Nothing Special   »   [go: up one dir, main page]

JPH02213736A - Pressure measuring instrument - Google Patents

Pressure measuring instrument

Info

Publication number
JPH02213736A
JPH02213736A JP3363489A JP3363489A JPH02213736A JP H02213736 A JPH02213736 A JP H02213736A JP 3363489 A JP3363489 A JP 3363489A JP 3363489 A JP3363489 A JP 3363489A JP H02213736 A JPH02213736 A JP H02213736A
Authority
JP
Japan
Prior art keywords
pressure
measuring
measurement
port
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3363489A
Other languages
Japanese (ja)
Inventor
Norito Miyamoto
宮本 憲人
Hironori Takahashi
宏典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP3363489A priority Critical patent/JPH02213736A/en
Publication of JPH02213736A publication Critical patent/JPH02213736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain the pressure measuring instrument with which zero point correction can be executed in a short period of time by providing a differential pressure detecting means, 3-port valve and control device. CONSTITUTION:The 3-port valve 11 is so switched as to select the pipeline connecting a 2nd measuring port 5 and a 1st measuring point P1 when the timing for the zero point correction arrives. The same pressure at a measuring point P1 is applied on both of the 1st measuring port 4 and the measuring 5 in this way. The differential signal S outputted from the differential pressure detecting means 3 is stored 10 as a correction value in the control device 9. The control device 9 shifts to an ordinary pressure difference measuring mode and the valve 11 is so switched as to select the line connecting the measuring port 5 and the measuring point P2 upon ending of the storage processing. The pressures of the measuring points P1, P2 are eventually applied to the measuring ports 4, 5 in this way and the differential signal S corresponding to the pressure difference is obtd. The differential signal S is subtracted by as much as the correction value component previously stored in the control device 9 and the corrected value is used as the correct pressure difference value, i.e., the air flow rate value for the input data for the purpose of control by the control device 9.

Description

【発明の詳細な説明】 意!上立机旦立黙 本発明は、気体、液体等といった被測定物における異な
る2点間の圧力差を測定する圧力測定装置に関する。こ
の圧力測定装置は、気体の流量等といった圧力差に基づ
いて換算できる種々の物理量を計測する際に用いられる
[Detailed description of the invention] Meaning! BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure measuring device for measuring a pressure difference between two different points in an object to be measured such as gas or liquid. This pressure measuring device is used to measure various physical quantities that can be converted based on pressure differences, such as gas flow rate.

丈末遺遵 従来、気体等における異なる2点間の圧力差を計測する
圧力測定装置は既に知られている。この圧力測定装置に
よって正確な圧力差を計測するためには、上記2点の圧
力が同一である時に計測された圧力差値が、正確に零で
なければならない、すなわち零点が正確に合っていなけ
ればならない。
2. Description of the Related Art Pressure measurement devices that measure the pressure difference between two different points in gases, etc., are already known. In order to accurately measure the pressure difference with this pressure measuring device, the pressure difference value measured when the pressures at the two points above are the same must be exactly zero, that is, the zero points must match exactly. Must be.

しかしながらこの零点は、圧力測定装置のまわりの雰囲
気温度、圧力測定装置自体の特性の経時変化等によって
変化する。従ってその零点変化を補正する必要がある。
However, this zero point changes depending on the ambient temperature around the pressure measuring device, changes over time in the characteristics of the pressure measuring device itself, and the like. Therefore, it is necessary to correct the zero point change.

従来の零点補正方法として次のものがある。圧力測定装
置を始動させてから数十分経過して該圧力測定装置が安
定状態となった後に、圧力測定装置の2つの圧力測定口
に同圧力を加え、この時、圧力測定装置から零でないあ
る値が出力されているとしたら、これを手動調節によっ
て零に合わせるというものである。この零点補正方法で
は、短時間で零点を合わせることができず、人手を使わ
なければならないので自動制御に適用することはむずか
しいという問題点がある。
Conventional zero point correction methods include the following. After several tens of minutes have passed since the pressure measuring device was started and the pressure measuring device has reached a stable state, the same pressure is applied to the two pressure measuring ports of the pressure measuring device, and at this time, the pressure is not zero from the pressure measuring device. If a certain value is output, this is manually adjusted to zero. This zero point correction method has the problem that it is difficult to apply it to automatic control because the zero point cannot be adjusted in a short period of time and requires manual intervention.

又、零点変化は装置の稼働中にも発生することがあり、
このような場合には、圧力計測を一旦中止して、長時間
をかけて零点補正を行なってから再び計測を再開すると
いう極めて面倒な作業が必要となる。
Additionally, zero point changes may also occur while the device is in operation.
In such a case, it is necessary to temporarily stop pressure measurement, perform zero point correction over a long period of time, and then restart measurement, which is extremely troublesome work.

が  しようとする 本発明は、人手を使わずに短時間に零点補正を行なうこ
とができる圧力測定装置を提供することを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pressure measuring device that can perform zero point correction in a short time without using human hands.

又、圧力測定値を用いる自動制御を行なう制御系に適用
することのできる圧力測定装置を提供することを課題と
する。
Another object of the present invention is to provide a pressure measuring device that can be applied to a control system that performs automatic control using pressure measurement values.

を  するための 上記の課題は次の圧力測定装置によって解決される。for The above problem is solved by the following pressure measuring device.

被測定物における第1測定点及び第2測定点間の圧力差
を測定する圧力測定装置において、第1測定点の圧力が
加えられる第1測定口と第2測定点の圧力が加えられる
第2測定口とを備えていて、それらの測定口に加えられ
た圧力の差に応じた電気信号を出力する差圧検知手段と
、第1測定口に加えられる第1測定点の圧力を第2測定
口へ導く圧力伝達手段と。
In a pressure measuring device that measures the pressure difference between a first measurement point and a second measurement point on an object to be measured, a first measurement port to which the pressure at the first measurement point is applied and a second measurement port to which the pressure at the second measurement point is applied. and a differential pressure detection means that outputs an electrical signal according to the difference in pressure applied to the measurement ports, and a second measurement device that measures the pressure at the first measurement point that is applied to the first measurement port. and pressure transmission means leading to the mouth.

圧力伝達手段を作動させて第1測定点の圧力を第2′f
iR定口へ導くことにより、第1測定口及び第2測定口
の両方に第1測定点の圧力をかけ、その時の差圧検知手
段からの出力値を補正値として記憶し、第1測定点及び
第2測定点の圧力をそれぞれ第1測定口及び第2測定口
に個別に加えた時の差圧検知手段からの出力値を上記の
補正値によって補正する制御手段とを有することを特徴
とする圧力測定装置である。
The pressure at the first measuring point is changed to the second 'f' by operating the pressure transmitting means.
By guiding it to the iR fixed port, the pressure at the first measurement point is applied to both the first measurement port and the second measurement port, the output value from the differential pressure detection means at that time is stored as a correction value, and the pressure at the first measurement point is and a control means for correcting the output value from the differential pressure detection means when the pressure at the second measurement point is individually applied to the first measurement port and the second measurement port, using the correction value. This is a pressure measuring device.

上記の構成において、差圧検知手段は、2つの圧力測定
口のそれぞれに加えられた圧力の差に応じた電気信号を
出力するものであれば、その構成は特別のものに限定さ
れない。例えば、抵抗線の圧力変化を利用するもの等を
用いることができる。
In the above configuration, the configuration of the differential pressure detection means is not limited to any particular one as long as it outputs an electrical signal according to the difference in pressure applied to each of the two pressure measurement ports. For example, one that utilizes pressure changes in a resistance wire can be used.

圧力伝達手段は、実施例では補助管12及び3ポート弁
11によって構成されている。しかしながら、零点補正
のタイミングで一方の測定点の圧力を差圧検知手段の2
つの圧力測定口に同時に加えることのできる手段であれ
ば、他の任意の手段を採用することができる。
The pressure transmitting means is constituted by an auxiliary pipe 12 and a three-port valve 11 in the embodiment. However, at the timing of zero point correction, the pressure at one measurement point is
Any other means can be used as long as it can simultaneously apply pressure to two pressure measurement ports.

走−朋 通常の圧力測定時には、第1測定点(Pl)の圧力が差
圧検知手段(3)の第1測定口(4)へ加えられ、第2
2[11J定点(P2)の圧力が第2測定口(5)へ加
えられる。この時、差圧検知手段から圧力差に対応する
電気信号(S)、電流、電圧等、が出力される。
During normal pressure measurement, the pressure at the first measurement point (Pl) is applied to the first measurement port (4) of the differential pressure detection means (3), and the pressure at the second measurement point (Pl) is applied to the first measurement port (4) of the differential pressure detection means (3).
A pressure of 2 [11 J at the fixed point (P2) is applied to the second measurement port (5). At this time, the differential pressure detection means outputs an electrical signal (S), current, voltage, etc. corresponding to the pressure difference.

零点補正時には、差圧検知手段(3)の両測定口へ同一
測定点、例えば第1測定点(Pl)の同一圧力が加えら
れる。この時に差圧検知手段(3)から出力される電気
信号を記憶手段(1o)に記憶しておいて、これを零点
補正のための補正値として使う。
At the time of zero point correction, the same pressure at the same measurement point, for example, the first measurement point (Pl), is applied to both measurement ports of the differential pressure detection means (3). At this time, the electrical signal output from the differential pressure detection means (3) is stored in the storage means (1o), and is used as a correction value for zero point correction.

ヌJ1吐 第1図は一実施例の図式図である。この実施例に係る実
施例に係る圧力測定装置2は、送風管1を流れる空気の
流量を計測するために用いられている。この圧力測定装
置2は差圧検知手段3を備えている。この差圧検知手段
3は第1測定口4及び第2測定口5を有しており、第1
吸引管6によって空気流の第1測定点P1の圧力が第1
測定口4へ導かれ、一方第2吸引管7によって空気流の
第2測定点P2の圧力が第2測定口5へ導かれている。
FIG. 1 is a schematic diagram of one embodiment. The pressure measuring device 2 according to this embodiment is used to measure the flow rate of air flowing through the blast pipe 1. This pressure measurement device 2 is equipped with differential pressure detection means 3. This differential pressure detection means 3 has a first measurement port 4 and a second measurement port 5.
The pressure at the first measurement point P1 of the air flow is increased by the suction pipe 6.
On the other hand, the pressure at the second measurement point P2 of the air flow is guided to the second measurement port 5 by the second suction pipe 7.

第1測定点P1と第2測定点P2との間にはオリフィス
8が設けられており、よってPlとP2との圧力差を計
測することによって送風管1を流れる空気の流量が計測
できる。
An orifice 8 is provided between the first measurement point P1 and the second measurement point P2, so the flow rate of air flowing through the blast pipe 1 can be measured by measuring the pressure difference between Pl and P2.

差圧検知手段3は、第1測定口4及び第2測定口5に加
えられた圧力を個々に計測し、それらの圧力差を算出し
て、その圧力差に応じた電気信号を差信号Sとして制御
袋W9へ出力する。この差信号Sがとりも直さず空気流
量を示す信号である。
The differential pressure detection means 3 individually measures the pressure applied to the first measurement port 4 and the second measurement port 5, calculates the pressure difference between them, and outputs an electric signal corresponding to the pressure difference as a difference signal S. It is output to the control bag W9 as This difference signal S is essentially a signal indicating the air flow rate.

差圧検知手段3は上述の機能を果す装置であれば、どの
ような装置を用いることもできる。例えば、第1測定口
4及び第2測定口5のそれぞれに圧力計を接続しておき
、更にそれらの圧力計の出力を比較器に接続しておいて
、この比較器によってそれぞれの圧力計の出力値の差を
とって、その差に応じた信号を差信号Sとして出力する
ことができる。
Any device can be used as the differential pressure detection means 3 as long as it fulfills the above-mentioned function. For example, a pressure gauge is connected to each of the first measuring port 4 and the second measuring port 5, and the outputs of those pressure gauges are connected to a comparator, and the output of each pressure gauge is connected by this comparator. It is possible to calculate the difference between the output values and output a signal corresponding to the difference as the difference signal S.

制御装置9は、差信号Sに基づいて図示しない送風器等
を制御して、送風管1を流れる空気の流量を調節するも
のである。この制御装置9は、マイクロコンピュータを
内蔵した自動制御要素であっても良いし、あるいはより
簡易な制御回路であっても良い。但し、後述する零点補
正機能を実行するために、その内部に適宜の記憶手段1
0、例えばRAM、が設けられている。
The control device 9 controls a blower (not shown) or the like based on the difference signal S to adjust the flow rate of air flowing through the blow pipe 1 . This control device 9 may be an automatic control element with a built-in microcomputer, or may be a simpler control circuit. However, in order to execute the zero point correction function described later, an appropriate storage means 1 is provided inside.
0, for example, RAM.

差圧検知手段3は、第1測定口4と第2測定口5とに加
えられる圧力が同一である場合には、出力である差信号
Sが零を示さなければならない。
When the pressures applied to the first measurement port 4 and the second measurement port 5 are the same, the differential pressure detection means 3 must output a difference signal S of zero.

ところが、雰囲気温度の変化や経時変化によって、本来
零でなければならない値がある値を持って来ることがあ
る。このような場合には、以下に説明する方法で零点補
正が行なわれる。
However, due to changes in ambient temperature or changes over time, a value that should originally be zero may take on a certain value. In such a case, zero point correction is performed by the method described below.

まず、第2吸引管7に3ボート弁11が設けられている
。この3ボート弁11の1つの入力ボートには第1吸引
管6から延びる補助管12が接続されている。この3ボ
ート弁11は制御装置9からの指令によって、第2測定
口5と第2測定点P2とを結ぶ管路と、第2測定口5と
第1測定点P1とを結ぶ管路のいずれかを選択する。既
述の説明から理解されるように1通常の圧力差計測が行
なわれている場合には、3ボート弁11によって、第2
測定口5と第2測定点P2とを結ぶ管路が選択されてい
る。
First, the second suction pipe 7 is provided with a three-boat valve 11. An auxiliary pipe 12 extending from the first suction pipe 6 is connected to one input boat of the three-boat valve 11. This three-boat valve 11 is operated by a command from the control device 9 to select one of the pipes connecting the second measuring port 5 and the second measuring point P2, and the pipe connecting the second measuring port 5 and the first measuring point P1. Choose one. As can be understood from the above explanation, when normal pressure difference measurement is being performed, the 3-boat valve 11
A conduit connecting the measurement port 5 and the second measurement point P2 is selected.

制御装置9において零点補正のタイミングが到来すると
、3ボート弁11が、第2測定口5と第1潤定点P1と
を結ぶ管路を選択するように切換る。これにより、第1
測定口4及び第2測定口5の両方に第1測定点P1にお
ける同一の圧力がかけられる。この時に差圧検知手段3
から出力される差信号Sは、補正値として制御装置9内
の記憶手段10に記憶される。
When the timing for zero point correction arrives in the control device 9, the three-boat valve 11 is switched to select the pipe line connecting the second measurement port 5 and the first water fixed point P1. This allows the first
The same pressure at the first measurement point P1 is applied to both the measurement port 4 and the second measurement port 5. At this time, the differential pressure detection means 3
The difference signal S output from the control device 9 is stored in the storage means 10 in the control device 9 as a correction value.

以上の記憶処理が終了すると制御装置9は適時に通常の
圧力差測定モードに移行し、3ボート弁11が、第2測
定口5と第2測定点P2とを結ぶ管路を選択するように
切換る。これにより、面測定口4及び5にはそれぞれ第
1測定点P1及び第2測定点P2の圧力が加えられるこ
とになって、それらの圧力差に応じた差信号Sが得られ
る。しかしながらこの差信号Sは、零点が変化している
分だけの誤差成分を含んでいる。この誤差成分を含んだ
差信号Sは、制御装置9内において、先に記憶手段10
内に記憶された補正値の分だけ差し引かれる。この補正
された値が正しい圧力差値。
When the above storage process is completed, the control device 9 shifts to the normal pressure difference measurement mode in a timely manner, and the three-boat valve 11 selects the pipe connecting the second measurement port 5 and the second measurement point P2. Switch. As a result, the pressures at the first measurement point P1 and the second measurement point P2 are applied to the surface measurement ports 4 and 5, respectively, and a difference signal S corresponding to the pressure difference therebetween is obtained. However, this difference signal S includes an error component corresponding to the change in the zero point. The difference signal S containing this error component is first stored in the storage means 10 in the control device 9.
The correction value stored in the memory is subtracted. This corrected value is the correct pressure difference value.

すなわち空気流量値として制御装置9による制御のため
の入力データとして用いられる。
That is, it is used as input data for control by the control device 9 as an air flow rate value.

このように、人手を使うことなく、短時間に零点補正が
行なわれる。又、制御装置9による自動制御のための入
力データとして差信号Sを用いることが可能となる。
In this way, zero point correction can be performed in a short time without any manual effort. Furthermore, it becomes possible to use the difference signal S as input data for automatic control by the control device 9.

上記の説明の通り、零点補正が行なわれるのは、制御装
置9にそのためのタイミングが到来した時である。この
タイミングをどのように設定するかは、場合に応じて色
々と考えられる。例えば、定の周期で繰り返して自動的
に行なうことができる。又、前回の補正値が大きかった
時には次回の補正タイミングを早くし、逆に補正値が小
さかった時には次回の補正タイミングを遅くすることも
できる。
As explained above, the zero point correction is performed when the timing for that purpose arrives in the control device 9. How to set this timing can be considered in various ways depending on the situation. For example, this can be done automatically and repeatedly at regular intervals. Further, when the previous correction value was large, the next correction timing can be advanced, and conversely, when the correction value was small, the next correction timing can be delayed.

尚、以上の説明では便宜上、オリフィス8の上流側測定
点を第19J定点P1とし、下流側測定点を第2測定点
P2としたが、第1及び第2という呼び方を上下流入れ
替えても何等の不都合はない。
In the above explanation, for convenience, the upstream measurement point of the orifice 8 was referred to as the 19J fixed point P1, and the downstream measurement point was referred to as the second measurement point P2. There are no inconveniences.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例の概略図である。 1・・・第1測定点 2・・・第2測定点 ・・・第1測定口 ・・・第2測定口 ・・・電気信号 ・・・差圧検知手段 1・・・3ボート弁 2・・・補助管 ・・・制御装置 第1 図 FIG. 1 is a schematic diagram of one embodiment. 1...1st measurement point 2...Second measurement point ...First measurement port ...Second measurement port ···electoronic signals ・・・Differential pressure detection means 1...3 boat valve 2... Auxiliary pipe ···Control device 1st figure

Claims (1)

【特許請求の範囲】 被測定物における第1測定点及び第2測定点間の圧力差
を測定する圧力測定装置において、第1測定点の圧力が
加えられる第1測定口と第2測定点の圧力が加えられる
第2測定口とを備えていて、それらの測定口に加えられ
た圧力の差に応じた電気信号を出力する差圧検知手段と
、第1測定口に加えられる第1測定点の圧力を第2測定
口へ導く圧力伝達手段と、 圧力伝達手段を作動させて第1測定点の圧力を第2測定
口へ導くことにより、第1測定口及び第2測定口の両方
に第1測定点の圧力をかけ、その時の差圧検知手段から
の出力値を補正値として記憶し、第1測定点及び第2測
定点の圧力をそれぞれ第1測定口及び第2測定口に個別
に加えた時の差圧検知手段からの出力値を上記の補正値
によって補正する制御手段とを有することを特徴とする
圧力測定装置。
[Claims] In a pressure measuring device that measures a pressure difference between a first measuring point and a second measuring point on an object to be measured, a first measuring port and a second measuring point, to which pressure at the first measuring point is applied, are provided. a second measurement port to which pressure is applied; differential pressure detection means for outputting an electrical signal according to the difference in pressure applied to the measurement ports; and a first measurement point to be applied to the first measurement port. pressure transmitting means for guiding the pressure at the first measuring point to the second measuring port; and by operating the pressure transmitting means to guide the pressure at the first measuring point to the second measuring port, a Apply the pressure at one measurement point, store the output value from the differential pressure detection means at that time as a correction value, and apply the pressure at the first measurement point and the second measurement point to the first measurement port and the second measurement port, respectively. A pressure measuring device comprising: a control means for correcting the output value from the differential pressure detection means when the pressure is applied, using the above correction value.
JP3363489A 1989-02-15 1989-02-15 Pressure measuring instrument Pending JPH02213736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3363489A JPH02213736A (en) 1989-02-15 1989-02-15 Pressure measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3363489A JPH02213736A (en) 1989-02-15 1989-02-15 Pressure measuring instrument

Publications (1)

Publication Number Publication Date
JPH02213736A true JPH02213736A (en) 1990-08-24

Family

ID=12391885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3363489A Pending JPH02213736A (en) 1989-02-15 1989-02-15 Pressure measuring instrument

Country Status (1)

Country Link
JP (1) JPH02213736A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194648A (en) * 2001-12-28 2003-07-09 Tadahiro Omi Pressure sensor, pressure controller, and temperature drift correction device of pressure type flow controller
CN102507078A (en) * 2011-11-14 2012-06-20 北京宇航系统工程研究所 Precision measuring system and method for conveying pipe flow resistance
JP2017501424A (en) * 2013-12-19 2017-01-12 エス.カー.イー.ゲーエムベーハー Method and measuring assembly according to the differential pressure principle with zero point calibration
CN113203517A (en) * 2021-04-26 2021-08-03 上海冉能自动化科技有限公司 Air pressure detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218930A (en) * 1983-05-27 1984-12-10 Suzuki Motor Co Ltd Correcting device of pressure detector
JPS60158328A (en) * 1984-01-30 1985-08-19 Yamatake Honeywell Co Ltd Zero-point adjusting device for fluid pressure transmitter
JPS6311827A (en) * 1986-07-01 1988-01-19 Kubota Ltd Zero point corrector for differential manometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218930A (en) * 1983-05-27 1984-12-10 Suzuki Motor Co Ltd Correcting device of pressure detector
JPS60158328A (en) * 1984-01-30 1985-08-19 Yamatake Honeywell Co Ltd Zero-point adjusting device for fluid pressure transmitter
JPS6311827A (en) * 1986-07-01 1988-01-19 Kubota Ltd Zero point corrector for differential manometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194648A (en) * 2001-12-28 2003-07-09 Tadahiro Omi Pressure sensor, pressure controller, and temperature drift correction device of pressure type flow controller
CN102507078A (en) * 2011-11-14 2012-06-20 北京宇航系统工程研究所 Precision measuring system and method for conveying pipe flow resistance
JP2017501424A (en) * 2013-12-19 2017-01-12 エス.カー.イー.ゲーエムベーハー Method and measuring assembly according to the differential pressure principle with zero point calibration
CN113203517A (en) * 2021-04-26 2021-08-03 上海冉能自动化科技有限公司 Air pressure detection method

Similar Documents

Publication Publication Date Title
TW472140B (en) Gas leak detection system
EP0165402A1 (en) Method of measuring leak rates
JPH05288737A (en) Gas chromatograph apparatus
JPH02213736A (en) Pressure measuring instrument
JP7192177B2 (en) Flow measurement system
US4204422A (en) Pressure measuring device
US6843123B2 (en) Flow rate sensor, flow rate measuring device, and flow rate control device
JP4329921B2 (en) Inspection gas mixing apparatus and mixing method
JP3758717B2 (en) Gas mixing equipment
JP3143299B2 (en) How to measure gas leaks from containers
US4574617A (en) Floating restriction standards system
JP3454406B2 (en) Leakage and flow rate inspection device
JP3121735B2 (en) Bidirectional flow measurement method and device
JP3532586B2 (en) Gas filling equipment
JPH0465967B2 (en)
JPH02118442A (en) Gas sensor device
JP2580585Y2 (en) Pure water dilution sampling device
JPH04235611A (en) Mass flow controller
JPH08189872A (en) Pressure measuring device for gas meter and correcting method for it
JPS63235800A (en) Mass flow controller
JP3041953B2 (en) Leak detector
JPH05288588A (en) Volume and leakage quantity measuring device
JPH0719917A (en) Flowmeter
JPH08233630A (en) Liquid level measuring device
CN117180575A (en) Automatic calibration method and system for flow sensor in anesthesia machine