Nothing Special   »   [go: up one dir, main page]

JPH02200653A - Preparation of aldehyde from primary alcohol - Google Patents

Preparation of aldehyde from primary alcohol

Info

Publication number
JPH02200653A
JPH02200653A JP1907889A JP1907889A JPH02200653A JP H02200653 A JPH02200653 A JP H02200653A JP 1907889 A JP1907889 A JP 1907889A JP 1907889 A JP1907889 A JP 1907889A JP H02200653 A JPH02200653 A JP H02200653A
Authority
JP
Japan
Prior art keywords
oxyl
primary alcohol
compound
reaction
bromite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1907889A
Other languages
Japanese (ja)
Other versions
JPH0832647B2 (en
Inventor
Shigeru Torii
滋 鳥居
Tsutomu Iguchi
勉 井口
Shigeaki Matsumoto
繁章 松本
Tokio Nishiyama
西山 登起男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Organic Chemical Industry Co Ltd
Original Assignee
Osaka Organic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Organic Chemical Industry Co Ltd filed Critical Osaka Organic Chemical Industry Co Ltd
Priority to JP1907889A priority Critical patent/JPH0832647B2/en
Publication of JPH02200653A publication Critical patent/JPH02200653A/en
Publication of JPH0832647B2 publication Critical patent/JPH0832647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/30Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with halogen containing compounds, e.g. hypohalogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To profitably provide the subject compound in a high yield without causing a problem such as the treatment of waste water by treating a primary alcohol with a bromous acid alkali metal salt in the presence of a catalytic amount of an N-oxyl compound. CONSTITUTION:A primary alcohol is reacted with a bromous acid alkali metal salt (e.g. potassium bromite or sodium bromite), preferably in a ratio of 1:1-10mol, especially 1:2-6mol, at -20 to 100 deg.C, especially -10 to 50 deg.C, in the presence of a catalytic amount of an N-oxyl compound to provide the objective compound. The N-oxyl compound is concretely 2,2,4,4-tetramethylazetidine-1-oxyl; 2,2-dimethyl-4,4-dipropyl azetidine-1-oxyl; etc., and is preferably used in an amount of 0.003-0.5mol per mol of the primary alcohol.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1級アルコールからアルデヒドを高収率でうる
ことができる1級アルコールからアルデヒドの製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing aldehydes from primary alcohols, which can obtain aldehydes from primary alcohols in high yield.

[従来の技術] 1級アルコールを酸化して相当するアルデヒド類に変換
することは、有機合成化学において重要な反応技術であ
り、とくに医薬品、農薬などに有用な化合物や工業原料
の中間体などの合成の際に広く採られている。
[Prior art] Oxidation of primary alcohols to convert them into corresponding aldehydes is an important reaction technique in organic synthetic chemistry, especially for compounds useful in pharmaceuticals, agricultural chemicals, etc., and intermediates for industrial raw materials. Widely used in synthesis.

1級アルコールを酸化してアルデヒドをうる方法は種々
開発されているが、たとえば酸化剤に二酸化マンガン、
クロム酸、四酢酸鉛などの重金属酸化物を用いる方法で
は、毒性のある酸化剤を化学量論量またはそれ以上の量
を必要とするので、反応後の廃棄物の処理に問題を残し
ている。
Various methods have been developed to obtain aldehydes by oxidizing primary alcohols. For example, manganese dioxide, manganese dioxide, and
Methods using heavy metal oxides such as chromic acid and lead tetraacetate require stoichiometric or higher amounts of toxic oxidizing agents, leaving problems in the disposal of waste after the reaction. .

また酸化剤を化学量論量用いる他の方法としては、過酸
化水素−金属塩を用いる方法(Can。
Another method using a stoichiometric amount of an oxidizing agent is a method using hydrogen peroxide-metal salt (Can.

J、Chea、、48.2924(19B5))、DM
SO(ジメチルスルホキシド)を用いる方法(CheI
l、Ber、、100.8881(1967)) 、鉄
Nカリウムを用いる方法(J、Am。
J, Chea, 48.2924 (19B5)), DM
Method using SO (dimethyl sulfoxide) (CheI
I, Ber, 100.8881 (1967)), the method using iron N potassium (J, Am.

CheIIl、 Soc、、80.2038(195B
)) 、過酸化ニッケル用いる方法(J、Org、Ch
em、、27.1597(19B2))、ルテニウム錯
体を用いる方法(TetrahedronLetter
s、22.1605(1981))、次亜塩素酸を用い
る方法(Tetrahedron Letters、1
641(197B))などが知られているが、これらの
方法はいずれも−般に反応操作が複雑なため、工業的に
実施するには問題が多い。
CheIIl, Soc, 80.2038 (195B
)), method using nickel peroxide (J, Org, Ch
em, 27.1597 (19B2)), method using ruthenium complex (Tetrahedron Letter
s, 22.1605 (1981)), method using hypochlorous acid (Tetrahedron Letters, 1
641 (197B)), but all of these methods generally require complicated reaction operations, so there are many problems in implementing them industrially.

これらの方法以外にも貴金属を触媒に用いる空気酸化法
として、たとえば白金ブラックを用いる方法(Tetr
ahedron、9.67(1960))やパラジウム
塩を用いる方法(Tetrahedron、9.67(
1980))が知られているが、これらの方法はいずれ
も一般に高温高圧の条件を必要とするため、アルデヒド
の合成には不適切であり、また高価な貴金属を使用する
ので経済的に不利である。
In addition to these methods, there is also an air oxidation method using noble metals as a catalyst, such as a method using platinum black (Tetr
ahedron, 9.67 (1960)) and a method using palladium salt (Tetrahedron, 9.67 (1960)).
(1980)), but all of these methods generally require conditions of high temperature and pressure, making them unsuitable for the synthesis of aldehydes, and using expensive precious metals, making them economically disadvantageous. be.

またニトロソニウム塩を触媒として用いる比較的穏和な
条件での1級アルコールに相当するアルデヒドへの酸化
法が開発されている。かかる酸化法としては、たとえば
N−オキシル化合物からニトロソニウム塩の生成に臭素
、塩素などのハロゲンを酸化剤とする方法(J、AIl
、Che+a。
A method of oxidizing primary alcohols to aldehydes under relatively mild conditions using nitrosonium salts as catalysts has also been developed. Such oxidation methods include, for example, a method in which a halogen such as bromine or chlorine is used as an oxidizing agent to generate a nitrosonium salt from an N-oxyl compound (J, AIl
, Che+a.

Soc、、106.3877(19B4)、J、Org
、Chem、、50.3930(1965)) 、銅、
鉄などの金属化合物を用いる方法(J、Am、Chen
+、Soc、、106.3374(1984) 、J、
Mol。
Soc,, 106.3877 (19B4), J, Org.
, Chem, 50.3930 (1965)), copper,
Method using metal compounds such as iron (J, Am, Chen
+, Soc,, 106.3374 (1984), J.
Mol.

Cat、、32,357 (19g5)および31.2
17(1985))、過酸化物による酸化法(J、Or
g、Che[1,,40,1988(1975)、40
.1880 (1975)および42.2077(19
77))などが知られている。しかしながら、これらの
方法は無水系で行なう必要があったり、大量のN−オキ
シル化合物を必要とするなど工業的には実施しがたい方
法である。
Cat, 32,357 (19g5) and 31.2
17 (1985)), peroxide oxidation method (J, Or
g, Che [1,, 40, 1988 (1975), 40
.. 1880 (1975) and 42.2077 (19
77)) are known. However, these methods are difficult to implement industrially because they need to be carried out in an anhydrous system or require a large amount of N-oxyl compound.

またこれらの方法を改良する目的で次亜塩素酸ナトリウ
ムを酸化剤に用いた方法(J、Org。
In addition, for the purpose of improving these methods, a method using sodium hypochlorite as an oxidizing agent (J, Org.

Chem、、52.2559(1987))が開発され
ている。かかる方法ではN−オキシル化合物が触媒量で
用いられ、ニトロソニウム塩を連続的に発生させること
により循環使用しうるように工夫されている。
Chem, 52.2559 (1987)) has been developed. In this method, an N-oxyl compound is used in a catalytic amount, and the nitrosonium salt is continuously generated so that it can be recycled.

しかし、この方法でも工業的な規模で実施するばあいに
は、つぎの点が問題となる。すなわち、次亜塩素酸ナト
リウムは不安定な化合物であり、高濃度ではとくにその
貯蔵、取り扱いが困難なため、一般に入手し、取り扱う
ことができるのは約12%濃度の水溶液晶であり、化学
量論量以上の次亜塩素酸ナトリウム水溶液を使用せんと
すれば反応液量が増加し、生産効率の低下、廃液の増加
などをまねき経済的に不利となるなどの問題がある。
However, when this method is implemented on an industrial scale, the following problems arise. In other words, sodium hypochlorite is an unstable compound and is difficult to store and handle, especially at high concentrations.Sodium hypochlorite is generally available and handled in the form of aqueous crystals with a concentration of about 12%, and the stoichiometric amount is If more than the stoichiometric amount of the aqueous sodium hypochlorite solution is not used, the amount of reaction solution will increase, leading to a decrease in production efficiency, an increase in waste solution, and other problems, such as being economically disadvantageous.

また、N−オキシル化合物を直接法で電解酸化してニト
ロソニウム塩をつくり、このものを酸化剤として用いて
1級アルコールを該1級アルコールに相当するアルデヒ
ドに酸化する方法がある(J、AIl、Chem、So
c、、 105.4492(In2)) 。この方法は
、化学酸化剤を必要としないが、N−オキシル化合物を
1級アルコールに対して2倍モル用い、電解酸化による
ニトロソニウム塩の調整をアルコールの酸化とは別の反
応器で行なう、いわゆるエクセルメソド(Ex−Cel
 l M’ethod)であり、電解装置には構造的に
複雑な分離セルが必要とされるなど工業的に実施するに
は不利であるなどの欠点を有する。
In addition, there is a method in which an N-oxyl compound is electrolytically oxidized by a direct method to produce a nitrosonium salt, and this salt is used as an oxidizing agent to oxidize a primary alcohol to an aldehyde corresponding to the primary alcohol (J, AIl ,Chem,So
c,, 105.4492(In2)). This method does not require a chemical oxidizing agent, but uses twice the molar amount of the N-oxyl compound relative to the primary alcohol, and the preparation of the nitrosonium salt by electrolytic oxidation is performed in a separate reactor from the oxidation of the alcohol. The so-called Excel method (Ex-Cel)
1 M'method), and has drawbacks such as requiring a structurally complex separation cell for the electrolyzer, which is disadvantageous for industrial implementation.

[発明が解決しようとする課題] そこで、本発明者らは前記従来技術に鑑みて1級アルコ
ールから高収率でアルデヒドを工業的に収得しうる方法
を見出すべく鋭意研究を重ねた結果、触媒量のN−オキ
シル化合物の存在下で、1級アルコールに亜臭素酸アル
カリ金属塩を作用させることにより、1級アルコールか
らこれに相当するアルデヒドが高収率で収得されうるこ
とを見出し、本発明を完成するにいたった。
[Problems to be Solved by the Invention] Therefore, in view of the above-mentioned prior art, the present inventors have conducted intensive research to find a method for industrially obtaining aldehydes from primary alcohols in high yield. It has been discovered that the corresponding aldehyde can be obtained in high yield from a primary alcohol by treating the primary alcohol with an alkali metal bromite in the presence of a certain amount of N-oxyl compound, and the present invention was completed.

[課題を解決するための手段] すなわち、本発明は1級アルコールをN−オキシル化合
物の存在下で亜臭素酸アルカリ金属塩と反応させること
を特徴とする1級アルコールからアルデヒドの製造法に
関する。
[Means for Solving the Problems] That is, the present invention relates to a method for producing an aldehyde from a primary alcohol, which is characterized by reacting the primary alcohol with an alkali metal bromite salt in the presence of an N-oxyl compound.

[作用および実施例] 亜臭素酸アルカリ金属塩を使用し、N−オキシル化合物
の存在下で1級アルコールを酸化してアルデヒドを製造
する本発明の方法においては、亜臭素酸アルカリ金属塩
の作用により、N−オキシル化合物からニトロソニウム
塩が生成される。
[Function and Examples] In the method of the present invention for producing aldehyde by oxidizing a primary alcohol in the presence of an N-oxyl compound using an alkali metal salt of bromite, the effect of the alkali metal salt of bromite is A nitrosonium salt is produced from the N-oxyl compound.

この化合物はただちに1級アルコールをアルデヒドに酸
化し、もとのN−オキシル化合物に戻るが、再び系内の
亜臭素酸アルカリ金属塩により、ニトロソニウム塩に変
えられ、再び1級アルコ−ルのアルデヒドへの酸化剤と
して作用する。
This compound immediately oxidizes the primary alcohol to an aldehyde and returns to the original N-oxyl compound, but is again converted to a nitrosonium salt by the alkali metal bromite salt in the system, and is converted back into the primary alcohol. Acts as an oxidizing agent to aldehydes.

したがって、本発明の方法ではニトロソニウム塩が循環
使用される。
Therefore, the nitrosonium salt is recycled in the method of the invention.

本発明の方法において使用される1級アルコールとして
は、たとえば−膜対:RCH20H(式中、Rは水素原
子または炭素数1〜50のアルキル基を示す)で表わさ
れる1級水酸基を有する鎖状または環状化合物などがあ
げられ、かかる1級アルコールの分子内にはニトロソニ
ウム塩の酸化に対して安定なケトン、エステル、アミド
、ニトロ、ニトリル、ハロゲン、スルホニル、オレフィ
ン、フェニルなどの官能基が含まれていてもよい。また
、前記1級アルコールは、分子内に1級水酸基を2個以
上有していてもよく、このばあいにはモノアルデヒドを
経由してジ(ポリ)アルデヒドに変換される。また同一
分子内に2級水酸基があるばあいには、ヒドロキシアル
デヒドを経由してケトアルデヒドに変換される。前記1
級アルコールの具体例としては、たとえば1−プロパツ
ール、l−ペンタノール、■−ヘキサノール、■−オク
タツール、l−デカノール、■−ウンデカノール、ヘプ
タデカノル、シクロヘキシルメチルカルビノール、ベン
ジルアルコール、β−フェネチルアルコール、2−エチ
ルヘキサノール、テトラゾカー2−インニーオール、1
.8−オクタンジオール、■、10−デカンジオール、
シクロヘキサンジメチルカルビノール、l−メチルスル
ホニル−1−オクタツール、2−二トロー1−デシルア
ルコール、4−エトキシカルボニル−1−ブタノール、
ヘプタデカフルオロるが、本発明はかかる例示によって
限定されるものではない。
The primary alcohol used in the method of the present invention is, for example, a linear alcohol having a primary hydroxyl group represented by RCH20H (in the formula, R represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms). or cyclic compounds, and the molecules of such primary alcohols contain functional groups such as ketones, esters, amides, nitro, nitriles, halogens, sulfonyls, olefins, and phenyls that are stable against oxidation of nitrosonium salts. It may be Further, the primary alcohol may have two or more primary hydroxyl groups in the molecule, and in this case, it is converted to di(poly)aldehyde via monoaldehyde. If there is a secondary hydroxyl group in the same molecule, it is converted to ketoaldehyde via hydroxyaldehyde. Said 1
Specific examples of alcohols include 1-propanol, l-pentanol, ■-hexanol, ■-octatool, l-decanol, ■-undecanol, heptadecanol, cyclohexylmethylcarbinol, benzyl alcohol, and β-phenethyl alcohol. , 2-ethylhexanol, tetrazocar 2-ynyniol, 1
.. 8-octanediol, ■, 10-decanediol,
Cyclohexanedimethylcarbinol, l-methylsulfonyl-1-octatool, 2-nitro-1-decyl alcohol, 4-ethoxycarbonyl-1-butanol,
Heptadecafluoro, however, the present invention is not limited to such examples.

本発明において、使用されるN−オキシル化合物は一般
式(I): (式中、RI   R2R3R4R5およびR6はそれ
ぞれ独立して炭素数1〜30のアルキル基を示し、R1
とR4は結合して環状化合物となってもよく、このばあ
い、環内に不飽和結合を有してもよい。また環を形成し
た炭素上にアミノ基、カルボニル基、アミド基、ハロゲ
ン、ニトリルなどの官能基が結合していてもよく、分子
内に2個以上のN−オキシル基を有していてもよい)で
表わされる化合物があげられる。かかるN−オキシル化
合物の具体例としては、たとえば2.2,4.4−テト
ラメチルアゼチジン−1−オキシル、2.2−ジメチル
−4,4−ジプロピルアゼチジン−1−オキシル、2.
2,5.5−テトラメチルピロリジン−1−オキシル、
2.2.5.5−テトラメチル−3−オキソピロリジン
−1−オキシル、2.2.5.5−テトラメチルピロリ
ジン−1−オキシル、2.2.5.5−テトラメチルピ
ロリジン−1−オキシル−3−カルボキシアミド、2,
2,5.5−テトラメチル−8−ピロリン−1−オキシ
ル−3−カルボン酸、4−アミノ−2゜2.8.6−テ
トラメチルピペリジン−1−オキシル、4−オキソ−2
,2,8,8−テトラメチルピペリジン−lオキシル、
4−メトキシ−2,2,B、8−テトラメチルピペリジ
ン−1−オキシル、4−ベンゾイルオキシ−2,2,8
,8−テトラメチルピペリジン−1−オキシル、2.2
.8.8−テトラメチルピペリジン−1−オキシル−4
−カルボン酸、4−ヒドロキシ−2,2,6,6テトラ
メチルピペリジンー1−オキシル、4−シアノ−2,2
,8,6−テトラメチルピペリジン−1−オキシル、ジ
−t−ブチルアミン−N−オキシル、膜対二R’0CO
(CH2) s CO2R’ (式中、R7はを示す)
、−膜対: (式中、R7は前記と同じ)などがあげられる。
In the present invention, the N-oxyl compound used is represented by the general formula (I): (wherein, RI R2R3R4R5 and R6 each independently represent an alkyl group having 1 to 30 carbon atoms, and R1
and R4 may be combined to form a cyclic compound, and in this case, the ring may have an unsaturated bond. Further, a functional group such as an amino group, a carbonyl group, an amide group, a halogen, or a nitrile may be bonded to the carbon forming the ring, and the molecule may have two or more N-oxyl groups. ) can be mentioned. Specific examples of such N-oxyl compounds include 2.2,4.4-tetramethylazetidine-1-oxyl, 2.2-dimethyl-4,4-dipropylazetidine-1-oxyl, 2.
2,5.5-tetramethylpyrrolidine-1-oxyl,
2.2.5.5-Tetramethyl-3-oxopyrrolidine-1-oxyl, 2.2.5.5-tetramethylpyrrolidine-1-oxyl, 2.2.5.5-tetramethylpyrrolidine-1- Oxyl-3-carboxamide, 2,
2,5.5-tetramethyl-8-pyrroline-1-oxyl-3-carboxylic acid, 4-amino-2゜2.8.6-tetramethylpiperidine-1-oxyl, 4-oxo-2
,2,8,8-tetramethylpiperidine-loxyl,
4-methoxy-2,2,B, 8-tetramethylpiperidine-1-oxyl, 4-benzoyloxy-2,2,8
, 8-tetramethylpiperidine-1-oxyl, 2.2
.. 8.8-Tetramethylpiperidine-1-oxyl-4
-carboxylic acid, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-cyano-2,2
,8,6-tetramethylpiperidine-1-oxyl, di-t-butylamine-N-oxyl, membrane pair 2R'0CO
(CH2) s CO2R' (in the formula, R7 represents)
, -membrane pair: (in the formula, R7 is the same as above), and the like.

これらN−オキシル化合物の触媒としての使用量は、1
級アルコール1 n+olに対してo、oooi〜10
 mols好ましくは、0.003〜0.5molであ
る。
The amount of these N-oxyl compounds used as a catalyst is 1
alcohol 1 o, oooi to n+ol ~ 10
mols is preferably 0.003 to 0.5 mol.

(1,Hl)Imolよりも少ないばあいには収率が低
下し、10molよりも多いばあいにはそれ以上多量に
使用しても効果の向上は望めず、不経済となる。
If it is less than (1,Hl)Imol, the yield will decrease, and if it is more than 10 mol, no improvement in the effect can be expected even if a larger amount is used, and it will become uneconomical.

本発明に用いられる亜臭素酸アルカリ金属塩としては、
たとえば亜臭素酸カリウム、亜臭素酸ナトリウムなどが
あげられ、これらは無水物や水和物などとしてまたは水
溶液として用いられる。工業的には、たとえば糊抜剤と
して使用されている市販の亜臭素酸ナトリウム水溶液を
用いるのが好ましい。これら亜臭素酸アルカリ金属塩の
酸化剤としての使用量は、1級アルコール1molに対
して1〜10m011好ましくは2〜611olである
。1 molよりも少ないばあいには、反応が完結せず
、またlomolよりも多量に用いたばあいには、それ
以上の効果の向上は望めず、不経済となる。
The alkali metal salt of bromite used in the present invention includes:
Examples include potassium bromite, sodium bromite, and the like, which are used as anhydrides, hydrates, or aqueous solutions. Industrially, it is preferable to use, for example, a commercially available aqueous sodium bromite solution used as a desizing agent. The amount of these alkali metal bromite salts to be used as an oxidizing agent is 1 to 10 m011, preferably 2 to 611 mol, per 1 mol of primary alcohol. If the amount is less than 1 mol, the reaction will not be completed, and if it is used in an amount greater than 1 mol, no further improvement in effect can be expected, resulting in uneconomical results.

反応は、反応基質である1級アルコールが水溶性のばあ
いには、水溶液中で行なうことができるが、一般には疎
水性有機溶媒と水の2相系からなる不均一系混合溶液中
または水と親水性有機溶媒の混合溶液中で行なってもよ
い。前記有機溶媒は、ニトロソニウム塩の酸化に対して
安定な有機溶媒であればよく、かかる有機溶媒の具体例
としては、たとえばアセトン、メチルエチルケトン、メ
チルイソブチルケトン、3−ペンタノンなどのケトン;
アセトニトリル、プロピオンニトリル、ベンゾニトリル
などのニトリル;四塩化炭素、クロロホルム、塩化メチ
レン、ジクロロエタン、トリクロロエタン、クロロベン
ゼンなどのハロゲン化炭化水素;ペンタン、ヘキサン、
シクロヘキサン、ヘプタン、オクタン、シクロオクタン
などの脂肪族系または脂環式炭化水素;ベンゼン、トル
エン、キシレン、エチルベンゼンなどの芳香族系炭化水
素;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸
ブチル、プロピオン酸メチル、γ −ブチロラクトンな
どのエステル;テトラヒドロフラン、ジメトキシエタン
、ジオキサンなどのエーテル:その他スルホランなどが
あげられる。これらの有機溶媒は単独でまたは2種以上
混合した混合溶媒として用いられる。なお、水と疎水性
有機溶媒からなる不均一系溶液を用いるばあいには、充
分なかきまぜを行なうことによって反応を円滑に行なう
ことが好ましい。
The reaction can be carried out in an aqueous solution if the primary alcohol that is the reaction substrate is water-soluble; however, it is generally carried out in a heterogeneous mixed solution consisting of a two-phase system of a hydrophobic organic solvent and water or in water. It may be carried out in a mixed solution of and a hydrophilic organic solvent. The organic solvent may be any organic solvent that is stable against oxidation of the nitrosonium salt, and specific examples of such organic solvents include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and 3-pentanone;
Nitriles such as acetonitrile, propionitrile, benzonitrile; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, dichloroethane, trichloroethane, chlorobenzene; pentane, hexane,
Aliphatic or alicyclic hydrocarbons such as cyclohexane, heptane, octane, and cyclooctane; Aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; Methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, and methyl propionate and γ-butyrolactone; ethers such as tetrahydrofuran, dimethoxyethane, and dioxane; and sulfolane. These organic solvents may be used alone or as a mixed solvent of two or more. In addition, when using a heterogeneous solution consisting of water and a hydrophobic organic solvent, it is preferable to carry out the reaction smoothly by stirring sufficiently.

なお、1級アルコールの溶媒溶液中における濃度は、と
くに限定はないが、通常反応を円滑に行なうため、08
吋〜50重量%、なかんづく0.1〜80重量%である
のが好ましい。
Note that the concentration of the primary alcohol in the solvent solution is not particularly limited, but it is usually
It is preferably 1 to 50% by weight, especially 0.1 to 80% by weight.

また、前記水溶液または水層のpHは4〜12、好まし
くは6〜11であるのが望ましい。pHが4未満では副
反応によるエステル(二量化物)の生成量が増加し、ア
ルデヒドの収率が低下し、pHが12をこえると生成し
たアルデヒドからの副反応を併発し、収率が低下する傾
向がある。
Further, it is desirable that the pH of the aqueous solution or aqueous layer is 4 to 12, preferably 6 to 11. When the pH is less than 4, the amount of esters (dimerized products) produced due to side reactions increases and the yield of aldehyde decreases, and when the pH exceeds 12, side reactions occur from the generated aldehydes and the yield decreases. There is a tendency to

前記1級アルコールの溶媒溶液、N−オキシル化合物お
よび亜臭素酸アルカリ金属塩を混合することにより反応
が開始されるが、反応温度は一20〜100℃の範囲、
好ましくは一10〜50℃の範囲であるのが望ましい。
The reaction is started by mixing the primary alcohol solvent solution, the N-oxyl compound, and the alkali metal bromite salt, and the reaction temperature is in the range of -20 to 100°C.
Preferably, the temperature is in the range of -10 to 50°C.

かかる反応温度は20℃よりも低いばあいには、反応速
度が遅くなり、また100℃よりも高いばあいには、副
反応がおこり、収率が低下する傾向がある。
If the reaction temperature is lower than 20°C, the reaction rate will be slow, and if it is higher than 100°C, side reactions will occur and the yield will tend to decrease.

反応は系内の1級アルコールが消失するまで行なえばよ
く、通常1〜10時間程度を必要とする。
The reaction may be carried out until the primary alcohol in the system disappears, and usually requires about 1 to 10 hours.

反応終了後、疎水性溶媒を分液し、溶媒を留去すること
により粗生成物が入手される。もし必要ならば、蒸留、
再結晶、クロマト精製などの常法の後処理を行なうこと
により、1級アルコールに相当するアルデヒドかえられ
る。
After the reaction is completed, the hydrophobic solvent is separated and the solvent is distilled off to obtain a crude product. Distillation, if necessary;
By performing conventional post-treatments such as recrystallization and chromatographic purification, the aldehyde corresponding to the primary alcohol can be converted.

つぎに実施例に基づいて本発明をさらに詳細に説明する
が、本発明はかかる実施例のみに限定されるものではな
い。
Next, the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples.

実施N1 N15Oガラス製反応容器に1−ウンデカノール1.7
2 g (lomlIlol) 、4−ベンゾイルオキ
シ−2,2゜6.6−テトラメチルピペリジン−1−オ
キシル28 mg(0,1nvol) 、塩化メチレン
10m1および水層のp)Iを9に保つために重曹5%
を含有する水溶液20mlを秤り、水浴で冷却、かきま
ぜながら亜臭素酸ナトリウム三水和物(日本シリカニ業
■製、NaBr02として65%含有品)  6.1g
 (30mmol、)を加えた。このときの水層のpH
は9であった。その後、室温で3時間反応を行なった。
Run N1 1.7 1-undecanol in a N15O glass reaction vessel
2 g (lomlIlol), 28 mg (0,1 nvol) of 4-benzoyloxy-2,2゜6.6-tetramethylpiperidine-1-oxyl, 10 ml of methylene chloride and to keep p)I in the aqueous layer at 9. Baking soda 5%
Weigh out 20 ml of an aqueous solution containing , cool it in a water bath, and while stirring, add 6.1 g of sodium bromite trihydrate (manufactured by Nihon Shirikani Gyogyo ■, containing 65% NaBr02).
(30 mmol) was added. pH of the water layer at this time
was 9. Thereafter, the reaction was carried out at room temperature for 3 hours.

薄層クロマトグラフィ(TLC)にて原料の1級アルコ
ールの消失を確認後、未反応の過剰亜臭素酸ナトリウム
を不活性とするため、5%ナトリウムハイドロサルファ
イド10m1を加えて充分にかきまぜを行なった。反応
混合物は塩化メチレン層と水層に分離し、水層は塩化メ
チレンで抽出を行なった。塩化メチレン抽出液は1つに
まとめて濃縮し、残液をシリカゲルカラム上をn−ヘキ
サン酢酸エチル(7:1)  (容量比)の混合溶媒で
溶出して精製し、1−ウンデカナール1.88gをえた
(収率:99%)。
After confirming the disappearance of the raw material primary alcohol by thin layer chromatography (TLC), 10 ml of 5% sodium hydrosulfide was added and thoroughly stirred to inactivate unreacted excess sodium bromite. The reaction mixture was separated into a methylene chloride layer and an aqueous layer, and the aqueous layer was extracted with methylene chloride. The methylene chloride extracts were combined and concentrated, and the remaining liquid was purified on a silica gel column by elution with a mixed solvent of n-hexane ethyl acetate (7:1) (volume ratio) to obtain 1-undecanal 1. 88 g was obtained (yield: 99%).

なお、IRスペクトルにより1792cm −’ (n
eat)、’H−NMR(CDCfs、 500MHz
)によりδ9.yeppm(t)にピークが認められ、
アルデヒドの存在が確認された。以下にえられた1−ウ
ンデカノールのIH−NMRスペクトルの結果を示す。
In addition, 1792 cm −' (n
eat), 'H-NMR (CDCfs, 500MHz
), δ9. A peak was observed at yeppm(t),
The presence of aldehydes was confirmed. The results of the IH-NMR spectrum of 1-undecanol obtained below are shown.

(1)1−NMR(CDCfs 、 500MHz)δ
ppm )0.88[(t) 、3H,−CH3]1.
28[(m) 、14H、−(CH2)7 ]1.62
[(ffl) 、2H]、2.41[(m) 、2H]
9.76[(t) 、IH,−CH0]実施例2〜5 実施例1において用いた4−ベンゾイルオキシ−2,2
,8,8−テトラメチルピペリジン−1−オキシルのか
わりに第1表に示したN−オキシル化合物(0,1■o
l)を使用し、反応完結に必要な量の亜臭素酸ナトリウ
ムを加えて反応を完結させた以外は実施例1と同様にし
て反応を行なった。えられたl−ウンデカナールの収率
を第1表に併記する。
(1) 1-NMR (CDCfs, 500MHz) δ
ppm) 0.88 [(t),3H,-CH3]1.
28 [(m), 14H, -(CH2)7]1.62
[(ffl), 2H], 2.41 [(m), 2H]
9.76 [(t) , IH, -CHO] Examples 2 to 5 4-benzoyloxy-2,2 used in Example 1
, 8,8-tetramethylpiperidine-1-oxyl, the N-oxyl compound shown in Table 1 (0,1■o
The reaction was carried out in the same manner as in Example 1, except that 1) was used and the reaction was completed by adding the amount of sodium bromite necessary to complete the reaction. The yield of l-undecanal obtained is also shown in Table 1.

[以下余白] 実施例6〜8 実施例1において、4−ベンゾイルオキシ−2,2゜6
.6−テトラメチルピペリジン−l−オキシルの添加量
を第2表に示すように変更し、また亜臭素酸ナトリウム
三散水和物(80mIIlol)を加えて反応を行なっ
た以外は実施例1と同様にしてl−ウンデカナールをえ
た。えられたニーウンデカナールの収率を第2表に示す
[Margin below] Examples 6 to 8 In Example 1, 4-benzoyloxy-2,2゜6
.. The reaction was carried out in the same manner as in Example 1, except that the amount of 6-tetramethylpiperidine-l-oxyl added was changed as shown in Table 2, and sodium bromite tridisperse hydrate (80mlol) was added. l-undecanal was obtained. Table 2 shows the yield of niundecanal obtained.

第  2  表 実施例9〜16 実施例1において用いた塩化メチレンのかわりに第3表
に示した有機溶媒(10ml)を用い、亜臭素酸ナトリ
ウム三水和物を第3表に示すように使用した以外は実施
例1と同様に実施した。
Table 2 Examples 9 to 16 Instead of the methylene chloride used in Example 1, the organic solvent (10 ml) shown in Table 3 was used, and sodium bromite trihydrate was used as shown in Table 3. The same procedure as in Example 1 was carried out except for the following.

えられた1−ウンデカナールの収率を第3表に示す。The yield of 1-undecanal obtained is shown in Table 3.

[以下余白コ 実施例17〜22 実施例1で用いたl−ウンデカノールのかわりに第4表
に示した1級アルコールを用い、第4表に示す量の亜臭
素酸ナトリウム三水和物を用いた以外は実施例1と同様
に実施し、第4表に示すアルデヒドをえた。えられたア
ルデヒドの収率を第4表に併記する。
[Examples 17 to 22 Below are blank spaces. In place of l-undecanol used in Example 1, primary alcohols shown in Table 4 were used, and sodium bromite trihydrate was used in the amounts shown in Table 4. The same procedure as in Example 1 was carried out except that the aldehydes shown in Table 4 were obtained. The yield of the aldehyde obtained is also shown in Table 4.

C以下余白j なお、実施例17〜24でえられた生成物のIH−NM
Rスペクトル(CDC#3、500MHz 、  δp
p11)は以下のとおりであった。
Margin below C: IH-NM of the products obtained in Examples 17 to 24
R spectrum (CDC#3, 500MHz, δp
p11) was as follows.

(実施例17;n−オクタナール) 1)1−NMRスペクトル 0.87 (m、 3H1−〇)+3)1.29 (m
、  101 、−(CH2)6−)2.41  (+
a、2H,−CH2−)9.85  (t、 t■、−
C)TO)(実施例18;n−ドデカナール) IH−NMRスペクトル 0.88 (t、 3H,−CH5) 1.28 (1,18H、−(CH2)9−)2.40
 (1,2H,−C)12−)9.65 (tStH,
−CHo) (実施例19;n−オクタデカナール)IH−NMRス
ペクトル 0.87 (m、 38.−CH3) 1.24 (m、 80B 、 −(CH2)+6−)
2、H(m、 2H,−CH2−) 9、ffO(t、  LH,−CHO)IH−NMRス
ペクトル 1.13 (d、 311、−CH5)1.59 (i
Sloll 、 −(CI2)5−)2.04 (s、
 ill、−〇H) 2.43 (+a、 ill、 −CIl(C113)
 −)9.83 (d、 11L −CHo)(実施例
21;   △バーψφ−= −CIIO)IH−NM
Rスペクトル 0.87 (t、 3H,−CHg )1.1〜1.8
(+n 、 18H、−CH2)9−)2.37 (t
、 2H,−C)+2−)9.17 (tSIHl−C
HO) (実施例22;ベンズアルデヒド) 1)(−NMRスペクトル 7.2〜7.9(m、5HSPh−) 9.87 (S、 ill、−CHo)(実施例23;
2−フェニルアセトアルデヒド)IH−NMRスペクト
ル 3.6(d、 2H,−〇H2−) 7.18 (s、 5HSPh−) 9.8(tSIH,−CHo) (実施例24;3−フェニルプロピオンアルデヒド)!
)1−NMRスペクトル 2.8(+n、4H,−(CH2)2−)7.1(s、
 5H,Ph−) 9.82 (t、 IHSCHO) 比較例1 実施例1で用いた2、2.8.8−テトラメチル−4−
ベンゾイルオキシピペリジン−1−オキシルを添加しな
かった以外は実施例1と同様に実施し、18時間反応を
行なったところ、■−ウンデカナールが収率■8%で生
成し、88%の1−ウンデカノールを回収した。
(Example 17; n-octanal) 1) 1-NMR spectrum 0.87 (m, 3H1-〇)+3) 1.29 (m
, 101 , -(CH2)6-)2.41 (+
a, 2H, -CH2-)9.85 (t, t■, -
C) TO) (Example 18; n-dodecanal) IH-NMR spectrum 0.88 (t, 3H, -CH5) 1.28 (1,18H, -(CH2)9-) 2.40
(1,2H,-C)12-)9.65 (tStH,
-CHo) (Example 19; n-octadecanal) IH-NMR spectrum 0.87 (m, 38.-CH3) 1.24 (m, 80B, -(CH2)+6-)
2, H (m, 2H, -CH2-) 9, ffO (t, LH, -CHO) IH-NMR spectrum 1.13 (d, 311, -CH5) 1.59 (i
Sloll, -(CI2)5-)2.04 (s,
ill, -〇H) 2.43 (+a, ill, -CIl(C113)
-)9.83 (d, 11L -CHO) (Example 21; △ bar ψφ-= -CIIO) IH-NM
R spectrum 0.87 (t, 3H, -CHg) 1.1-1.8
(+n, 18H, -CH2)9-)2.37 (t
, 2H,-C)+2-)9.17 (tSIHl-C
HO) (Example 22; Benzaldehyde) 1) (-NMR spectrum 7.2-7.9 (m, 5HSPh-) 9.87 (S, ill, -CHO) (Example 23;
2-phenylacetaldehyde) IH-NMR spectrum 3.6 (d, 2H, -〇H2-) 7.18 (s, 5HSPh-) 9.8 (tSIH, -CHO) (Example 24; 3-phenylpropionaldehyde )!
) 1-NMR spectrum 2.8 (+n, 4H, -(CH2)2-) 7.1 (s,
5H, Ph-) 9.82 (t, IHSCHO) Comparative Example 1 2,2.8.8-tetramethyl-4- used in Example 1
The reaction was carried out in the same manner as in Example 1 except that benzoyloxypiperidine-1-oxyl was not added, and the reaction was carried out for 18 hours. ■-Undecanal was produced in a yield of ■8%, and 88% of 1- Undecanol was recovered.

[発明の効果] 本発明の方法によれば、触媒量のN−オキシル化合物の
存在下で、1級アルコールに亜臭素酸アルカリ金属塩を
作用させることにより、1級アルコールからこれに相当
するアルデヒドを高収率で容易に工業的にうることがで
きるという効果が奏される。
[Effects of the Invention] According to the method of the present invention, the corresponding aldehyde is removed from the primary alcohol by reacting an alkali metal bromite salt with the primary alcohol in the presence of a catalytic amount of an N-oxyl compound. The effect is that it can be easily obtained industrially in high yield.

Claims (1)

【特許請求の範囲】[Claims] 1 1級アルコールをN−オキシル化合物の存在下で亜
臭素酸アルカリ金属塩と反応させることを特徴とする1
級アルコールからアルデヒドの製造法。
1. 1 characterized by reacting a primary alcohol with an alkali metal bromite salt in the presence of an N-oxyl compound
A method for producing aldehydes from alcohols.
JP1907889A 1989-01-27 1989-01-27 Method for producing aldehyde from primary alcohol Expired - Fee Related JPH0832647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1907889A JPH0832647B2 (en) 1989-01-27 1989-01-27 Method for producing aldehyde from primary alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1907889A JPH0832647B2 (en) 1989-01-27 1989-01-27 Method for producing aldehyde from primary alcohol

Publications (2)

Publication Number Publication Date
JPH02200653A true JPH02200653A (en) 1990-08-08
JPH0832647B2 JPH0832647B2 (en) 1996-03-29

Family

ID=11989406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1907889A Expired - Fee Related JPH0832647B2 (en) 1989-01-27 1989-01-27 Method for producing aldehyde from primary alcohol

Country Status (1)

Country Link
JP (1) JPH0832647B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913382A1 (en) * 1997-06-06 1999-05-06 Consortium für elektrochemische Industrie GmbH Process for the preparation of aldehydes and ketones
JP2001199923A (en) * 1999-11-19 2001-07-24 Ciba Specialty Chem Holding Inc Method for selectively oxidizing alcohol using readily removable nitroxyl radical
JP2002145832A (en) * 2000-11-07 2002-05-22 Nippon Soda Co Ltd Method for producing aromatic ketone or aldehyde
JP2010031021A (en) * 1997-08-06 2010-02-12 Nutrasweet Property Holdings Inc Preparation of 3,3-dimethylbutyraldehyde by oxidation of 3,3-dimethyl butanol

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913382A1 (en) * 1997-06-06 1999-05-06 Consortium für elektrochemische Industrie GmbH Process for the preparation of aldehydes and ketones
JP2010031021A (en) * 1997-08-06 2010-02-12 Nutrasweet Property Holdings Inc Preparation of 3,3-dimethylbutyraldehyde by oxidation of 3,3-dimethyl butanol
JP2012102113A (en) * 1997-08-06 2012-05-31 Nutrasweet Property Holdings Inc Preparation of 3,3-dimethylbutyraldehyde by oxidation of 3, 3-dimethylbutanol
JP2001199923A (en) * 1999-11-19 2001-07-24 Ciba Specialty Chem Holding Inc Method for selectively oxidizing alcohol using readily removable nitroxyl radical
JP4727806B2 (en) * 1999-11-19 2011-07-20 チバ ホールディング インコーポレーテッド Selective oxidation of alcohols using nitroxyl radicals that can be easily removed
JP2002145832A (en) * 2000-11-07 2002-05-22 Nippon Soda Co Ltd Method for producing aromatic ketone or aldehyde

Also Published As

Publication number Publication date
JPH0832647B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JPH02200653A (en) Preparation of aldehyde from primary alcohol
JP3241472B2 (en) Continuous production method of 3-cyano-3,5,5-trimethylcyclohexanone
JP2604826B2 (en) Highly selective oxidation of primary alcohols to aldehydes
JP2734876B2 (en) Method for producing optically active 4-chloro-3-hydroxybutyronitrile
US3954876A (en) Production of halo-substituted derivatives of acetophenone
JPH02147A (en) Synthesis of n,n-dialkylhydroxylamine
JPS59118745A (en) Manufacture of amine
JP2604827B2 (en) Method of oxidizing secondary alcohol to ketone
JP3069925B2 (en) Method for producing cycloalkanone
JPS63104932A (en) Post treatment of reaction mixture containing cyclohexylhydroperoxide
JP4310391B2 (en) Method for producing tropolone compound
JP3529876B2 (en) 3-methyl-3-methoxybutanoic acid.
JP4759177B2 (en) Method for producing mevalolactone
US6977313B2 (en) Production process of 2,7-dibromofluorenone
JPH03184934A (en) Production of aldehyde from primary alcohol
JP2002173457A (en) Method for producing ketone compound
JPS62129257A (en) Production of benzylamine
JP2961918B2 (en) Method for producing tertiary alcohol
JP3477915B2 (en) Method for producing 1,6-dioxyiminohexane
US4579978A (en) Bibenzyl hydroperoxide synthesis
JP2618442B2 (en) Method for producing benzonitrile
JP2625204B2 (en) Production method of α, α-dihaloketone
JPS63126840A (en) Production of pyruvic acid or pyruvic acid ester
JPS63168404A (en) Selective oxidative carbonyzation of conjugated diene
JPS62164656A (en) Production of cyanoisophorone

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees