JPH02209234A - Preparation of fiber reinforced composite material - Google Patents
Preparation of fiber reinforced composite materialInfo
- Publication number
- JPH02209234A JPH02209234A JP1031506A JP3150689A JPH02209234A JP H02209234 A JPH02209234 A JP H02209234A JP 1031506 A JP1031506 A JP 1031506A JP 3150689 A JP3150689 A JP 3150689A JP H02209234 A JPH02209234 A JP H02209234A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- composite material
- prepreg
- reinforcing fiber
- reinforced composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims description 20
- 239000003733 fiber-reinforced composite Substances 0.000 title claims description 14
- 239000011347 resin Substances 0.000 claims abstract description 11
- 229920005989 resin Polymers 0.000 claims abstract description 11
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 10
- 239000003822 epoxy resin Substances 0.000 claims abstract description 9
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 9
- 239000012815 thermoplastic material Substances 0.000 claims abstract description 9
- 229920006231 aramid fiber Polymers 0.000 claims abstract description 6
- 239000003365 glass fiber Substances 0.000 claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000004917 carbon fiber Substances 0.000 claims description 5
- 239000004760 aramid Substances 0.000 claims description 4
- 238000013016 damping Methods 0.000 abstract description 15
- 239000000835 fiber Substances 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 4
- 238000003475 lamination Methods 0.000 abstract description 2
- 229920001169 thermoplastic Polymers 0.000 abstract description 2
- 239000004416 thermosoftening plastic Substances 0.000 abstract description 2
- 238000010030 laminating Methods 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000003190 viscoelastic substance Substances 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Moulding By Coating Moulds (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は人工衛星等宇宙構造物、 OA機器、自動車、
レジャー用品などの構造体に用いて振動・騒音の低減を
実現する繊維強化複合材料の作製方法に関するものであ
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to space structures such as artificial satellites, OA equipment, automobiles,
The present invention relates to a method for producing a fiber-reinforced composite material that can be used in structures such as leisure goods to reduce vibration and noise.
CFRPなどの繊維強化複合材料は、カーボン、ガラス
繊維などの無機繊維又はアラミド繊維などの有機繊維を
エポキシ樹脂、ポリイミド樹脂、ポリエーテルエーテル
ケトン樹脂などの樹脂で固型化したものである。Fiber-reinforced composite materials such as CFRP are made by solidifying inorganic fibers such as carbon and glass fibers or organic fibers such as aramid fibers with resins such as epoxy resins, polyimide resins, and polyether ether ketone resins.
繊維強化複合材料は、従来の金属構造材料に比較して軽
量、高強度である、繊維配向角を制御することにより所
望の機械特性を実現できる点で優れている。このため、
強く軽量化が要求される宇宙構造物、航空機、自動車、
レジャー用品などの構造材料に+lJ広く用いられるよ
うになった。Fiber-reinforced composite materials are superior in that they are lighter and stronger than conventional metal structural materials, and desired mechanical properties can be achieved by controlling the fiber orientation angle. For this reason,
Space structures, aircraft, automobiles, etc. that require strong weight reduction.
It has come to be widely used in structural materials such as leisure goods.
この種の複合材料で作製した構造体の用途の拡大に伴い
、構造体の振動が問題となっている。As the uses of structures made of this type of composite material expand, vibration of the structures has become a problem.
繊維強化複合材料は軽量であり、従来の金属構造材料と
同程度の小さな振動減衰特性(損失係数η=0.001
〜0.1)をもつため振動を生じ易い。また、構造物を
一体成型で作製することが多く5従来の金属構造材料と
は異なり、接続部での摩擦による振動減衰(構造減衰)
を期待できない。このため、人工衛星などの宇宙構造物
では構造体の振動による搭載機器の故障、アンテナの位
置精度の低下などの問題が生じている。このため、繊維
強化複合材料の振動減衰特性の増加は1重要な課題とな
っている。Fiber-reinforced composite materials are lightweight and have low vibration damping properties (loss coefficient η = 0.001) comparable to conventional metal structural materials.
~0.1), it is easy to generate vibrations. In addition, structures are often manufactured by integral molding.5Unlike conventional metal structural materials, vibration damping due to friction at connections (structural damping)
I can't expect that. For this reason, problems have arisen in space structures such as artificial satellites, such as failure of onboard equipment due to vibration of the structure and reduction in antenna position accuracy. Therefore, increasing the vibration damping properties of fiber-reinforced composite materials has become an important issue.
これらの問題を解決する目的で、マトリックス樹脂の振
動減衰を増加させて複合材料の振動減衰を増加させる手
法が検討されている。これは、マトリックス樹脂にポリ
エチレングリコール、ポリプロピレングリコール、液状
ゴムなどの可撓性付与剤を添加し、振動減衰特性を増加
させた樹脂を用いて複合材料を作製する手法である。し
かし可撓性付与剤の添加により樹脂の振動減衰特性を数
十倍程度に改善できるものの、複合材料の振動減衰特性
は数倍程度の増加しか得られず、また大きな剛性の低下
を伴うので効果的ではない。In order to solve these problems, methods are being considered to increase the vibration damping of composite materials by increasing the vibration damping of matrix resins. This is a method of producing a composite material using a resin that has increased vibration damping properties by adding a flexibility imparting agent such as polyethylene glycol, polypropylene glycol, or liquid rubber to a matrix resin. However, although the vibration damping properties of the resin can be improved several tens of times by adding a flexibility agent, the vibration damping properties of the composite material can only be increased by several times, and this is accompanied by a large decrease in rigidity, so it is not effective. Not the point.
本発明は前記問題点を解決するものであり、その目的と
するところは大きな振動減衰特性を有する繊維強化複合
材料を提供することにある。The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a fiber-reinforced composite material with high vibration damping properties.
〔課題を解決するための手段〕
上記目的を達成するため1本発明による繊維強化複合材
料の作製方法においては、カーボン、ガラス繊維などの
無機強化繊維又はアラミド繊維などの有機強化繊維をエ
ポキシ樹脂などの樹脂に含浸して半硬化処理したプリプ
レグシートと、熱可塑性材料シートとを積層し、加圧加
熱により硬化させるものである。[Means for Solving the Problems] In order to achieve the above object, in the method for producing a fiber reinforced composite material according to the present invention, inorganic reinforcing fibers such as carbon and glass fibers or organic reinforcing fibers such as aramid fibers are combined with epoxy resin, etc. A prepreg sheet that has been semi-cured by being impregnated with a resin is laminated with a thermoplastic material sheet, and the sheet is cured by pressure and heating.
本発明の作製方法においては、熱可塑性材料シートと繊
維強化複合材料プリプレグシートとを積層し、これを加
圧加熱により硬化させるため、カーボンやガラス繊維な
どの無機強化繊維又はアラミド繊維などの有機強化繊維
をエポキシ樹脂などの樹脂に含浸した複合材料層と、熱
可塑性材料層(粘弾性材料層)とが積層一体化された繊
維強化複合材料を実現できる。前記複合材料は、層間の
熱可塑性材料(粘弾性材料)の効果により、大きな振動
減衰特性を有する。In the production method of the present invention, a thermoplastic material sheet and a fiber-reinforced composite material prepreg sheet are laminated, and this is cured by pressurizing and heating. A fiber-reinforced composite material can be realized in which a composite material layer in which fibers are impregnated with a resin such as an epoxy resin and a thermoplastic material layer (viscoelastic material layer) are laminated and integrated. The composite material has great vibration damping properties due to the effect of the thermoplastic material (viscoelastic material) between the layers.
以下に本発明の実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図に本発明繊維強化複合材料の作製方法のフローを
示す、実施例はオートクレーブで加圧加熱効果を行った
例である0図において、プリプレグシート2を、作製す
べき部材の大きさや形状を考慮して切断する。前記プリ
プレグシート2と熱可塑性シート1とを要求される積層
順序及び繊維方向に従って積層する。その積層物に離型
フィルムや加圧シートなどを載せ真空バッグで覆う(バ
ギング工程)。次にその構成物をオートクレーブの中に
入れ、圧力を加えた状態で加熱硬化させる。Fig. 1 shows the flow of the method for producing the fiber-reinforced composite material of the present invention, and the example is an example in which the pressure heating effect was applied in an autoclave. Cut with this in mind. The prepreg sheet 2 and the thermoplastic sheet 1 are laminated according to the required lamination order and fiber direction. A release film or pressure sheet is placed on the laminate and covered with a vacuum bag (bagging process). The composition is then placed in an autoclave and heated and cured under pressure.
第2図に第1図の実施例の作製方法を用いて作製した複
合材料の断面図を示す。実施例はカーボン繊維とエポキ
シ樹脂硬化物からなる複合材料層4と、熱可塑性材料層
3とを積層一体化したものである。FIG. 2 shows a cross-sectional view of a composite material manufactured using the manufacturing method of the embodiment shown in FIG. 1. In this embodiment, a composite material layer 4 made of carbon fiber and a cured epoxy resin and a thermoplastic material layer 3 are laminated and integrated.
第3図に、第2図に示す複合材料の損失係数と周波数と
の関係を示す。測定は複合材料試験片に曲げ振動を加え
て行った。図中、実線5は第2図の複合材料の特性、破
線6は、従来の作製方法で作製した繊維強化複合材料の
特性である。いずれも固有振動数での自由減衰カーブよ
り損失係数を求めた。図に明らかなとおり、本発明の作
製方法による複合材料は、従来のものに比較して、太き
な振動減衰特性が得られている。なお、複合材料層には
カーボン繊維とエポキシ樹脂との硬化物に限らず、ガラ
ス繊維などの無機強化繊維又はアラミド繊維などの有機
強化繊維をエポキシ樹脂などの樹脂に含浸させて半硬化
処理したプリプレグシートを用いても同効である。FIG. 3 shows the relationship between the loss coefficient and frequency of the composite material shown in FIG. 2. The measurements were performed by applying bending vibration to the composite material test piece. In the figure, a solid line 5 indicates the characteristics of the composite material shown in FIG. 2, and a broken line 6 indicates the characteristics of the fiber-reinforced composite material produced by the conventional production method. In both cases, the loss coefficient was determined from the free damping curve at the natural frequency. As is clear from the figure, the composite material produced by the manufacturing method of the present invention has greater vibration damping characteristics than the conventional material. Note that the composite material layer is not limited to a cured product of carbon fiber and epoxy resin, but also prepreg that is semi-cured by impregnating inorganic reinforcing fibers such as glass fibers or organic reinforcing fibers such as aramid fibers in resin such as epoxy resin. The same effect can be obtained using a sheet.
〔発明の効果]
以上のように本発明によれば、振動減衰特性の大きな繊
維強化複合材料を実現することが可能となり1人工衛星
などの宇宙構造物における搭載機器の故障やアンテナの
位置精度の低下、自動車などの騒音問題を解決できる効
果を有するものである。[Effects of the Invention] As described above, according to the present invention, it is possible to realize a fiber-reinforced composite material with high vibration damping characteristics, and 1. It has the effect of solving the noise problem caused by automobiles, etc.
【図面の簡単な説明】
第1図は本発明の実施例の作製方法のフロー図、第2図
は実施例の作製方法を用いて作製した複合材料の断面図
、第3図は第2図の複合材料と従来の作製方法を用いて
作製した複合材料の損失係数の比較を示す図である。
1・・・熱可塑性材料シート 2・・・ブリプレグシ一
ト3・・・熱可塑性材料層
4・・・複合材料層
代
理
人[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a flow diagram of a manufacturing method according to an example of the present invention, Fig. 2 is a cross-sectional view of a composite material manufactured using the manufacturing method of an example, and Fig. 3 is a flowchart of a manufacturing method according to an embodiment of the present invention. FIG. 3 is a diagram showing a comparison of loss coefficients between a composite material manufactured using a conventional manufacturing method and a composite material manufactured using a conventional manufacturing method. 1...Thermoplastic material sheet 2...Buripreg sheet 3...Thermoplastic material layer 4...Composite material layer agent
Claims (1)
ラミド繊維などの有機強化繊維をエポキシ樹脂などの樹
脂に含浸して半硬化処理したプリプレグシートと、熱可
塑性材料シートとを積層し、加圧加熱により硬化させる
ことを特徴とする繊維強化複合材料の作製方法。(1) A prepreg sheet semi-cured by impregnating inorganic reinforcing fibers such as carbon or glass fibers or organic reinforcing fibers such as aramid fibers in resin such as epoxy resin and a thermoplastic material sheet are laminated and heated under pressure. A method for producing a fiber-reinforced composite material, characterized by curing the material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1031506A JPH02209234A (en) | 1989-02-10 | 1989-02-10 | Preparation of fiber reinforced composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1031506A JPH02209234A (en) | 1989-02-10 | 1989-02-10 | Preparation of fiber reinforced composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02209234A true JPH02209234A (en) | 1990-08-20 |
Family
ID=12333107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1031506A Pending JPH02209234A (en) | 1989-02-10 | 1989-02-10 | Preparation of fiber reinforced composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02209234A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102294846A (en) * | 2011-06-10 | 2011-12-28 | 泰安市瑞祥复合材料有限公司 | CF mesh reinforced carbon fiber prepreg and production technology thereof |
CN103121321A (en) * | 2011-11-21 | 2013-05-29 | 辽宁辽杰科技有限公司 | Utilization method of continuous fiber reinforced thermoplastic resin composite prepreg tape leftover material |
CN112848545A (en) * | 2021-01-25 | 2021-05-28 | 北京理工大学 | Impact-resistant design and preparation method of composite laminated plate with embedded thermoplastic film |
-
1989
- 1989-02-10 JP JP1031506A patent/JPH02209234A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102294846A (en) * | 2011-06-10 | 2011-12-28 | 泰安市瑞祥复合材料有限公司 | CF mesh reinforced carbon fiber prepreg and production technology thereof |
CN103121321A (en) * | 2011-11-21 | 2013-05-29 | 辽宁辽杰科技有限公司 | Utilization method of continuous fiber reinforced thermoplastic resin composite prepreg tape leftover material |
CN112848545A (en) * | 2021-01-25 | 2021-05-28 | 北京理工大学 | Impact-resistant design and preparation method of composite laminated plate with embedded thermoplastic film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1128958B2 (en) | Moulding materials | |
US5871604A (en) | Forming fiber reinforced composite product | |
US4680216A (en) | Method for stabilizing thick honeycomb core composite articles | |
KR100286153B1 (en) | Complex molding apparatus, high pressure co-curing molding method using the same, and honeycomb core molded product manufactured therefrom | |
US4323623A (en) | Composite plastic structure and method for producing same | |
EP2746042B1 (en) | Methods for fabricating stabilized honeycomb core composite laminate structures | |
WO2011035541A1 (en) | Wind turbine blade and its producing method | |
JPH02209234A (en) | Preparation of fiber reinforced composite material | |
JPH02209235A (en) | Preparation of fiber reinforced composite material | |
JPH084280Y2 (en) | Fiber reinforced composite cylindrical shell | |
JPH04267139A (en) | Carbon fiber reinforced composite material prepreg sheet | |
JP2705319B2 (en) | Method for producing carbon fiber reinforced composite material | |
JPH0558395A (en) | Thrust tube | |
JPH03166921A (en) | Preparation of fiber reinforced composite material | |
JP2006198866A (en) | Core material for sandwich structural material and manufacturing method of sandwich structural material | |
JPH04125136A (en) | Fiber reinforced composite material | |
JPH02169633A (en) | Fiber-reinforced composite material | |
JPH02169634A (en) | Prepreg sheet of fiber-reinforced composite material | |
JPH04251714A (en) | Manufacture of carbon fiber reinforced composite material | |
JPH04268342A (en) | Production of carbon fiber-reinforced composite material | |
JPH03120035A (en) | Manufacture of fiber-reinforced composite material | |
van Tooren | Response 1 Airbus composite aircraft fuselages—next or never | |
JPH03120036A (en) | Manufacture of fiber-reinforced composite material | |
JP2003305741A (en) | Manufacturing method for laminated structure | |
JPH02235631A (en) | Preparation of fiber reinforced composite material |