような従来のものの問題点を解消す
るためになされたもので、複数個の固体撮像素子を組み
合わせて画素数を増やした固体撮像装置において、各素
子間のつなぎの部分の画素の欠損をなくした固体撮像装
置を得ることを目的とする。This invention was made to solve the problems of the conventional devices as described above.In a solid-state imaging device in which the number of pixels is increased by combining a plurality of solid-state imaging devices, the connection between each element is The purpose of this invention is to obtain a solid-state imaging device that eliminates pixel defects.
この発明に係る固体撮像装置は、基板となる固体撮像素
子の光電変換アレイ部以外の領域の上に1個もしくは複
数個の固体撮像素子を互いの光電変換部形成面が向かい
合わせに、かつ互いの光電変換部の配列された領域が一
部重なるか、もしくは重ならないように配置したもので
ある。The solid-state imaging device according to the present invention has one or more solid-state imaging devices on an area other than the photoelectric conversion array portion of the solid-state imaging device serving as a substrate, with their photoelectric conversion portion forming surfaces facing each other and each other. The areas where the photoelectric conversion units are arranged are arranged so that they partially overlap or do not overlap.
この発明においては、上述のように固体撮像素子を配置
するようにしたので、各固体撮像素子の光電変換アレイ
部で素子のつなぎの部分が連続につながるように素子を
配置することが可能となり、複数の固体撮像素子を組み
合わせて画素数を増やす際に、素子のつなぎの部分の画
像の欠損をなくすごとが可能になる。In this invention, since the solid-state image sensors are arranged as described above, it is possible to arrange the elements so that the connecting parts of the elements in the photoelectric conversion array part of each solid-state image sensor are connected continuously. When increasing the number of pixels by combining multiple solid-state image sensors, it is possible to eliminate image loss at the connection between the elements.
以下、この発明の一実施例を図に・ついて説明する。第
1図はこの発明の一実施例による固体撮像装置の断面図
である。また第2図はその平面図である。図において、
1は基板となる固体撮像素子、2.3は固体撮像素子、
4,5.6はそれぞれ固体撮像素子1,2.3の光電変
換アレイ部である。An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a solid-state imaging device according to an embodiment of the present invention. FIG. 2 is a plan view thereof. In the figure,
1 is a solid-state image sensor serving as a substrate, 2.3 is a solid-state image sensor,
4, 5.6 are photoelectric conversion array sections of the solid-state image sensors 1, 2.3, respectively.
素子1の光電変換部形成面に対し、素子2,3はその光
電変換部形成面が向かい合わせになるように配置されて
おり、赤外光は素子1の裏面より入射する。Elements 2 and 3 are arranged so that their photoelectric conversion part forming surfaces face the photoelectric conversion part forming surface of element 1, and infrared light enters from the back surface of element 1.
素子2,3の光電変換アレイ部5,6は第1図。Photoelectric conversion array sections 5 and 6 of elements 2 and 3 are shown in FIG.
第2図に示したように素子1の光電変換アレイ部4と接
する位置で端の画素の中心間の距離がdになるように配
置されている。固体撮像素子1.23は例えばSi半導
体上にショットキバリアダイオードの赤外線検出器アレ
イ4,5.6とその光信号を読出す手段とをモノリシッ
クに形成した赤外線固体撮像素子である。As shown in FIG. 2, the elements 1 are arranged so that the distance between the centers of the end pixels is d at the position in contact with the photoelectric conversion array section 4. The solid-state image sensor 1.23 is an infrared solid-state image sensor in which an infrared detector array 4, 5.6 of Schottky barrier diodes and means for reading out optical signals thereof are monolithically formed on a Si semiconductor, for example.
赤外線固体撮像素子1と2,3とはお互いに検出器形成
面が向かい合っている。このような構成を実現する実装
方法として赤外線固体撮像素子1と2.3を接着剤等で
はり合わせてもよいし、また第3図に示すようにバンブ
を使ってはり合わせてもよい。この第3図において、6
はチップ1のI10パッド、7.8はチップ2または3
上に形成されたパッド、9はパッド6と7とを結びなお
かつチップ1と3を固定するInバンプである。The infrared solid-state imaging devices 1, 2, and 3 have their detector forming surfaces facing each other. As a mounting method for realizing such a configuration, the infrared solid-state imaging devices 1 and 2.3 may be bonded together with an adhesive or the like, or may be bonded together using a bump as shown in FIG. In this figure 3, 6
is I10 pad of chip 1, 7.8 is chip 2 or 3
The pad 9 formed on the top is an In bump that connects the pads 6 and 7 and fixes the chips 1 and 3.
パッド7.8はチップ1の!10バッドとなる。Pad 7.8 is chip 1! It becomes 10 bad.
また10はチップ2または3のI10パッドである。Further, 10 is the I10 pad of chip 2 or 3.
次に動作について説明する。St半導体が赤外光に対し
透明であることから光の入射方向は検出器形成面でもそ
の裏面でもよい。素子1の裏面より入射した赤外光は素
子1を通過し、素子1の光電変換アレイ4によって検出
される。また光電変換アレイ4以外の領域に入射した赤
外光はそのまま素子1の基板を透過して素子2,3の光
電変換アレイ5と6に達し、検出される。また固体撮像
素子1,2.3の画素のピッチをd。とすると、光電変
換アレイ4と5の端の画素同士の中心間の距離dがdo
に等しくなるように素子1,2.3を配置すれば、素子
1と2.素子1と3の光電変換アレイが連続につながる
。そのため光電変換アレイ4と5と6によって形成され
る大面積の領域で撮像でき、素子の間のつなぎの部分で
の画像の欠損のない画像が得られる。Next, the operation will be explained. Since the St semiconductor is transparent to infrared light, the direction of light incidence may be either the detector forming surface or the back surface thereof. Infrared light incident from the back surface of the element 1 passes through the element 1 and is detected by the photoelectric conversion array 4 of the element 1. Further, infrared light incident on a region other than the photoelectric conversion array 4 passes through the substrate of the element 1 as it is, reaches the photoelectric conversion arrays 5 and 6 of the elements 2 and 3, and is detected. Furthermore, the pixel pitch of the solid-state image sensors 1, 2, and 3 is d. Then, the distance d between the centers of the pixels at the ends of the photoelectric conversion arrays 4 and 5 is do
If elements 1, 2.3 are arranged so that they are equal to , then elements 1 and 2. The photoelectric conversion arrays of elements 1 and 3 are connected in series. Therefore, an image can be captured in a large area formed by the photoelectric conversion arrays 4, 5, and 6, and an image can be obtained without any image defects at the joints between the elements.
このように、本実施例によれば、基板となる固体撮像素
子の光電変換アレイ部以外の領域の上に1個もしくは複
数個の固体撮像素子を互いの画素形成面が向かい合わせ
になるように配置したので、各素子間の画素のつなぎの
部分が連続につながるようにすることが可能となり、素
子を増やして解像度を向上させる際の素子のつなぎの部
分での画像の欠損をなくすことができる。As described above, according to this embodiment, one or more solid-state image sensors are placed on an area other than the photoelectric conversion array section of a solid-state image sensor serving as a substrate so that their pixel forming surfaces face each other. Because of this arrangement, it is possible to ensure that the pixel connections between each element are connected continuously, and it is possible to eliminate image loss at the pixel connection areas when increasing the number of elements to improve resolution. .
なお、上記実施例では光電変換アレイ4,5゜6が重な
らず、各素子の端の画素間の距離が画素ピッチと同じに
なるように配置したものを示したが、この距離は画素ピ
ンチと異なってもよく、またいくつかの端の画素が重な
っていてもよい。In the above embodiment, the photoelectric conversion arrays 4, 5゜6 do not overlap and are arranged so that the distance between the pixels at the end of each element is the same as the pixel pitch, but this distance is determined by the pixel pinch. The pixels may be different from each other, or some edge pixels may overlap.
また、上記実施例では3個の固体撮像素子で構成された
ものを示したが、これは2個でも3個以上でもよく、ま
たこの並べ方も上記実施例に限定されるものではない。Further, although the above embodiment shows an arrangement including three solid-state image sensors, the number may be two or three or more, and the arrangement is not limited to the above embodiment.
また、上記実施例では基板がSi半導体の場合を示した
が、これは他の半導体、例えばHgCdTeやInSb
でもよく、上記実施例と同様の効果を奏する。Furthermore, although the above embodiments show the case where the substrate is a Si semiconductor, it is also possible to use other semiconductors such as HgCdTe or InSb.
However, the same effect as in the above embodiment can be obtained.
以上のように、この発明に係る固体撮像装置によれば、
第1の固体撮像素子の光電変換アレイ部以外の領域の上
に1個もしくは複数個の固体撮像素子を互いの画素形成
面が向かい合わせになるように配置したので、各素子間
の画素のつなぎの部分が連続につながるようにすること
が可能となり、素子を増やして解像度を向上させる際の
素子のつなぎの部分での画像の欠損をなくすことが可能
となる。As described above, according to the solid-state imaging device according to the present invention,
One or more solid-state image sensors are arranged on an area other than the photoelectric conversion array section of the first solid-state image sensor so that their pixel formation surfaces face each other, so that the pixels between each element are connected. It becomes possible to make the parts connected continuously, and it becomes possible to eliminate image loss at the part where the elements connect when increasing the number of elements and improving the resolution.
第1図は本発明の一実施例による固体撮像装置の断面図
、第2図は第1図の装置の平面図、第3図は第1図の構
成を実現する実装方法の一例を示す図、第4図は従来の
固体撮像装置の平面図である。
図において、1,2.3は固体撮像素子、45.6は光
電変換アレイである。FIG. 1 is a sectional view of a solid-state imaging device according to an embodiment of the present invention, FIG. 2 is a plan view of the device shown in FIG. 1, and FIG. 3 is a diagram showing an example of a mounting method for realizing the configuration of FIG. 1. , FIG. 4 is a plan view of a conventional solid-state imaging device. In the figure, 1 and 2.3 are solid-state image sensors, and 45.6 is a photoelectric conversion array.
Claims (1)
対し感度を有する光電変換部と該光電変換部からの電気
信号を読出す機構とを有する複数の固体撮像素子を備え
、 複数の固体撮像素子のうちの第1の固体撮像素子上に残
りの固体撮像素子を、前記第1の固体撮像素子と残りの
固体撮像素子の光電変換部形成面が互いに向かい合わせ
になる向きで、 かつ前記第1の固体撮像素子と残りの固体撮像素子の光
電変換部の配列された領域が互いに一部重なるか、もし
くは重ならないように配置してなることを特徴とする固
体撮像装置。(1) In a solid-state imaging device, a plurality of solid-state imaging devices are arranged one-dimensionally or two-dimensionally on a semiconductor substrate and have a photoelectric conversion section sensitive to infrared rays and a mechanism for reading out electrical signals from the photoelectric conversion section. The remaining solid-state image sensors are placed on top of the first solid-state image sensor of the plurality of solid-state image sensors so that the photoelectric conversion portion forming surfaces of the first solid-state image sensor and the remaining solid-state image sensors face each other. The solid-state imaging device is arranged such that the photoelectric conversion sections of the first solid-state imaging device and the remaining solid-state imaging devices partially overlap or do not overlap with each other. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63174490A JPH0223782A (en) | 1988-07-12 | 1988-07-12 | Solid-state image pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63174490A JPH0223782A (en) | 1988-07-12 | 1988-07-12 | Solid-state image pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0223782A true JPH0223782A (en) | 1990-01-25 |
Family
ID=15979399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63174490A Pending JPH0223782A (en) | 1988-07-12 | 1988-07-12 | Solid-state image pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0223782A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0902174A2 (en) | 1997-09-12 | 1999-03-17 | Honda Giken Kogyo Kabushiki Kaisha | Outboard marine drive powered by an air-cooled internal combustion engine |
WO2000062344A1 (en) * | 1999-04-13 | 2000-10-19 | Hamamatsu Photonics K.K. | Semiconductor device |
WO2012111851A1 (en) * | 2011-02-18 | 2012-08-23 | 日本電気株式会社 | Infrared detection sensor array and infrared detection device |
-
1988
- 1988-07-12 JP JP63174490A patent/JPH0223782A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0902174A2 (en) | 1997-09-12 | 1999-03-17 | Honda Giken Kogyo Kabushiki Kaisha | Outboard marine drive powered by an air-cooled internal combustion engine |
WO2000062344A1 (en) * | 1999-04-13 | 2000-10-19 | Hamamatsu Photonics K.K. | Semiconductor device |
US6872992B2 (en) | 1999-04-13 | 2005-03-29 | Hamamatsu Photonics K.K. | Semiconductor device for detecting wide wavelength ranges |
JP4786035B2 (en) * | 1999-04-13 | 2011-10-05 | 浜松ホトニクス株式会社 | Semiconductor device |
WO2012111851A1 (en) * | 2011-02-18 | 2012-08-23 | 日本電気株式会社 | Infrared detection sensor array and infrared detection device |
CN103415758A (en) * | 2011-02-18 | 2013-11-27 | 日本电气株式会社 | Infrared detection sensor array and infrared detection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6107618A (en) | Integrated infrared and visible image sensors | |
US7535073B2 (en) | Solid-state imaging device, camera module and electronic equipment module | |
US8541730B2 (en) | Solid-state imaging device, imaging apparatus, and method for manufacturing solid-state imaging device | |
US8786739B2 (en) | Photoelectric conversion device and imaging system | |
JP4881833B2 (en) | Solid-state image sensor for imaging color images | |
JPH0821703B2 (en) | Solid-state imaging device | |
JPH05335531A (en) | Solid-state imaging device | |
WO2000062344A1 (en) | Semiconductor device | |
JP2007053324A (en) | Solid-state imaging device and manufacturing method thereof | |
US5120960A (en) | Infrared image detecting device and method | |
JPWO2010100897A1 (en) | Solid-state imaging device and imaging apparatus | |
JP2000323692A (en) | Solid-state image sensing device | |
JP6732043B2 (en) | TDI linear image sensor | |
JP2023169112A (en) | Expanded image sensor pixel array | |
JPH0222973A (en) | Solid-state image pickup device | |
JP2010021573A (en) | Solid-state imaging apparatus, and method of manufacturing the same | |
JPH0223782A (en) | Solid-state image pickup device | |
JPH0226080A (en) | Semiconductor device | |
JP2005151077A (en) | Two-plate color solid-state imaging device and digital camera | |
JP7402021B2 (en) | Image sensor and imaging device | |
US20080173791A1 (en) | Image sensor with three sets of microlenses | |
JPH0682813B2 (en) | Method for manufacturing infrared detection solid-state imaging device | |
JPS61154283A (en) | Solid image pick-up element | |
JP2005252411A (en) | Solid-state imaging device and electronic information apparatus | |
US6873361B1 (en) | Image sensor having a plurality of chips |