JPH02229940A - Rotary body and regulation method for dynamic unbalance thereof - Google Patents
Rotary body and regulation method for dynamic unbalance thereofInfo
- Publication number
- JPH02229940A JPH02229940A JP4923989A JP4923989A JPH02229940A JP H02229940 A JPH02229940 A JP H02229940A JP 4923989 A JP4923989 A JP 4923989A JP 4923989 A JP4923989 A JP 4923989A JP H02229940 A JPH02229940 A JP H02229940A
- Authority
- JP
- Japan
- Prior art keywords
- dynamic unbalance
- balance weight
- rotating body
- unbalance
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 5
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
Landscapes
- Rotational Drive Of Disk (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は回転体に関するもので、詳説すれば、回転体の
回転不釣り合い又は不均衡を除去する構成に関する.
(従来の技術)
回転体の構造、形状等の不均衡のために、作動中、回転
不釣り合い(以下動不釣合という)が生じる.そのため
回転体並びにこれを取りつけた機器に振動、騒音等が発
生し,回転体並びに機器に不具合が起きていた.
そもそも回転体の動不釣合は、第4図に図示のように不
釣合量の遠心力Fに起因するもので、遠心力Fの大きさ
は、不釣合量をm、回転中心からの不釣合量mまでの距
離をr,角速度をωとすると、F=mrω2の式で表す
ことができる.動不釣合調整を実施する場合には,この
遠心力Fの位nと対称的位置にA点(第4図)に不釣合
量mと同じ質量m′のバランスウェイトを配設すること
により、前述の動不釣合を除去することが可能となる.
そこで、従来例の回転体においては、第5図に図示のよ
うに、回転体1の上面に回転軸3を中心とする同心円状
の環状溝2を穿設し、回転体1を、動不釣合試験機を用
いて、動不釣合位置を求め、この動不釣合位置例えば環
状溝2の適宜の位置に適量のバランスウェイト4を付着
せしめて,動不釣合の除去を計っていた.
(発明の解決しようとする課題)
前述の従来例において、動不釣合調整を実施する際に、
回転精度の向上を計るためには、第4図に図示の不釣合
量mに対し同一量のバランスウェイトm′を配設せねば
ならない.
しかしながらm=m’となるように調整するためには,
常に微量調整をくり返して実施する必要があり、この実
施は極めて煩瑣であり、特に熟練を必要とし、調整効率
が悪い等の問題点があった.
本発明は、前述の問題点を除去することを目的とするも
のである.
(課題を解決するための手段)
本発明は、前記目的を達するため次の手段を提供する.
すなわち、回転体の上面に回転軸と同心円状の複数の環
状凹部又は凸部を設け、これらの四部又は凸部の所定位
置にそれぞれ所定鼠のバランスウェイトを配設すること
により回転体の動不釣合を除去する構成並びに半径の大
きい同心環状凹部又は凸部に、先ず適量のバランスウェ
イトを配設し、次に更に動不釣合を完全に調整すべく所
定量のバランスウェイトを半径の小さい凹部又は凸部に
配設し、前記2個のバランスウェイトの合計質量により
回転゛体の動不釣合を調整する方法である.
(作 用)
本発明においては、回転体上面に回転軸を中心として複
数の同心環状凹部又は凸部を設けており,大まかな動不
釣合を半径の大きい同心環状凹部又は凸部にバランスウ
ェイトを取りつけることにより第一次調整を行い、次に
微妙な第二次調整を行なうために動不釣合を半径の小さ
い同心環状凹部又は凸部へ所定量のバランスウェイトを
配設することにより行う.つまり、前述したように遠心
力F=mrω2の式で表わされ、遠心力Fは不釣合量m
と距#rと角速度ωの2乗に比例しているから、角速度
一定で同一遠心力を得る場合、距離rを1/2にすれば
、不釣合量は2倍にできるため、外径の小さい同心環状
四部又は凸部にバランスウェイトを配設することにより
、極めて効率のよい不釣合調整が可能である.
(実施例)
以下添付図面を参照して、本発明の実施例を説明する.
第1図は、本発明の第1実施例の斜視図である.図中1
は回転体、2aは回転軸3と同心に設けた半径の大きい
外側環状凹部、2bは前記環状四部2aと同心の半径の
小さい内側環状凹部である.又5は外側環状凹部2a内
に設けた第l次動不釣合調整用バランスウェイト、6は
内側四部2b内に設けた第二次動不釣合調整用バランス
ウェイトである.
回転軸3から外側環状凹部2a及び内側環状四部2bま
での距離をそれぞれRl . R2 とし、回転体lが
角速度ωで回転しており、回転体動不釣合が未調整であ
るとする.この回転体lを動不釣合試験機にかけながら
、動不釣合を調整する.動不釣合試験機により動不釣合
位置が判明した際に外側環状凹部2aにおける動不釣合
位置に適量のバランスウェイト5を配設する.次に再度
回転体1を動不釣合試験機にかけて回転すると動不釣合
は多部分なくなるか、僅かに残っているのが判明する.
そこでこの不釣合を取り除くために内側環状凹部内の所
定位、置に別のバランスウェイト6を配設する.前述し
たように、外側環状四部2aにくらべて、回転軸からの
距離が短くなればなるほどバランスウェイトの量を多く
とることができる.すなわち、従来例では、常に微量調
整を行わねばならない困難が存在するのに対し、バラン
スウェイト6の量を多くとることにより既に配設してい
るバランスウェイト5との合計量で効率的に動不釣合の
調整可能である.
第3図は本発明の第2の実施例を図示する.回転体1の
上面に回転軸を中心として同心状外側環状凸部7a,内
側環状凸部7bを設け、前記凸部7a,7bの側壁の所
定位置に所定量のバランスウェイト8,9を配設したも
のである.第1実施例と同様の原理により回転体の動不
釣合を調整することができる.
(効 果)
回転体の上面に回転軸を中心として複数の半径の異なる
同心環状凹部又は凸部を設け、これらの凹部又は凸部の
所定位置にそれぞれ所定量のバランスウェイトを経時的
に配設したものであるから、従来例のように一個所にお
けるバランスウェイトの第二次微量調整の困難性を克服
し,極めて癒率的調整が可能となる.DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a rotating body, and more specifically, to a configuration for eliminating rotational unbalance or imbalance of a rotating body. (Prior art) Rotational unbalance (hereinafter referred to as dynamic unbalance) occurs during operation due to imbalance in the structure, shape, etc. of the rotating body. As a result, vibrations, noise, etc. were generated in the rotating body and the equipment to which it was attached, causing problems with the rotating body and equipment. In the first place, the dynamic unbalance of a rotating body is caused by an unbalanced amount of centrifugal force F, as shown in Figure 4. If the distance is r and the angular velocity is ω, it can be expressed by the formula F=mrω2. When performing dynamic unbalance adjustment, a balance weight with the same mass m' as the amount of unbalance m is placed at point A (Fig. 4) at a position symmetrical to the order n of this centrifugal force F. This makes it possible to eliminate dynamic unbalance.
Therefore, in the conventional rotating body, as shown in FIG. The dynamic unbalance position was determined using a testing machine, and an appropriate amount of balance weight 4 was attached to this dynamic unbalance position, for example, at an appropriate position in the annular groove 2, in order to remove the dynamic unbalance. (Problem to be solved by the invention) In the conventional example described above, when performing dynamic unbalance adjustment,
In order to improve rotation accuracy, it is necessary to provide the same amount of balance weight m' for the unbalance amount m shown in FIG. However, in order to adjust so that m = m',
It is necessary to repeatedly carry out minute adjustments, which is extremely cumbersome, requires special skill, and has problems such as poor adjustment efficiency. The present invention aims to eliminate the aforementioned problems. (Means for Solving the Problems) The present invention provides the following means to achieve the above object.
That is, by providing a plurality of annular concave portions or convex portions concentric with the rotating shaft on the upper surface of the rotary body, and placing predetermined balance weights at predetermined positions of each of these four portions or convex portions, the dynamic unbalance of the rotary body can be reduced. First, an appropriate amount of balance weight is placed in a concentric annular concave or convex portion with a large radius, and then a predetermined amount of balance weight is placed in a concentric concave or convex portion with a small radius in order to completely adjust the dynamic unbalance. In this method, the dynamic unbalance of the rotating body is adjusted by the total mass of the two balance weights. (Function) In the present invention, a plurality of concentric annular recesses or protrusions are provided on the upper surface of the rotating body around the rotation axis, and a balance weight is attached to the concentric annular recesses or protrusions with a large radius to correct the rough dynamic imbalance. First adjustment is performed by this, and then, in order to perform delicate second adjustment, dynamic unbalance is performed by placing a predetermined amount of balance weight in a concentric annular concave or convex portion with a small radius. In other words, as mentioned above, it is expressed by the equation of centrifugal force F=mrω2, where centrifugal force F is the unbalance amount m
Since the distance #r is proportional to the square of the angular velocity ω, if the same centrifugal force is obtained at a constant angular velocity, if the distance r is halved, the amount of unbalance can be doubled. Extremely efficient unbalance adjustment is possible by placing balance weights on the four concentric annular parts or the convex parts. (Example) An example of the present invention will be described below with reference to the attached drawings. FIG. 1 is a perspective view of a first embodiment of the present invention. 1 in the diagram
is a rotating body, 2a is an outer annular recess with a large radius provided concentrically with the rotating shaft 3, and 2b is an inner annular recess with a small radius that is concentric with the four annular portions 2a. Reference numeral 5 designates a balance weight for adjusting the first-order dynamic unbalance provided within the outer annular recess 2a, and reference numeral 6 represents a balance weight for adjusting the second-order dynamic unbalance provided within the inner four portions 2b. The distances from the rotating shaft 3 to the outer annular recess 2a and the inner annular four parts 2b are respectively Rl. R2, the rotating body l is rotating at an angular velocity ω, and the rotating body dynamic unbalance has not been adjusted. The dynamic unbalance is adjusted by subjecting this rotating body l to a dynamic unbalance testing machine. When the dynamic unbalance position is determined by the dynamic unbalance tester, an appropriate amount of balance weight 5 is placed at the dynamic unbalance position in the outer annular recess 2a. Next, when the rotating body 1 is rotated again by the dynamic unbalance tester, it is found that the dynamic unbalance is largely eliminated or remains slightly.
Therefore, in order to eliminate this unbalance, another balance weight 6 is placed at a predetermined position within the inner annular recess. As mentioned above, compared to the outer annular four portions 2a, the shorter the distance from the rotation axis, the greater the amount of balance weight can be taken. In other words, in the conventional example, there is a difficulty in constantly having to make minute adjustments, whereas by increasing the amount of balance weights 6, dynamic unbalance can be effectively balanced with the total amount of balance weights 5 already arranged. can be adjusted. FIG. 3 illustrates a second embodiment of the invention. A concentric outer annular protrusion 7a and an inner annular protrusion 7b are provided on the upper surface of the rotating body 1 with the rotation axis as the center, and predetermined amounts of balance weights 8 and 9 are arranged at predetermined positions on the side walls of the protrusions 7a and 7b. This is what I did. The dynamic unbalance of the rotating body can be adjusted using the same principle as in the first embodiment. (Effect) A plurality of concentric annular concave portions or convex portions with different radii are provided on the upper surface of the rotating body around the rotation axis, and a predetermined amount of balance weight is placed at a predetermined position of each of these concave portions or convex portions over time. This overcomes the difficulty of making secondary minute adjustments to the balance weight at one location, as in the conventional case, and makes it possible to make extremely efficient adjustments.
第1図は、本発明に係る回転体の一実施例の斜視図・
第2図は第1図の八ランスウェイトを配設しない状態の
断面図.
第3図は別の実施例の斜視図.
第4図は回転体の遠心力と不釣合量、距離、角速度との
関係を示す略線図.
第5図は従来例の回転体の斜視図.
1・・・回転体、2a・・・外側環状凹部、2b・・・
内側環状凹部、3・・・回転軸、5.6・・・バランス
ウェイト、7a・・・外側環状凸部、7b・・・内側環
状凸部,8,9・・・バランスウェイト.出 願
人 コバル電子株式会社
代理人 弁理士 小 林 榮
第 1 図
第3図
3・・.1』転軸
5,6・・・バラ冫スカエイト
第2図
7a・・・ゲL布9症J丸凸右亡
8,9・・・バラン2クエイト
7b・・・内イリ’4 4肛凸ヤFIG. 1 is a perspective view of an embodiment of a rotating body according to the present invention. FIG. 2 is a cross-sectional view of a state in which the eight lance weights shown in FIG. 1 are not provided. Figure 3 is a perspective view of another embodiment. Figure 4 is a schematic diagram showing the relationship between centrifugal force of a rotating body, unbalance amount, distance, and angular velocity. Figure 5 is a perspective view of a conventional rotating body. DESCRIPTION OF SYMBOLS 1...Rotating body, 2a...Outer annular recess, 2b...
Inner annular recess, 3... Rotating shaft, 5.6... Balance weight, 7a... Outer annular protrusion, 7b... Inner annular protrusion, 8, 9... Balance weight. Application
Person Kobal Electronics Co., Ltd. Agent Patent Attorney Eiji Kobayashi 1 Figure 3 Figure 3... 1'' Axis of rotation 5, 6...Bara Tsukaeito 2nd figure 7a...Ge L cloth 9 syndrome J round convex right side 8,9...Balun 2 quaight 7b...Inner Iri'4 4 Anal convex Ya
Claims (1)
なる同心環状凹部を設け、これらの凹部内の所定位置に
それぞれ所定量のバランスウェイトを配設して回転動不
釣合を調整することを特徴とする回転体。 2、前記同心環状凹部の代りに環状凸部を設け、凸部側
壁の所定位置にそれぞれ所定量のバランスウェイトを配
設した請求項1記載の回転体。 3、回転体上面に回転軸を中心として複数の半径の異な
る同心環状凹部を設け、先ず半径の大きい環状凹部内の
所定位置に適量のバランスウェイトを配設し、次に適量
のバランスウェイトを半径の小さい環状凹部内の所定位
置に配設し、前記2個のバランスウェイトの質量による
回転体の動不釣合調整方法。 4、前記同心環状凹部の代りに環状凸部を設け、凸部側
壁に順次に適量のバランスウェイトを所定位置に配設す
る請求項3記載の回転体動不釣合調整方法。[Claims] 1. A plurality of concentric annular recesses having different radii are provided on the upper surface of the rotating body around the rotation axis, and a predetermined amount of balance weight is disposed at a predetermined position in each of these recesses to achieve rotational movement. A rotating body characterized by adjusting unbalance. 2. The rotating body according to claim 1, wherein an annular protrusion is provided in place of the concentric annular recess, and a predetermined amount of balance weight is disposed at a predetermined position on a side wall of the protrusion. 3. A plurality of concentric annular recesses with different radii are provided on the top surface of the rotating body around the rotation axis, and first an appropriate amount of balance weight is placed at a predetermined position within the annular recess with a large radius, and then an appropriate amount of balance weight is placed at a predetermined position within the annular recess with a large radius. A method for adjusting dynamic unbalance of a rotating body using the masses of the two balance weights, which are arranged at predetermined positions in a small annular recess. 4. The rotating body dynamic unbalance adjustment method according to claim 3, wherein an annular convex portion is provided in place of the concentric annular concave portion, and appropriate amounts of balance weights are sequentially arranged at predetermined positions on the side wall of the convex portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4923989A JPH02229940A (en) | 1989-03-01 | 1989-03-01 | Rotary body and regulation method for dynamic unbalance thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4923989A JPH02229940A (en) | 1989-03-01 | 1989-03-01 | Rotary body and regulation method for dynamic unbalance thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02229940A true JPH02229940A (en) | 1990-09-12 |
Family
ID=12825324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4923989A Pending JPH02229940A (en) | 1989-03-01 | 1989-03-01 | Rotary body and regulation method for dynamic unbalance thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02229940A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0561718U (en) * | 1992-01-29 | 1993-08-13 | 株式会社三協精機製作所 | Balance plate of rotating body |
US5460017A (en) * | 1992-05-21 | 1995-10-24 | Eti Technologies Inc. | Weight compensating apparatus |
US5592858A (en) * | 1992-05-21 | 1997-01-14 | Eti Technologies Inc. | Weight compensating method and apparatus |
US5605078A (en) * | 1992-05-21 | 1997-02-25 | Eti Technologies Inc. | Weight compensating method and apparatus |
US5613408A (en) * | 1992-05-21 | 1997-03-25 | Eti Technologies Inc. | Weight compensating method and apparatus |
US5724862A (en) * | 1992-05-21 | 1998-03-10 | Eti Technologies Inc. | Dynamic balancing method and apparatus |
US5845542A (en) * | 1992-05-21 | 1998-12-08 | Eti Technologies Inc. | Dynamic balancing method and apparatus |
EP0927999A1 (en) * | 1997-12-31 | 1999-07-07 | Samsung Electronics Co., Ltd. | Self-compensating dynamic balancer |
EP0938087A1 (en) * | 1998-02-19 | 1999-08-25 | Deutsche Thomson-Brandt Gmbh | Device for reading from and/or writing to recording media in disc form |
US7724468B2 (en) | 2005-03-08 | 2010-05-25 | Hitachi Global Storage Technologies Netherlands B.V. | Apparatus and method for correcting static and dynamic imbalance with a single mass in a hard disk drive |
JP2011508237A (en) * | 2007-12-27 | 2011-03-10 | ゼネラル・エレクトリック・カンパニイ | Method and system for balancing a turbine rotor assembly |
CN109703283A (en) * | 2019-01-21 | 2019-05-03 | 扬州道爵新能源发展有限公司 | A kind of wheel hub with center-of-gravity regulating |
WO2024043236A1 (en) * | 2022-08-23 | 2024-02-29 | 株式会社かいわ | Balancer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5444150U (en) * | 1977-08-31 | 1979-03-27 |
-
1989
- 1989-03-01 JP JP4923989A patent/JPH02229940A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5444150U (en) * | 1977-08-31 | 1979-03-27 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0561718U (en) * | 1992-01-29 | 1993-08-13 | 株式会社三協精機製作所 | Balance plate of rotating body |
US5816115A (en) * | 1992-05-21 | 1998-10-06 | Eti Technologies Inc. | Weight compensating method and apparatus |
US5605078A (en) * | 1992-05-21 | 1997-02-25 | Eti Technologies Inc. | Weight compensating method and apparatus |
US5845542A (en) * | 1992-05-21 | 1998-12-08 | Eti Technologies Inc. | Dynamic balancing method and apparatus |
US5829318A (en) * | 1992-05-21 | 1998-11-03 | Eti Technologies Inc. | Dynamic balancing method and apparatus |
US5711190A (en) * | 1992-05-21 | 1998-01-27 | Eti Technologies Inc. | Weight compensating method and apparatus |
US5724862A (en) * | 1992-05-21 | 1998-03-10 | Eti Technologies Inc. | Dynamic balancing method and apparatus |
US5768951A (en) * | 1992-05-21 | 1998-06-23 | Eti Technologies Inc. | Dynamic balancing method and apparatus |
US5460017A (en) * | 1992-05-21 | 1995-10-24 | Eti Technologies Inc. | Weight compensating apparatus |
US5613408A (en) * | 1992-05-21 | 1997-03-25 | Eti Technologies Inc. | Weight compensating method and apparatus |
US5592858A (en) * | 1992-05-21 | 1997-01-14 | Eti Technologies Inc. | Weight compensating method and apparatus |
US6116112A (en) * | 1997-12-31 | 2000-09-12 | Samsung Electronics Co., Ltd | Self-compensating dynamic balancer |
EP0927999A1 (en) * | 1997-12-31 | 1999-07-07 | Samsung Electronics Co., Ltd. | Self-compensating dynamic balancer |
EP0938087A1 (en) * | 1998-02-19 | 1999-08-25 | Deutsche Thomson-Brandt Gmbh | Device for reading from and/or writing to recording media in disc form |
US6438094B1 (en) | 1998-02-19 | 2002-08-20 | Thomson Licensing, S.A. | Device for reading from or writing to recording media in disc form exhibiting unbalance |
US7724468B2 (en) | 2005-03-08 | 2010-05-25 | Hitachi Global Storage Technologies Netherlands B.V. | Apparatus and method for correcting static and dynamic imbalance with a single mass in a hard disk drive |
JP2011508237A (en) * | 2007-12-27 | 2011-03-10 | ゼネラル・エレクトリック・カンパニイ | Method and system for balancing a turbine rotor assembly |
CN109703283A (en) * | 2019-01-21 | 2019-05-03 | 扬州道爵新能源发展有限公司 | A kind of wheel hub with center-of-gravity regulating |
WO2024043236A1 (en) * | 2022-08-23 | 2024-02-29 | 株式会社かいわ | Balancer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02229940A (en) | Rotary body and regulation method for dynamic unbalance thereof | |
JPH03149430A (en) | Inertial force generating apparatus | |
EP0434270A2 (en) | Balancing method and means for rotary units | |
CN107478385A (en) | A kind of generation can trace to the source amount of unbalance counterweight preparation method | |
IT9020765A1 (en) | BALANCING METHOD OF GAS TURBOMOTOR ROTORS AND COS ~ PRODUCTS | |
RU2426976C2 (en) | Procedure and device for automatic rotor balancing | |
JPH11247946A (en) | Self-compensating balancer | |
US4608867A (en) | Method for the dynamic balancing of rotating machines in assembled condition | |
RU2270985C1 (en) | Method and device for balancing a rotor | |
RU2426082C1 (en) | Procedure and device for rotor balancing | |
Sharp | An analysis of a self-balancing system for rigid rotors | |
KR101990839B1 (en) | Ball balancer and washing machine having the same | |
JP4140380B2 (en) | Dynamic imbalance calculation method and dynamic balance test equipment | |
US4644792A (en) | Method and apparatus for determining the mass center of a body | |
JPH07114984B2 (en) | Automatic balancer for centrifuge | |
US2459947A (en) | Balancing device | |
WO2024225307A1 (en) | Balancer and method for adjusting rotation balance | |
US4270392A (en) | Low cost flexure assembly | |
JP2024156559A (en) | Balancer and rotation balance adjustment method | |
CA1083862A (en) | Low cost flexure assembly for a tuned rotor gyro | |
SU1167462A1 (en) | Method of dynamic balancing of rotors | |
SU588481A1 (en) | Method of balancing thin-wall rotors | |
SU1260703A1 (en) | Method of balancing rotors | |
SU1262319A2 (en) | Method of balancing rotors | |
JPS60216751A (en) | Correcting method for unbalance of rotor |