Nothing Special   »   [go: up one dir, main page]

JPH02229145A - Production of dimethylaminoethyl acrylate - Google Patents

Production of dimethylaminoethyl acrylate

Info

Publication number
JPH02229145A
JPH02229145A JP1049987A JP4998789A JPH02229145A JP H02229145 A JPH02229145 A JP H02229145A JP 1049987 A JP1049987 A JP 1049987A JP 4998789 A JP4998789 A JP 4998789A JP H02229145 A JPH02229145 A JP H02229145A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
dmae
distillation
tbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1049987A
Other languages
Japanese (ja)
Other versions
JPH089582B2 (en
Inventor
Masahiro Kimura
正弘 木村
Yasutaro Yasuda
安田 保太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP1049987A priority Critical patent/JPH089582B2/en
Publication of JPH02229145A publication Critical patent/JPH02229145A/en
Publication of JPH089582B2 publication Critical patent/JPH089582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject compound in high purity and high yield by reacting n-butyl acrylate with dimethylaminoethyl alcohol in the presence of tetra-n-butyltitanate catalyst and inhibiting side reaction with keeping activity of catalyst. CONSTITUTION:Dimethylaminoethyl alcohol (DMAE) is reacted with n-butyl acrylate (BA) using tetra-n-butyltitanate (TBT) as catalyst with distilling out n-butanol generated by side reaction from reacted solution in reduced pressure at a temperature of 70-130 deg.C to afford the aimed compound. Reaction molar ratio of BA and DMAE is 1.0-10.0 and TBT is used as 0.1-10mol% of DMAE. The aimed substance is used as improving agent of dyeability of fiber, antistatic agent of plastic, pigment-dispersing agent in paint or ultraviolet adjuvant, and further useful as raw material of fiber-treating agent, toner binder, paint or additive for lubricant, etc.

Description

【発明の詳細な説明】 イ0発明の目的 〔産業上の利用分野〕 本発明はn−ブチルアクリレート(以降BAと略称する
)とジメチルアミノエチルアルコール(以降DMAEと
略称する)とのエステル交換反応によるジメチルアミノ
エチルアクリレート(以11qDAと略称するンの製造
方法に関するものである。
Detailed Description of the Invention A. Object of the Invention [Industrial Application Field] The present invention relates to a transesterification reaction between n-butyl acrylate (hereinafter abbreviated as BA) and dimethylaminoethyl alcohol (hereinafter abbreviated as DMAE). The present invention relates to a method for producing dimethylaminoethyl acrylate (hereinafter abbreviated as 11qDA).

DA、ジメチルアミノエチルメタクリレート、ジエチル
アミノエチルメタ−クリレート等のジアルキルアミノア
ルキル(メタンアクリレマドは、そのまま、またはアミ
ノ基を6級もしくは4級アンモニウム塩としたものは、
繊維の染色性改良剤、プラスチックの帯電防止剤、塗料
における顔料分散剤、紫外線硬化助剤として、或いは単
独重合または他の不飽和化合物との共重合により生じた
重合体は繊維処理剤、トナーバインダー、塗料、潤滑油
添加剤、紙力増強剤、接着剤、イオン交換樹脂さらには
高分子凝集剤などとして用いられるものであって、幅広
い分野で利用されている。従って、それらの薬剤を使用
する分野で、本願発明は有効に活用されるものである。
Dialkylaminoalkyl such as DA, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate (methane acrylemad, as it is, or with the amino group as a 6th or quaternary ammonium salt,
Polymers produced by homopolymerization or copolymerization with other unsaturated compounds can be used as dyeability improvers for fibers, antistatic agents for plastics, pigment dispersants in paints, and ultraviolet curing aids, or as fiber treatment agents and toner binders. It is used in a wide range of fields, including paints, lubricating oil additives, paper strength enhancers, adhesives, ion exchange resins, and polymer flocculants. Therefore, the present invention can be effectively utilized in fields where such drugs are used.

〔従来の技術〕[Conventional technology]

アルキルアクリレートとジアルキルアミノアルキルアル
コールとのエステル交換反応によるジアルキルアミノア
ルキルアクリレートの製造方法は既に公知であり、触媒
としてアルカリ金属アルコラード、マグネシウムアルコ
ラード、アルミニウムアルコラード、チタンアルコラー
ド、ジブチルスズオキサイド等の有機スズ化合物、アセ
チルアセトン鉄等のアセチルアセトン金属化合物などが
使用されている。
A method for producing dialkylaminoalkyl acrylate by transesterification reaction between an alkyl acrylate and a dialkylaminoalkyl alcohol is already known. compounds, acetylacetone metal compounds such as iron acetylacetone, and the like are used.

得られたジアルキルアミノアルキルアクリレートの精製
は一般に蒸留操作により行なわれており、空気あるいは
5%ON(酸素/窒素)雰囲気中での減圧蒸留が広く採
用されている。
The obtained dialkylaminoalkyl acrylate is generally purified by a distillation operation, and vacuum distillation in an atmosphere of air or 5% ON (oxygen/nitrogen) is widely employed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらナトリウムメチラートのようなアルカリ金
属アルコラードを触媒として用いる場合には原料のジア
ルキルアミノアルキルアルコールや反応で副生ずるアル
コールが、原料のアルキルアクリレートやジアルキルア
ミノアルキルアクリレートの2重結合へ付加する、いわ
ゆるマイケル付加反応が起こりやすく、目的とするジア
ルキルアミノアルキルアクリレートの収率及び純度を著
しく低下させ、更にはアルカリ金属塩の副生、陰イオン
性の重合を起こすなどの望ましくない副反応を並発する
という欠点の他に、触媒が経時的に失活するので連続的
に加える必要があシ、又、触媒が反応系内の微量の水分
と反応して失活するため予め充分な脱水を行う等の煩雑
な操作を必要とする。更には得られた反応液から製品を
蒸留で取り出す前に、重合を防ぐために触媒を水洗除去
しなければならず、そのため工程が煩雑になり、更に廃
水の処理工程も必要となるなどの問題点も有している。
However, when an alkali metal alcoholade such as sodium methylate is used as a catalyst, the dialkylaminoalkyl alcohol as a raw material and the alcohol by-produced in the reaction add to the double bonds of the raw material alkyl acrylate or dialkylaminoalkyl acrylate. Addition reactions are likely to occur, significantly reducing the yield and purity of the target dialkylaminoalkyl acrylate, and furthermore, undesirable side reactions such as alkali metal salt by-products and anionic polymerization occur. In addition, since the catalyst deactivates over time, it is necessary to add it continuously, and the catalyst deactivates by reacting with trace amounts of water in the reaction system, so it is complicated to perform sufficient dehydration in advance. Requires manual operation. Furthermore, before distilling the product from the resulting reaction solution, the catalyst must be removed by washing with water to prevent polymerization, which complicates the process and also requires a wastewater treatment process. It also has

またマグネシウムアルコラード、アルミニウムアルコラ
ード、チタンアルコラード、ジブチルスズオキサイド等
の有機スズ化合物を触媒として用いた場合には、アルカ
リ金属アルコラードと同様に経時的失活がおこυ、又反
応系中の微量水分の影響を受けて失活するという欠点の
他に、アルカリ金拠アルコラードに比べて触媒活性が低
く、触媒量を多く必要とするとか、あるいは反応時間を
長くしなげればならないという問題点を有している、特
にマグネシウムアルコラードの場合には前記したマイケ
ル付加反応が起こりやすく、DAの収率な著しく低下さ
せるものである、 アセチルアセトン金属化合物もいくつか提案されている
が、金属の種類により活性が大きく異なり、アセチルア
セトン鉄では、その触媒活性は低く、収率が低いという
欠点を有している。
Furthermore, when organic tin compounds such as magnesium alcolade, aluminum alcolade, titanium alcolade, and dibutyltin oxide are used as catalysts, deactivation occurs over time in the same way as alkali metal alcolades, and trace amounts of moisture in the reaction system occur. In addition to the disadvantage of deactivation due to the influence of alkali metals, they also have lower catalytic activity than alkali metal-based alcolades, requiring a larger amount of catalyst or requiring a longer reaction time. In particular, in the case of magnesium alcoholade, the above-mentioned Michael addition reaction is likely to occur, which significantly reduces the yield of DA.Several acetylacetone metal compounds have been proposed, but the activity varies depending on the type of metal. iron acetylacetonate has the drawbacks of low catalytic activity and low yield.

一般にアセチルアセトン金属化合物は水分の影響をあま
り受けず、取扱いに便利ではあるが、反応液への溶解性
が悪いとか、金属の種類によっては重合が起こる等の欠
点があり、又、高価でもあるので工業的には採用し難い
という問題点を有している。
In general, acetylacetone metal compounds are not affected by moisture and are convenient to handle, but they have drawbacks such as poor solubility in reaction solutions and polymerization depending on the type of metal, and are also expensive. The problem is that it is difficult to adopt industrially.

さらにジアルキルアミノアルキルアクリレートは、ジア
ルキルアミノアルキルメタクリレートに比べきわめて重
合し易く、特に蒸留によυ精製する場合、その蒸留工程
全般に亘9重合し易いという性質を有している。そのた
め空気あるいは5%ON雰囲気中で減圧蒸留をする従来
の方法では蒸留塔内、コンデンサー内(留出系)、蒸笛
塔缶液での重合が激しいため、缶液への多量の重合防止
剤の投入、蒸留塔塔頂からの重合防止剤のスプレー、留
出液への重合防止剤の投入等重合防止手段が採用されて
いるが決して満足できるものではなく、又、蒸留温度は
一般に100℃以上の高温となるため、そのような高温
下で満足に重合を防止できる重合防止剤そのものが存在
しないばかりか、従来より知られている重合防止剤をこ
の様な高温下で使用す21合防止剤の蒸気圧、昇華性及
び安定性等に問題が生じ更には留出の製品中に、これら
重合防止剤が混入し製品価値を低下させる場合もあると
いう問題点を有している。
Furthermore, dialkylaminoalkyl acrylate is much easier to polymerize than dialkylaminoalkyl methacrylate, and particularly when purified by distillation, it has the property of being easily polymerized throughout the distillation process. Therefore, in the conventional method of vacuum distillation in air or 5% ON atmosphere, polymerization occurs intensely in the distillation column, condenser (distillation system), and steam column bottom liquid, so a large amount of polymerization inhibitor is added to the bottom liquid. Measures to prevent polymerization have been adopted, such as injection of polymerization inhibitors into the distillate, spraying polymerization inhibitors from the top of the distillation column, and injection of polymerization inhibitors into the distillate, but these are by no means satisfactory, and the distillation temperature is generally 100°C. Because of the high temperatures above, not only is there no polymerization inhibitor that can satisfactorily prevent polymerization at such high temperatures, but there is also no polymerization inhibitor that can satisfactorily prevent polymerization at such high temperatures. Problems arise in the vapor pressure, sublimation property, stability, etc. of the agent, and furthermore, these polymerization inhibitors may be mixed into the distilled product, reducing the product value.

本発明者等は上記問題点のないジアルキルアミノアルキ
ルアクリレートの製造方法を求めるべく鋭意検討を行っ
たのである。
The inventors of the present invention conducted extensive studies in order to find a method for producing dialkylaminoalkyl acrylate that does not have the above-mentioned problems.

口0発明の構成 〔課題を解決するための手段〕 本発明者等がジアルキルアミノアルキルアクリレートの
製造方法について誓特に触媒とじてチタンアルコラード
を用い各種のアルキルアクリレ−トドジアルキルアミノ
アルキルアルコールとのエステル交換反応を検討した結
果、チタンアルコラードとしてテトラn−ブチルチタネ
ート(以Ill T B Tと略す)、アルキルアクリ
レートとしてBA、およびジアルキルアミノアルキルア
ルコールとしてI) M A Eを特に用い、副生ずる
ブタノールを減圧下で反応液から留去しながら反応を進
めると、通常の触媒蓋において、反応前に脱水操作を施
すことなせずとも、触媒が経時的に失活することなく、
触媒活性が維持され、4〜5時間の反応で、ジアルキル
アミノアルキルアクリレートの一種であるDAが90襲
以上の極めて高い収率で得られること、しかも取得され
るJ、IAはマイケル付加体と思われる削性不純物を備
か1%以下しか含有しない高純度のものであること、さ
らには反応液をそのまま窒素雰囲気中で蒸角することに
より、容易にDAを精製できることを見出し本発明を完
成したのである。
Summary of the Invention [Means for Solving the Problems] The present inventors have proposed a method for producing dialkylaminoalkyl acrylates, in particular, using titanium alcoholade as a catalyst and combining various alkyl acrylates with dialkylaminoalkyl alcohols. As a result of studying the transesterification reaction, it was found that tetra n-butyl titanate (hereinafter abbreviated as IllTBT) was used as the titanium alcoholade, BA as the alkyl acrylate, and I) MAE as the dialkylaminoalkyl alcohol, and the by-produced butanol was used. If the reaction proceeds while distilling off from the reaction solution under reduced pressure, the catalyst will not be deactivated over time even if a dehydration operation is not performed before the reaction using a normal catalyst lid.
The catalyst activity was maintained, and DA, a type of dialkylaminoalkyl acrylate, was obtained in an extremely high yield of 90 times or more in a reaction time of 4 to 5 hours, and the obtained J and IA were thought to be Michael adducts. The present inventors have completed the present invention by discovering that DA is of high purity, containing only 1% or less of machining impurities, and that DA can be easily purified by steaming the reaction solution as it is in a nitrogen atmosphere. It is.

すなわち、本発明は、テトラn−ブチルチタネートを触
媒として、n−ブチルアクリレートとジメチルアミノエ
チルアルコールを、副生するn−ブタノールを減圧下で
留去しながら反応させることを特徴とするジメチルアミ
ノエチルアクリレートの製造方法に関するものである。
That is, the present invention is characterized in that n-butyl acrylate and dimethylaminoethyl alcohol are reacted using tetra n-butyl titanate as a catalyst while distilling by-produced n-butanol under reduced pressure. The present invention relates to a method for producing acrylate.

本発明の製造方法におけるB AとIIIAEの反応モ
ル比は10〜100が好ましく、より好ましくは1.1
〜5.0の範囲である。モル比が1.0未満になると反
応中にBA及びDAの重合が少しではあるが生じるよう
になり、100を越えると大きな反応4.必要となり、
又、過剰のBAのリサイクルに大きなエネルギーを必要
とする様になり避けるのが望ましい。
The reaction molar ratio of BA and IIIAE in the production method of the present invention is preferably 10 to 100, more preferably 1.1
~5.0. When the molar ratio is less than 1.0, a small amount of BA and DA polymerization will occur during the reaction, and when it exceeds 100, a large reaction will occur. It becomes necessary,
Furthermore, recycling of excess BA requires a large amount of energy, which is desirable to avoid.

本発明に使用される触媒としてのTBTは、市販のもの
がそのまま適用できる。TBTの使用量は原料であるD
MAHに対して好ましくは0.1〜10モルチ、よシ好
ましくは0.5〜5モル係の範囲である。
Commercially available TBT as a catalyst used in the present invention can be used as is. The amount of TBT used is the raw material D
It is preferably in the range of 0.1 to 10 mol, more preferably 0.5 to 5 mol, based on MAH.

触媒使用量が0.1モルチ未満では、反応速度が遅くな
シ実用的ではなく、10モル%を越えると副生物である
マイケル付加物が増加する傾向にあるからである。
If the amount of the catalyst used is less than 0.1 mol%, the reaction rate is too slow to be practical, and if it exceeds 10 mol%, Michael adducts, which are by-products, tend to increase.

T B Tの仕込方法は一度に仕込む方法、連続あるい
は分割仕込の方法のいずれも採用可能であるが、原料仕
込時に一緒に一度に仕込む方法が有利であシ好ましい。
As for the method of preparing TBT, any of the methods of charging all at once, continuous or divided charging can be adopted, but the method of charging all at once at the time of charging the raw materials is advantageous and preferable.

反応溶媒としては副生n−ブタノールの共弊溶媒、例え
ばキシレン、トルエン、ヘキサン等を使用することも可
能であるが、本発明の製造方法は反応溶媒を使用せずに
行なうことができ、その点も本発明の特長の一つである
As a reaction solvent, it is also possible to use a co-solvent for the by-product n-butanol, such as xylene, toluene, hexane, etc., but the production method of the present invention can be carried out without using a reaction solvent. This point is also one of the features of the present invention.

反応温度は仕込原料組成にも影響されるが、はとんど減
圧度で決定される9本発明にとシ好ましい反応温度は7
0〜16℃より好ましくは90〜120℃であシ、この
温度は減圧度の調整により行う。対応する減圧度は20
0〜500Torr  である。
Although the reaction temperature is influenced by the composition of the raw materials, it is mostly determined by the degree of vacuum.9 In the present invention, the preferred reaction temperature is 7.
The temperature is preferably 90 to 120°C, more preferably 90 to 120°C, and this temperature is controlled by adjusting the degree of vacuum. The corresponding degree of decompression is 20
It is 0 to 500 Torr.

反応温度が70℃未満では反応速度が遅くなり、又、1
30”Cを越える高温では重合が生じ易くなるからであ
るっ反応時間は温度、触媒量により左右されるが、通常
6〜7時間である。
If the reaction temperature is less than 70°C, the reaction rate will be slow;
This is because polymerization tends to occur at high temperatures exceeding 30"C. The reaction time depends on the temperature and the amount of catalyst, but is usually 6 to 7 hours.

本発明において反応中および蒸留中の熱重合反応を抑制
する目的で、重合禁止剤を反応系に添加することが好ま
しい。この場合使用される重合禁止剤としては公知のも
の、例えばノ・イドロキノンモノメチルエーテル、フェ
ノチアジン、などでよく、これらの1種あるいは2種以
上が使用される。これらの重合禁止剤は全仕込量に対し
て001〜2重量%、好ましくは0.05〜1重量%の
範囲で使用される。なおハイドロキノンは反応系に用い
られるとTBTが赤色結晶となって沈澱し反応がほとん
ど停止してしまうので、ハイドロキノンの反応系での使
用は好ましくない。
In the present invention, it is preferable to add a polymerization inhibitor to the reaction system for the purpose of suppressing the thermal polymerization reaction during the reaction and distillation. The polymerization inhibitor used in this case may be any known one, such as hydroquinone monomethyl ether, phenothiazine, etc., and one or more of these may be used. These polymerization inhibitors are used in an amount of 0.01 to 2% by weight, preferably 0.05 to 1% by weight based on the total amount charged. Note that, if hydroquinone is used in the reaction system, TBT will precipitate as red crystals and the reaction will almost stop, so it is not preferable to use hydroquinone in the reaction system.

反応終了後、反応液をそのまま常法に従い窒素雰囲気中
で蒸留することによInn−ブタノール、DMAE、B
’A等の低沸分をカットし、弓き続き窒素雰囲気中で目
的とするDAを蒸簡により精製された状態で得る。なお
5%ONや空気の存在下の蒸留ではDAは極めて着色し
易く、又、重合も起き易く、温度が高いとこの傾向は更
に顕著でありその様な方法は採用され得ないものである
After the reaction is completed, the reaction solution is directly distilled in a nitrogen atmosphere according to a conventional method to obtain Inn-butanol, DMAE, and B.
The low-boiling components such as 'A' are cut off, and the desired DA is obtained in a purified state by steaming in a nitrogen atmosphere. In addition, when distilled with 5% ON or in the presence of air, DA is extremely susceptible to coloring and polymerization, and this tendency is even more pronounced at high temperatures, so such a method cannot be adopted.

本発明の反応工程で留出されるn−ブタノールには、n
−ブタノールと共沸するBAが少量含まれるだけなので
、該n−ブタノールを主成分とする留出液はそのまま例
えばアクリル酸と反応させればBAを容易に得ることが
でき、このBAは本発明の原料へとリサイクルさせるこ
とができ、副生アルコールが有効利用出来るというのも
本発明の特長の一つである。
The n-butanol distilled in the reaction process of the present invention includes n
- Since only a small amount of BA, which is azeotropic with butanol, is contained, BA can be easily obtained by reacting the distillate containing n-butanol as a main component with, for example, acrylic acid. One of the features of the present invention is that it can be recycled into a raw material, and the by-product alcohol can be effectively used.

〔作 用〕[For production]

従来減圧下に、TBT触媒を用い、BAとDMAEとを
エステル交換反応させ、副生ずるブタノールを留去しな
がらDAを得る技術については報告されておらず、なぜ
これらを内容とする本発明により高純度のDAを高収率
で得られるという作用が示されるのか不明であるが、従
来米国特許第2,822,348等で公知のTBT触媒
は、前記した如く、経時的失活、微蓋水分による失活、
触媒活性が低く反応時間が長い等・の欠点が指適されて
いるものであって、これらの問題のない触媒が検討され
ている現状から考えると、本発明における作用は全く予
測できないものである。
Conventionally, there has been no report on the technology of transesterifying BA and DMAE using a TBT catalyst under reduced pressure to obtain DA while distilling off the by-product butanol. Although it is unclear whether the TBT catalyst, which is known in U.S. Pat. Inactivation due to
It has disadvantages such as low catalytic activity and long reaction time, and considering the current situation where catalysts without these problems are being investigated, the effect of the present invention is completely unpredictable. .

たとえば、アルキルアクリレートとしてメチルアクリレ
ート(以降MAと略称する)を用い、副生ブタノールは
MAとの共沸により常圧下で抜き出すDAの製法では、
TBT触媒を本発明と同様に使用しても反応速度が極め
て遅く6時間反応させてもDAの収率は60%程度であ
り、マイケル付加体と思われる副生物は反応液中に3〜
5%生成しDAの選択率も80〜90%である。
For example, in the DA manufacturing method, methyl acrylate (hereinafter abbreviated as MA) is used as the alkyl acrylate, and by-product butanol is extracted under normal pressure by azeotropic distillation with MA.
Even if a TBT catalyst is used in the same manner as in the present invention, the reaction rate is extremely slow and the yield of DA is about 60% even after 6 hours of reaction, and by-products that are thought to be Michael adducts are present in the reaction solution.
The selectivity of DA is 80 to 90%.

又、アルキルアクリレートとしてエチルアクリレート(
以降EAと略称する)を用い同じ操作で反応した場合、
7時間の反応でDAの収率は70%程度でありマイケル
付加体と思われる副生物は反応液中に6〜5チ生成し、
DAの選収率も85〜95%である。
In addition, ethyl acrylate (
When reacting using the same procedure using EA (hereinafter abbreviated as EA),
After 7 hours of reaction, the yield of DA was about 70%, and 6 to 5 by-products, which were thought to be Michael adducts, were produced in the reaction solution.
The selection rate of DA is also 85-95%.

また、減圧子状態を維持することなく常圧下橡wIA曹
緩帰書・・−・なφ置屋等で副生n−ブタノールを留去
しながら反応を進める(以降常圧法と略称する)と、原
因は不明であるが、反応途中から反応液が白濁し、反応
速度が極端に遅くなりTBTの経時的失活を生じる事実
が観察される。又、減圧法と同様、常圧法も副生ずる率
よく抜き出すために反応液温度を130〜150’Cと
する必要があり、その結果BA、DAの重合がおこり、
DAの収率な低下させることとなるので、いずれの点に
おいても、常圧法には本発明における優れた作用は全く
見出されないのである。
In addition, if the reaction is allowed to proceed while distilling off the by-product n-butanol under normal pressure without maintaining the decompressor state (hereinafter referred to as the normal pressure method), Although the cause is unknown, it has been observed that the reaction solution becomes cloudy during the reaction, the reaction rate becomes extremely slow, and TBT is deactivated over time. In addition, like the reduced pressure method, the normal pressure method requires the reaction solution temperature to be 130 to 150'C in order to extract byproducts at a high rate, and as a result, polymerization of BA and DA occurs.
Since the yield of DA is lowered, the normal pressure method does not have any superior effects in the present invention in any respect.

さらに本発明においては前記したように反応溶媒を使用
しなくても本発明の作用は発揮され反応溶媒を使用しな
いプロセスはきわめてシンプルであり、本発明は工業的
により有効に利用されるものである。すなわち、エステ
ル交換反応は平衡反応であり、反応を平衡状態以上に進
めるために、副生アルコールを除去する必要がある。該
目的を効率よく行うのに通常副生アルコールとの共沸溶
媒(原料のアルキルアクリレートが共沸溶媒となる場合
もある)を用いるが、共沸溶媒の選定、反応系から留出
する共沸溶媒と副生アルコールの混合物の有効利用、そ
のための該混合物の分離手段等、工業的操業においては
、かなりの検討を要し、操業方法はかなり面倒となり、
又、そのための設備も必要となりプラントは高価となる
のが通常である。
Furthermore, in the present invention, as described above, the effect of the present invention is exhibited even without using a reaction solvent, and the process without using a reaction solvent is extremely simple, so that the present invention can be used more effectively industrially. . That is, the transesterification reaction is an equilibrium reaction, and in order to advance the reaction beyond the equilibrium state, it is necessary to remove the by-product alcohol. To accomplish this purpose efficiently, an azeotropic solvent with the by-product alcohol is usually used (in some cases, the raw material alkyl acrylate is used as an azeotropic solvent). In industrial operations, a considerable amount of consideration is required for effective use of the mixture of solvent and by-product alcohol, and means for separating this mixture, and the operational method becomes quite complicated.
In addition, equipment for this purpose is also required, and the plant is usually expensive.

たとえばアルキルアクリレートとしてMAやEAを用い
た場合には反応液中の副生アルコール量を極力少なくし
ないと反応は円滑に進ますよって共沸溶媒を使用しなけ
れば効率が向上しないのである。
For example, when MA or EA is used as the alkyl acrylate, the reaction proceeds smoothly unless the amount of by-product alcohol in the reaction solution is minimized, so efficiency cannot be improved unless an azeotropic solvent is used.

しかるに本発明においては、すなわちアルキルアクリレ
ートとしてn−ブタノールを選択した場合は単なる減圧
下による蒸留による留去のみで反応は円滑に進行するの
で共那剤を用いて徹底的に11−ブタノールを反応系外
へ除去する必要がないという優れた作用も認められるの
である。
However, in the present invention, when n-butanol is selected as the alkyl acrylate, the reaction proceeds smoothly by simply distilling it off under reduced pressure. It is also recognized to have an excellent effect in that it does not need to be removed externally.

また前述した如く、従来の触媒では得られた反応液をそ
のまま蒸留に供すると極めて重合、ゲル化が生じ易い傾
向にあり、通常この様なトラブルを防止するために蒸留
工程で更に多葉の重合禁止剤の添加、空気の吹き込み、
触媒の除去等がなされているが、本発明の方法は、これ
らのトラブルもなく容易に蒸留を行うことができるもの
であり、これはチタンアルコラードのなかでもTB’T
のみに認められるものである。
Furthermore, as mentioned above, with conventional catalysts, if the reaction solution obtained is subjected to distillation as it is, polymerization and gelation tend to occur extremely easily, and to prevent such troubles, it is usually necessary to carry out multi-leaf polymerization in the distillation process. Adding inhibitors, blowing air,
However, the method of the present invention allows easy distillation without these troubles, and this method is suitable for TB'T among titanium alcoholades.
It is recognized only by

チタンアルコラードとしてTBT以外にテトラ−イソプ
ロピルチタネート、テトラ−ステアリルチタネート等が
知られているが、これらの化合物では、本発明に認めら
れる作用が全く見られず、本発明の作用はT B Tの
みによって認められる特異なものである。
In addition to TBT, tetra-isopropyl titanate, tetra-stearyl titanate, etc. are known as titanium alcoholades, but these compounds do not exhibit any of the effects recognized in the present invention, and the effects of the present invention are limited to TBT only. It is a unique thing recognized by.

〔実施例〕〔Example〕

以下、本発明をより具体的に説明するために、実施例及
び比較例を挙げて詳細に説明する。
EXAMPLES Hereinafter, in order to explain the present invention more specifically, the present invention will be described in detail by giving Examples and Comparative Examples.

尚、本明細曹において用いる転化率、選択率及び収率の
定義は次のとおりである。
In addition, the definitions of conversion rate, selectivity, and yield used in this specification are as follows.

収 率〔チ〕二転化率〔チ〕×選択率〔係]/100総
合収率〔%〕二合成収率〔チ〕廓留収率〔%V100実
施例1 攪拌機、温度計、冷却器及び分留塔をつけた理論段数1
6段の精留塔を備えた三ロフラスコに、BA691g(
5,4モル、水分0.01%)、DMAE160g(1
,8モル、水分0.01%)、TBTl 2.2.9 
(0,036モル)及び重合禁止剤としてフェッチアジ
y O,1、!i’ (1000ppm対全体量)を加
え30 D Torrの減圧下、攪拌しながら加熱を開
始した。反応液温度を110〜120°C,精留塔塔頂
温度を96〜98℃に維持して生成するn−ブタノール
を還流比60〜50で抜き出しながら5時間反応を行っ
た。
Yield [C] Diconversion rate [C] × Selectivity [C]/100 Total yield [%] Bisynthesis yield [C] Distillation yield [% V100 Example 1 Stirrer, thermometer, cooler and Number of theoretical plates with fractionator: 1
691 g of BA (
5.4 mol, water 0.01%), DMAE 160g (1
, 8 mol, moisture 0.01%), TBTl 2.2.9
(0,036 mol) and fetchazidiy O,1,! as a polymerization inhibitor. i' (1000 ppm vs. total amount) was added, and heating was started under reduced pressure of 30 D Torr with stirring. The reaction was carried out for 5 hours while maintaining the reaction solution temperature at 110 to 120°C and the rectification column top temperature at 96 to 98°C and extracting the produced n-butanol at a reflux ratio of 60 to 50.

反応液をガスクロマトグラフィーによって分析したとこ
ろI)MA Eの転化率は97%、DAの選択率1d9
8%、J)への収率は95%であった。反応中留出した
n−ブタノールの中には30でn−ブタノールDMAE
、BAを留去した後、同じく窒素バブリングしなから3
0Torrの減圧度、温度80°CでDA232gを得
た。
When the reaction solution was analyzed by gas chromatography, the conversion rate of I) MAE was 97%, and the selectivity of DA was 1d9.
8%, the yield to J) was 95%. In the n-butanol distilled during the reaction, n-butanol DMAE
, After distilling off BA, without bubbling nitrogen, 3
232 g of DA was obtained at a reduced pressure of 0 Torr and a temperature of 80°C.

DAの蒸留収率は95%、総合収率は90%であった。The distillation yield of DA was 95%, and the overall yield was 90%.

蒸留釜残は淡黄色の粘g 1[1cps(25℃)の液
体であった。
The distillation residue was a pale yellow liquid with a viscosity of 1 [1 cps (25°C)].

なお上記で得られた反応液を空気バブリングを行う以外
は上記と同じ蒸留操作を行い、1)A215Iを得た。
Note that the same distillation operation as above was performed except that air bubbling was performed on the reaction solution obtained above to obtain 1) A215I.

DAの蒸留収率は88受、総合収率は84%であった。The distillation yield of DA was 88, and the overall yield was 84%.

蒸留釜残は黒色の粘度4 () OCpS (25℃)
の液体であった。
The distillation pot residue has a black viscosity of 4 () OCpS (25℃)
It was a liquid.

空気雰囲気中で蒸留を行うと、DAの蒸留収率は悪くな
り、蒸留釜残は黒変し、粘度が高くメタノールに不溶解
性分も少し含まれており、釜残り洗浄にも問題を生じた
If distillation is carried out in an air atmosphere, the distillation yield of DA will be poor, and the residue in the distillation pot will turn black, have a high viscosity, and contain a small amount of methanol-insoluble matter, causing problems in cleaning the residue in the stillage pot. Ta.

実施例2゜ 触媒のTBTを6.1.9 (0,018モル)とする
以外は全て実施例1と同様に操作を行い、6時間反応を
行った。
Example 2゜Other than changing the TBT of the catalyst to 6.1.9 (0,018 mol), all operations were carried out in the same manner as in Example 1, and the reaction was carried out for 6 hours.

DMAEの転化率は96%、DAの選択率は98%、D
Aの収率は94%であった。反応中留出したn−ブタノ
ールの中にはBAが6チ含まれていた。
The conversion rate of DMAE is 96%, the selectivity of DA is 98%, D
The yield of A was 94%. The n-butanol distilled out during the reaction contained 6 units of BA.

実施例1と同様に蒸留を行い、DA224gを得た。Distillation was performed in the same manner as in Example 1 to obtain 224 g of DA.

DAの蒸留収率は93%、総合収率は87%であった。The distillation yield of DA was 93%, and the overall yield was 87%.

又、蒸留釜残は淡黄色で粘度10 cps (25℃)
の液体であった。
In addition, the residue from the distillation pot is pale yellow and has a viscosity of 10 cps (at 25°C).
It was a liquid.

比較例−1゜ 常圧で反応を行う以外は実施例1と同様に反応操作を行
った。反応液温度162℃〜165℃、精留塔塔頂温度
115〜120℃還流比3.0〜50で生成するn−ブ
タノールを抜き出りながら反応を進めたが反応開始4時
間後に、反応液が白濁した。ガスクロマトグラフィーの
分析結果、DMAEの転化率は76%、DAの選択率は
85%であった。更に反応を4時間進めたがDMAHの
転化率は78%であり、反応はほとんど進行していなか
った。又、DAの選択率は84%であった。
Comparative Example 1° The reaction operation was carried out in the same manner as in Example 1 except that the reaction was carried out at normal pressure. The reaction proceeded while removing n-butanol produced at a reaction liquid temperature of 162°C to 165°C and a rectification column top temperature of 115 to 120°C and a reflux ratio of 3.0 to 50. However, 4 hours after the start of the reaction, the reaction liquid became cloudy. As a result of gas chromatography analysis, the conversion rate of DMAE was 76% and the selectivity of DA was 85%. The reaction was further continued for 4 hours, but the conversion rate of DMAH was 78%, indicating that the reaction had hardly progressed. Moreover, the selectivity of DA was 84%.

本比較例に示す如く、常圧法では’I’ B T触媒の
経時的失活が観察され、又、DAの選択率はきわめて悪
く、副生物が15%もあり、そのうち重合物と思われる
高沸分は約7チ(ガスクロマトグラフィー未検出分)で
あった。
As shown in this comparative example, in the normal pressure method, deactivation of the 'I' B T catalyst over time was observed, and the selectivity of DA was extremely poor, with as much as 15% of by-products, of which there was a high percentage of by-products that were thought to be polymers. The boiling point was about 7% (undetected by gas chromatography).

比較例−2 触媒としてテトラーイングロビルチタネートを用いる以
外は実施例1と同様に操作した。
Comparative Example 2 The same procedure as in Example 1 was carried out except that tetrainglovir titanate was used as a catalyst.

反応を5時間行ったがDMAHの転化率は81%DAの
選択率は92%であった。
The reaction was carried out for 5 hours, and the conversion rate of DMAH was 81%, and the selectivity of DA was 92%.

比較例−3゜ 攪拌機、温度計、充填塔、冷却器を備えた三ロフラスコ
にMA516.616モル、水分0.01%)、DMA
E214 g(2,4モル、水分0.01%)、TBT
8.16 & (0,024モル)及び重合防止剤とし
てフェノチアジン11000pp (対全体量)を加え
、攪拌しながら加熱をするメタノールとMAとの共沸物
を系外に抜き出しながら5時間反応を行った。
Comparative Example - 3° MA 516.616 mol, moisture 0.01%), DMA in a three-loaf flask equipped with a stirrer, thermometer, packed tower, and condenser
E214 g (2.4 mol, water 0.01%), TBT
8.16 & (0,024 mol) and 11,000 pp (total amount) of phenothiazine as a polymerization inhibitor were added and heated while stirring. The reaction was carried out for 5 hours while extracting the azeotrope of methanol and MA from the system. Ta.

DMAEの転化率は19%、DAの選択率は81係であ
った。
The conversion rate of DMAE was 19%, and the selectivity of DA was 81%.

本比較例に示す如<MAを用いた場合には転化率は極め
て低く、又、DAの選択率は81%と低かった。
As shown in this comparative example, when MA was used, the conversion rate was extremely low, and the selectivity of DA was as low as 81%.

比較例−4 比較例−9と同じ装置を用い、DA6 D El 、9
(6モル、水分0.01%)とする以外は比較例−3と
同じ操作により反応温度を103〜122℃、充填塔塔
頂温度を76〜80℃に維持しながら、生成するエタノ
ールとHAとの共沸物を系外に抜き出しながら7時間反
応を行った。
Comparative Example-4 Using the same apparatus as Comparative Example-9, DA6 D El, 9
(6 mol, moisture 0.01%) by the same operation as in Comparative Example-3, maintaining the reaction temperature at 103 to 122°C and the packed column top temperature at 76 to 80°C. The reaction was carried out for 7 hours while extracting the azeotrope from the system.

DMAHの転化率は73%、DAの選抜率は95%、D
Aの収率は69%であった。
The conversion rate of DMAH is 73%, the selection rate of DA is 95%, D
The yield of A was 69%.

本比較例に示す如く、EAを用いた場合には転化率は低
く、又、選択率も満足できるものではなかった。
As shown in this comparative example, when EA was used, the conversion rate was low and the selectivity was also not satisfactory.

ハ1発明の効果 本発明によれば、繊維の染色性改良剤、プラスチックの
帯電防止剤、塗料における顔料分散剤、紫外線硬化助剤
として、更には繊維処理剤、トナーバインダー、塗料、
潤滑油添加剤、紙力増強剤、接着剤、イオン交換樹脂。
C1 Effects of the Invention According to the present invention, it can be used as a dyeability improver for fibers, an antistatic agent for plastics, a pigment dispersant in paints, an ultraviolet curing aid, and also as a fiber treatment agent, a toner binder, a paint,
Lubricating oil additives, paper strength agents, adhesives, ion exchange resins.

高分子凝集剤等の製造原料として好適なジメチルアミノ
エチルアクリレートを、反応前の特別な脱水操作なしに
触媒の経時失活を起こすことなく、触媒の活性を高く維
持したまま副反応を極めて少なく押え、かつ、蒸留によ
る精製操作でも、重合による増粘、ゲル化の心配なせず
に短時間に高純度、高収率で得ることができ、各種業界
に寄与する効果は多大なものである。
Dimethylaminoethyl acrylate, which is suitable as a raw material for the production of polymer flocculants, etc., is produced without any special dehydration operation before the reaction, without deactivation of the catalyst over time, and by keeping side reactions to an extremely low level while maintaining high catalyst activity. Moreover, even in purification operations by distillation, high purity and high yield can be obtained in a short time without worrying about thickening or gelation due to polymerization, and the effect of contributing to various industries is significant.

Claims (1)

【特許請求の範囲】[Claims] 1、テトラn−ブチルチタネートを触媒として、n−ブ
チルアクリレートとジメチルアミノエチルアルコールを
、副生するn−ブタノールを減圧下で留去しながら反応
させることを特徴とするジメチルアミノエチルアクリレ
ートの製造方法。
1. A method for producing dimethylaminoethyl acrylate, which comprises reacting n-butyl acrylate and dimethylaminoethyl alcohol using tetra n-butyl titanate as a catalyst while distilling off by-produced n-butanol under reduced pressure. .
JP1049987A 1989-03-03 1989-03-03 Method for producing dimethylaminoethyl acrylate Expired - Lifetime JPH089582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049987A JPH089582B2 (en) 1989-03-03 1989-03-03 Method for producing dimethylaminoethyl acrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049987A JPH089582B2 (en) 1989-03-03 1989-03-03 Method for producing dimethylaminoethyl acrylate

Publications (2)

Publication Number Publication Date
JPH02229145A true JPH02229145A (en) 1990-09-11
JPH089582B2 JPH089582B2 (en) 1996-01-31

Family

ID=12846369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049987A Expired - Lifetime JPH089582B2 (en) 1989-03-03 1989-03-03 Method for producing dimethylaminoethyl acrylate

Country Status (1)

Country Link
JP (1) JPH089582B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247513A (en) * 2000-03-06 2001-09-11 Mitsubishi Rayon Co Ltd Method of producing monomer
JP2009515914A (en) * 2005-11-16 2009-04-16 チバ ホールディング インコーポレーテッド Esters production
WO2009087804A1 (en) * 2008-01-10 2009-07-16 Toagosei Co., Ltd. Process for production of dialkylaminoalkyl (meth)acrylate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163517A (en) * 1978-06-09 1979-12-26 Mitsubishi Chem Ind Ltd Production of dialkylaminoalkyl acrylate or dialkylaminoalkyl methacrylate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163517A (en) * 1978-06-09 1979-12-26 Mitsubishi Chem Ind Ltd Production of dialkylaminoalkyl acrylate or dialkylaminoalkyl methacrylate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247513A (en) * 2000-03-06 2001-09-11 Mitsubishi Rayon Co Ltd Method of producing monomer
JP2009515914A (en) * 2005-11-16 2009-04-16 チバ ホールディング インコーポレーテッド Esters production
WO2009087804A1 (en) * 2008-01-10 2009-07-16 Toagosei Co., Ltd. Process for production of dialkylaminoalkyl (meth)acrylate

Also Published As

Publication number Publication date
JPH089582B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JP2895633B2 (en) Process for producing alkyl imidazolidone (meth) acrylate
JP5399915B2 (en) Process for the synthesis of (meth) acrylic esters catalyzed by polyol titanates
JP2006206590A (en) Method of transesterification for producing (meth)acrylate ester monomer
JP2776782B2 (en) Method for synthesizing alkyl imidazolidone (meth) acrylate
JP4017668B2 (en) Method for producing polyglycol (meth) acrylate
JP2818640B2 (en) Process for producing alkyl imidazolidone (meth) acrylate
KR101689905B1 (en) Method for continuously producing alkylamino(meth)acrylamides
KR100860247B1 (en) Process for the preparation of alkylimidazolidone methacrylates
JP6025476B2 (en) Process for producing ethylenically unsaturated group-containing isocyanate compound
JP4042212B2 (en) Process for producing hydroxyalkyl monoacrylate
JPH02229145A (en) Production of dimethylaminoethyl acrylate
JPH03112949A (en) Production of dimethylaminoethyl acrylate
US4609755A (en) Synthesis of vinyl esters
JP2903010B2 (en) Process for producing alkyl imidazolidone (meth) acrylate
US6875888B2 (en) Method for the production of esters of unsaturated carboxylic acids
JPH0217155A (en) Production of dialkylaminoalkyl (meth)acrylate
JP2702249B2 (en) Process for producing alkylaminoalkyl ester of acrylic acid or methacrylic acid
US4223160A (en) Reaction of oxirane compounds with carboxylic acids
JPH0665149A (en) Production of usable compound from michael reactional adduct of acrylic acid ester
JPH06199752A (en) Production of n-mono-substituted-@(3754/24)meth)acrylamide
JP6828500B2 (en) Method and composition for producing 2-methyl-2-hydroxy-1-propyl (meth) acrylate and / or 3-methyl-3-hydroxy-1-butyl (meth) acrylate
WO2014158445A1 (en) Synthesis of (2-nitro)alkyl (meth)acrylates via transesterification of (meth)acrylate esters
JP3864997B2 (en) Method for producing 2,4-oxazolidinediones
JPH0259546A (en) Production of dialkylaminoalkyl (meta)acrylate
JP3312806B2 (en) Method for producing tetrahydrobenzyl (meth) acrylate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14