JPH02199013A - Production of fine fused spherical silica - Google Patents
Production of fine fused spherical silicaInfo
- Publication number
- JPH02199013A JPH02199013A JP1706889A JP1706889A JPH02199013A JP H02199013 A JPH02199013 A JP H02199013A JP 1706889 A JP1706889 A JP 1706889A JP 1706889 A JP1706889 A JP 1706889A JP H02199013 A JPH02199013 A JP H02199013A
- Authority
- JP
- Japan
- Prior art keywords
- silica
- flame
- raw material
- fused spherical
- spherical silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 138
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 238000002844 melting Methods 0.000 claims abstract description 27
- 230000008018 melting Effects 0.000 claims abstract description 26
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 239000000112 cooling gas Substances 0.000 claims abstract description 18
- 239000002245 particle Substances 0.000 claims abstract description 18
- 239000007789 gas Substances 0.000 claims abstract description 12
- 238000002485 combustion reaction Methods 0.000 claims abstract description 9
- 239000001301 oxygen Substances 0.000 claims abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 abstract description 9
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 abstract description 2
- 230000003472 neutralizing effect Effects 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- 239000010703 silicon Substances 0.000 abstract description 2
- -1 silicon halide Chemical class 0.000 abstract description 2
- 239000006004 Quartz sand Substances 0.000 abstract 1
- 239000003513 alkali Substances 0.000 abstract 1
- 239000007864 aqueous solution Substances 0.000 abstract 1
- 230000003301 hydrolyzing effect Effects 0.000 abstract 1
- 239000011044 quartzite Substances 0.000 abstract 1
- 239000011034 rock crystal Substances 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 15
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000000563 Verneuil process Methods 0.000 description 1
- ATRMIFNAYHCLJR-UHFFFAOYSA-N [O].CCC Chemical compound [O].CCC ATRMIFNAYHCLJR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体樹脂封止用フィラー構脂添加剖、ある
いはガラスやセラミックスの原料として有用な微細形態
を有する溶融球状シリカの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the addition of filler resin for semiconductor resin encapsulation, or to a method for producing fused spherical silica having a fine morphology useful as a raw material for glass or ceramics.
溶融球状シリカは、従来、可燃ガス−酸素中にシリカを
分散させてシリカを溶融し、気流中での表面張力によっ
て球状化させる方法で製造されている。溶融原料である
シリカは天然珪石、溶融シリカ、合成シリカ等を、ボー
ルミルのような粉砕装置により粉砕したものを用い、シ
リカの融点(1720°C)以上の高温を得るため、可
燃ガスと酸素との燃焼による火炎を形成させる。可燃ガ
スとして、プロパン、ブタン、水素等が利用できるが、
経済性から主にプロパンガスが用いられている。Fused spherical silica has conventionally been produced by a method in which silica is dispersed in combustible gas-oxygen, melted, and spheroidized by surface tension in an air flow. Silica, which is a molten raw material, is made by pulverizing natural silica stone, fused silica, synthetic silica, etc. using a pulverizer such as a ball mill, and in order to obtain a high temperature higher than the melting point of silica (1720°C), it is mixed with flammable gas and oxygen. forms a flame due to combustion. Propane, butane, hydrogen, etc. can be used as combustible gases, but
Propane gas is mainly used due to economic efficiency.
この種の火炎溶融方式に基づく溶融球状シリカの製造法
は、Bulletin Che+wical 5oci
ety of JapaOvol、53 NfL 1第
26〜29項に記載されている。A method for producing fused spherical silica based on this kind of flame fusion method is described in Bulletin Che+wical 5oci
ety of JapaOvol, 53 NfL 1, paragraphs 26-29.
一般に、かかる溶融方式では平均粒子径が少なくとも1
0−より大きな溶融球状シリカが得られ、しかもその粒
度コントロールは、主として原料シリカの粉砕粒度に依
存する。従って、火炎溶融による球状シリカの製造法で
は平均粒子径がIon以下の溶融品を得ることは非常に
難かしい。Generally, such melting systems have an average particle size of at least 1
A fused spherical silica larger than 0 is obtained, and its particle size control depends primarily on the milled particle size of the raw silica. Therefore, it is very difficult to obtain a molten product with an average particle size of Ion or less using a method for producing spherical silica using flame melting.
この理由は、溶融化に際し原料シリカ粉の粒子間の融着
により、常に原料シリカに比べて溶融球状シリカの粒子
径が大き゛くなるからであり、火炎形成領域が大きい程
その傾向はより著しい。The reason for this is that the particle size of fused spherical silica always becomes larger than that of raw silica due to fusion between particles of raw silica powder during melting, and this tendency becomes more pronounced as the flame formation area becomes larger.
本発明者らは、先に原料シリカを特殊な粉砕処理を施し
て微細化すると共に火炎溶融における熱負荷を制御する
ことによって、微細な溶融球状シリカを製造する方法を
開発した。(特願昭63−211691号)
しかしながら、この方法も歩留りよく微細な球状シリカ
を得ることは難かしい。The present inventors have developed a method for producing fine fused spherical silica by first subjecting raw material silica to a special pulverization treatment to make it fine and controlling the heat load during flame melting. (Japanese Patent Application No. 63-211691) However, even with this method, it is difficult to obtain fine spherical silica with a good yield.
かかる問題点に鑑み、本発明者らは、微細な溶融球状シ
リカの製造につき鋭意研究を重ねた結果、火炎形成領域
を冷却ガスの導入によって調製するという全く予想外の
操作を加えることによって微細晶を歩留りよく製造でき
ることを知見し、本発明を完成したものである。In view of these problems, the present inventors have conducted intensive research on the production of fine fused spherical silica, and as a result, the present inventors have succeeded in producing fine crystals by adding a completely unexpected operation of preparing the flame formation region by introducing a cooling gas. The present invention has been completed based on the discovery that it is possible to manufacture the product with high yield.
(課題を解決するための手段〕
すなわち、本発明による微細な溶融球状シリカの製造方
法は、シリカ原料を可燃性ガスと酸素との燃焼により火
炎溶融して溶融球状シリカを製造するに当り、火炎形成
領域に冷却ガスを導入することを構成上の特徴としてい
る。(Means for Solving the Problems) That is, the method for producing fine fused spherical silica according to the present invention involves flame-melting a silica raw material by combustion with combustible gas and oxygen to produce fused spherical silica. A structural feature is that a cooling gas is introduced into the formation region.
以下、本発明につき詳述する。The present invention will be explained in detail below.
まず、本発明において使用できるシリカ原料は、特に限
定されるものではないが、可能な限り高純度の天然又は
合成シリカであることが望ましい。First, the silica raw material that can be used in the present invention is not particularly limited, but is preferably natural or synthetic silica with the highest possible purity.
また、これらは溶融品であっても差支えない。Further, these may be molten products.
天然シリカとしては、精製された珪石、珪砂、水晶等が
挙げられ合成シリカとしては、ハロゲン化珪素の加水分
解によるもの、エチルシリケートの如きオルガノシリケ
ートの加水分解物又は珪酸アルカリ水溶液の中和に基づ
くシリカ等が挙げられる。Examples of natural silica include purified silica, silica sand, and crystal, and examples of synthetic silica include those produced by hydrolysis of silicon halides, hydrolysates of organosilicate such as ethyl silicate, or those produced by neutralization of aqueous alkali silicate solutions. Examples include silica.
特に、珪酸アルカリ水溶液を鉱酸との中和反応に基づい
て得られる高純度シリカの製造法については、本出願人
が既に開発に成功しており、工業的に有利なシリカ原料
として用いることができるが、その詳細は、例えば特開
昭61−48421号公報、特開昭61−48422号
公報、特開昭61−178414号公報、特開昭62−
12608号公報等に記載されている。In particular, the applicant has already successfully developed a method for producing high-purity silica obtained by neutralizing an aqueous alkali silicate solution with a mineral acid, and it can be used as an industrially advantageous raw material for silica. However, the details can be found in, for example, JP-A-61-48421, JP-A-61-48422, JP-A-61-178414, and JP-A-62-
It is described in Publication No. 12608 and the like.
これらシリカ原料は、ボールミルやジェットミル等の所
望の粉砕機により微粉砕されたものであるが、多くの場
合平均粒子径としてl〇−以下、好ましくは2〜8μm
の範囲にある。かかる微細シリカ原料を溶融し、かつ原
料粒子間で相互に融着せず、そのまま独立した粒子状態
で球状化させることが必要であることから、充分に制御
された火炎溶融を施さなければならない。These silica raw materials are finely pulverized using a desired pulverizer such as a ball mill or a jet mill, but in most cases, the average particle size is less than 1〇, preferably 2 to 8 μm.
within the range of Since it is necessary to melt such a fine silica raw material and make it spheroidized as independent particles without causing the raw material particles to fuse with each other, well-controlled flame melting must be performed.
即ち、溶融球状化は、酸素−可燃性ガスの燃焼による火
炎、多くの場合、酸素−プロパン炎にて行うが、そのシ
リカの融点以上の温度にある火炎の中心部に原料シリカ
粉を定常状態において分散して供給する°ことによって
行われる。That is, molten spheroidization is carried out using a flame caused by the combustion of an oxygen-combustible gas, often an oxygen-propane flame, but the raw silica powder is placed in a steady state in the center of the flame, which has a temperature above the melting point of the silica. This is done by dispersing and supplying the water.
このような火炎溶融ができる加熱炉は、通常、整形の炉
の頂部に溶融バーナーを設置し、下方に向けて火炎を形
成させる構造となっている。A heating furnace capable of such flame melting usually has a structure in which a melting burner is installed at the top of the shaped furnace and a flame is formed downward.
しかし、かかる加熱炉は溶融粉体の回収設備に接続され
、炉内の系はブロア等で負圧に運転されシリカの火炎溶
融は、キャリアガスで搬送された原料シリカを酸素と可
燃性ガスとの燃焼により下方に向けて生じた火炎形成領
域の中に分散させて行われ、その際表面張力によって球
状化する。However, such a heating furnace is connected to a molten powder recovery facility, and the system inside the furnace is operated under negative pressure using a blower, etc., and the flame melting of the silica converts the raw silica, which is carried by a carrier gas, into oxygen and combustible gas. The particles are dispersed in the flame-forming region downwardly generated by the combustion of the particles, and are spheroidized by surface tension.
本発明は、このような火炎溶融方式に基づく球状シリカ
の製造法において、火炎形成領域に冷却ガスを導入する
ことを特徴とする。The present invention is characterized in that, in a method for producing spherical silica based on such a flame melting method, a cooling gas is introduced into a flame forming region.
ここに火炎形成領域とは、溶融バーナーから吐出して酸
素と可燃性ガスの燃焼による火炎の生成される範囲をい
い、この領域はシリカの融点以上の高温度にある。従っ
て、この領域は例えば、ローソクの炎を想定すれば容易
に理解できるところであるが、その大きさ(径と長さ)
は、溶融バーナーの構造や操業条件によって一様ではな
い。Here, the flame formation region refers to the region where flame is generated by combustion of oxygen and combustible gas discharged from the melting burner, and this region is at a high temperature higher than the melting point of silica. Therefore, this area can be easily understood by thinking of a candle flame, for example, and its size (diameter and length)
varies depending on the structure and operating conditions of the melting burner.
かかる火炎形成領域に冷却ガスを導入すると、該ガスの
接触により、火炎形成領域が実質的に消滅する。即ち、
冷却ガスが火炎形成領域をカットする作用として働くの
で、これを導入する位置と方法を設定することにより、
任意に火炎形成hI域を調節することができる。When a cooling gas is introduced into such a flame-forming region, the flame-forming region is substantially extinguished by contact with the gas. That is,
The cooling gas acts to cut the flame formation area, so by setting the location and method to introduce it,
Optionally, the flame formation hI range can be adjusted.
火炎形成領域に冷却ガスを導入する方法は、炉頂部に設
置した溶融バーナーから下方に向けて形成される火炎に
対して直角方向(水平方向)から冷却ガスをリング状に
吹きつける方法、あるいは、負圧で炉内圧を運転してい
ることから炉の一部に冷却ガス導入孔を設け、これより
冷却ガスを火炎形成領域に導入する方法などが採られる
。しかし、これらの方法に限定する必要はなく、要は冷
却ガスの導入で火炎形成領域をHA!ffする手段であ
れば、方法の如何は問われない、従って、冷却ガスの導
入量、流速、火炎形成領域に対する導入位置、角度等は
、目的とする製品の粒度特性に応じて適宜設定すればよ
い。The method of introducing cooling gas into the flame formation area is to blow cooling gas in a ring shape from a melting burner installed at the top of the furnace in a direction perpendicular (horizontal) to the flame that is formed downward, or, Since the furnace is operated under negative pressure, a cooling gas introduction hole is provided in a part of the furnace, and the cooling gas is introduced into the flame formation area through this hole. However, there is no need to be limited to these methods; the key is to introduce cooling gas to the flame formation area. Any method may be used as long as it is a means of ff. Therefore, the amount of cooling gas introduced, the flow rate, the introduction position with respect to the flame formation region, the angle, etc. should be set appropriately according to the particle size characteristics of the target product. good.
一般に、冷却ガス量は多くし、導入位置をバーナーに近
づけるに従って製品粒度は細かくなる。Generally, as the amount of cooling gas increases and the introduction position approaches the burner, the product particle size becomes finer.
なお、冷却ガスとしては特に制限はないか、多(の場合
精製空気が用いられる。Note that there are no particular restrictions on the cooling gas, or in the case of cooling gas, purified air is used.
また、本発明において、原料をシリカ以外に他のガラス
粉、アルミナ、チタニア等の金属酸化物、各種スピネル
型酸化物、金属珪酸塩、アルミノシリケート等の無機粉
末も適用して、微細な球状粒子を製造することが可能と
なる。In addition, in the present invention, in addition to silica, other glass powders, metal oxides such as alumina and titania, inorganic powders such as various spinel-type oxides, metal silicates, and aluminosilicate are used as raw materials to form fine spherical particles. It becomes possible to manufacture
火炎溶融による溶融球状シリカの製造法において、火炎
形成領域に冷却ガスを導入することにより火炎形成領域
を調節することができる。このことは火炎におけるシリ
カの滞留時間、換言すればシリカの融点以上の温度域に
おいて滞留する時間内をコントロールすることになり、
こうすることによって粒子間の融着や融合による粒子の
成長を防止することができるので、微細な溶融球状粒子
を歩留りよく製造することができる。In the method for producing fused spherical silica by flame melting, the flame formation region can be adjusted by introducing a cooling gas into the flame formation region. This means controlling the residence time of silica in the flame, in other words, the residence time in the temperature range above the melting point of silica,
By doing so, it is possible to prevent the growth of particles due to fusion and fusion between particles, so that fine molten spherical particles can be produced with a high yield.
(実施例〕
以下、本発明につき実施例および比較例を挙げて更に具
体的に説明する。(Examples) Hereinafter, the present invention will be described in more detail by giving Examples and Comparative Examples.
実施例1
(1)原料シリカの調製
この実施例で用いる原料シリカにつき、調製法、物性等
を第1表に示す。Example 1 (1) Preparation of raw material silica Table 1 shows the preparation method, physical properties, etc. of the raw material silica used in this example.
第1表
(2)火炎溶融試験
直径800m、長さ3000smの円筒密閉型加熱炉を
用いる。この炉は炉頂部に溶融バーナーを下向に向けて
設け、製品の回収のためにサイクロンおよびバグフィル
タ−を接続している。製品の回収は、接続部に冷却用清
浄空気を導入して行い、回収後はブロアで大気に解放す
るようになっている。Table 1 (2) Flame melting test A closed cylindrical heating furnace with a diameter of 800 m and a length of 3000 sm is used. This furnace has a melting burner facing downward at the top of the furnace, and is connected to a cyclone and bag filter for product recovery. The product is collected by introducing clean air for cooling into the connection, and after collection, it is released into the atmosphere using a blower.
かかる加熱炉において、プロパンガス:36Nrrf/
11および燃tAM素: 12ONrd/H1炉内差
圧50mH,oの溶融条件で火炎形成させ、この火炎形
成領域内に第1表の原料シリカをそれぞれチャー’;M
150kg/H、キャリアーガス(Ox ) :6
ONイ/f(の条件で分散チャージして火炎溶融する。In such a heating furnace, propane gas: 36Nrrf/
11 and combustion tAM element: 12ONrd/H1 A flame was formed under the melting conditions of 50 mH and 0 differential pressure in the furnace, and the raw material silica of Table 1 was charged into the flame formation region, respectively.
150kg/H, carrier gas (Ox): 6
Distributed charge and flame melt under the condition of ON I/f(.
この火炎溶融の際に、炉の中間部、(塔頂から600■
)の位置にリング状に設けた冷却空気導入孔からコンプ
レッサーにて冷却用清浄空気を565N td / H
と、113ONrJ/Hの異なる条件で火炎形成領域(
長さ約900■)に導入して溶融処理した。During this flame melting, the middle part of the furnace (600mm from the top of the tower
) Clean air for cooling is supplied by the compressor through the ring-shaped cooling air introduction hole at the position of 565N td / H.
and the flame formation region (
A length of about 900 mm) was introduced and melted.
サイクロンで回収された部分のシリカはいずれも微細な
溶融球状シリカであり、その評価の結果を第2表に示す
。All of the silica recovered by the cyclone was fine fused spherical silica, and the evaluation results are shown in Table 2.
第2表
第3表
実施例2
実施例1において、冷却空気導入孔を塔頂から200
m (上部)と600m (下部)の2つの位置にそれ
ぞれリング状に設けて、各導入孔より所定量の冷却空気
を導入した以外は実施例1と同様の操作と条件でシリカ
の溶融を行ったところ、第3表の結果が得られた。Table 2 Table 3 Example 2 In Example 1, the cooling air introduction hole was installed 200 meters from the top of the tower.
The silica was melted using the same operations and conditions as in Example 1, except that a ring was provided at two positions, 600 m (top) and 600 m (bottom), and a predetermined amount of cooling air was introduced from each introduction hole. As a result, the results shown in Table 3 were obtained.
比較例
実施例1の火炎溶融条件にて、冷却空気を火炎形成領域
に導入せず、原料シリカをそれぞれ溶融して球状シリカ
を製造したところ、第4表の結果が得られた。Comparative Example Spherical silica was produced by melting each raw material silica under the flame melting conditions of Example 1 without introducing cooling air into the flame formation region, and the results shown in Table 4 were obtained.
第4表
の粒度構成を調製するために必要なものであり、その他
、セラミックス、ガラス用材料、樹脂添加剤として有効
に利用することができるものである。These are necessary for preparing the particle size structure shown in Table 4, and can also be effectively used as additives for ceramics, glass materials, and resins.
特許出願人 日本化学工業株式会社Patent applicant: Nippon Chemical Industry Co., Ltd.
Claims (1)
溶融して溶融球状シリカを製造するに当り、火炎形成領
域に冷却ガスを導入することを特徴とする微細な溶融球
状シリカの製造方法。 2、溶融球状シリカが平均粒子径2〜10μmの範囲に
ある請求項1記載の微細な溶融球状シリカの製造方法。[Claims] 1. Fine melting characterized by introducing a cooling gas into a flame forming region when producing fused spherical silica by flame melting a silica raw material by combustion of combustible gas and oxygen. Method for producing spherical silica. 2. The method for producing fine fused spherical silica according to claim 1, wherein the fused spherical silica has an average particle diameter in the range of 2 to 10 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1706889A JP2670628B2 (en) | 1989-01-26 | 1989-01-26 | Method for producing fine fused spherical silica |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1706889A JP2670628B2 (en) | 1989-01-26 | 1989-01-26 | Method for producing fine fused spherical silica |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02199013A true JPH02199013A (en) | 1990-08-07 |
JP2670628B2 JP2670628B2 (en) | 1997-10-29 |
Family
ID=11933670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1706889A Expired - Fee Related JP2670628B2 (en) | 1989-01-26 | 1989-01-26 | Method for producing fine fused spherical silica |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2670628B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04200840A (en) * | 1990-11-29 | 1992-07-21 | Kubota Corp | Coat for metal mold for casting |
US5883029A (en) * | 1994-04-25 | 1999-03-16 | Minnesota Mining And Manufacturing Company | Compositions comprising fused particulates and methods of making them |
US6045913A (en) * | 1995-11-01 | 2000-04-04 | Minnesota Mining And Manufacturing Company | At least partly fused particulates and methods of making them by flame fusion |
JP2001206725A (en) * | 1999-12-22 | 2001-07-31 | Shinetsu Quartz Prod Co Ltd | Method for manufacturing opaque quartz glass, and opaque article manufactured by the method |
US6387302B1 (en) | 2000-08-31 | 2002-05-14 | Shin-Etsu Chemical Co., Ltd. | Method of producing spherical silica powder |
JP2003034521A (en) * | 2001-07-18 | 2003-02-07 | Denki Kagaku Kogyo Kk | Method for manufacturing fine spherical silica powder |
US7425287B2 (en) | 2003-01-24 | 2008-09-16 | Showa Denko K.K. | Surface modification method for inorganic oxide powder, powder produced by the method and use of the powder |
JP2009221054A (en) * | 2008-03-17 | 2009-10-01 | Admatechs Co Ltd | Manufacturing method of spheroidized silica |
CN116462204A (en) * | 2022-10-04 | 2023-07-21 | 汶川县神州锆业科技有限公司 | Modified superfine silicon dioxide powder and preparation method thereof |
-
1989
- 1989-01-26 JP JP1706889A patent/JP2670628B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04200840A (en) * | 1990-11-29 | 1992-07-21 | Kubota Corp | Coat for metal mold for casting |
US5883029A (en) * | 1994-04-25 | 1999-03-16 | Minnesota Mining And Manufacturing Company | Compositions comprising fused particulates and methods of making them |
US6045913A (en) * | 1995-11-01 | 2000-04-04 | Minnesota Mining And Manufacturing Company | At least partly fused particulates and methods of making them by flame fusion |
JP2001206725A (en) * | 1999-12-22 | 2001-07-31 | Shinetsu Quartz Prod Co Ltd | Method for manufacturing opaque quartz glass, and opaque article manufactured by the method |
US6387302B1 (en) | 2000-08-31 | 2002-05-14 | Shin-Etsu Chemical Co., Ltd. | Method of producing spherical silica powder |
JP2003034521A (en) * | 2001-07-18 | 2003-02-07 | Denki Kagaku Kogyo Kk | Method for manufacturing fine spherical silica powder |
US7425287B2 (en) | 2003-01-24 | 2008-09-16 | Showa Denko K.K. | Surface modification method for inorganic oxide powder, powder produced by the method and use of the powder |
JP2009221054A (en) * | 2008-03-17 | 2009-10-01 | Admatechs Co Ltd | Manufacturing method of spheroidized silica |
CN116462204A (en) * | 2022-10-04 | 2023-07-21 | 汶川县神州锆业科技有限公司 | Modified superfine silicon dioxide powder and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2670628B2 (en) | 1997-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0335875B1 (en) | Vitreous silica | |
JP2001080927A (en) | Production of dense quartz glass particle | |
US20050129603A1 (en) | High-purity silica powder, and process and apparatus for producing it | |
CN112978740B (en) | Preparation method of submicron spherical silica micropowder | |
JP3501631B2 (en) | Method and apparatus for producing inorganic spherical particles | |
JPH02199013A (en) | Production of fine fused spherical silica | |
JP3350139B2 (en) | Method for producing spherical silica particles | |
JPH02286B2 (en) | ||
KR100408590B1 (en) | Method and apparatus for Fabrication of Hollow Glass Sphere | |
JP7567316B2 (en) | Granulated silica powder and method for producing the same | |
JP3891740B2 (en) | Method for producing fine spherical siliceous powder | |
JP2001097712A (en) | Method for producing minute and globular silica | |
JPS63147812A (en) | Production of silicon carbide powder | |
JPH0259416A (en) | Molten fine spherical silica and production thereof | |
JP4230554B2 (en) | Method for producing spherical particles | |
JP2510928B2 (en) | High-purity silica beads manufacturing method | |
CN115947378B (en) | Method for preparing spherical ferric oxide by flame method | |
JPH09313918A (en) | Manufacture of inorganic spherical granule | |
JP2001261328A (en) | Spherical inorganic powder and method of producing the same | |
JPS62241542A (en) | Method and apparatus for producing spheroidized inorganic particle | |
CN117023590A (en) | Preparation method of industrial silicon powder | |
JPH10212115A (en) | Production of high purity quartz glass powder and production of quartz glass molding | |
JPS58140313A (en) | Manufacture of grained silicon dioxide | |
JP2554975B2 (en) | Fine spherical inorganic foam having thick skin and method for producing the same | |
JP2000229234A (en) | Production of spherical inorganic substance particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |