JPH02152209A - Soft magnetic film - Google Patents
Soft magnetic filmInfo
- Publication number
- JPH02152209A JPH02152209A JP30581888A JP30581888A JPH02152209A JP H02152209 A JPH02152209 A JP H02152209A JP 30581888 A JP30581888 A JP 30581888A JP 30581888 A JP30581888 A JP 30581888A JP H02152209 A JPH02152209 A JP H02152209A
- Authority
- JP
- Japan
- Prior art keywords
- soft magnetic
- film
- composition
- magnetic alloy
- soft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910001004 magnetic alloy Inorganic materials 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 239000010941 cobalt Substances 0.000 claims abstract description 5
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 5
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 238000010030 laminating Methods 0.000 claims abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 4
- 239000006104 solid solution Substances 0.000 claims description 5
- 239000013081 microcrystal Substances 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 abstract description 12
- 150000004767 nitrides Chemical class 0.000 abstract description 9
- 239000007789 gas Substances 0.000 abstract description 6
- 229910052735 hafnium Inorganic materials 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 230000035699 permeability Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 55
- 230000005389 magnetism Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910000702 sendust Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 229910017086 Fe-M Inorganic materials 0.000 description 1
- 229910005347 FeSi Inorganic materials 0.000 description 1
- 229910001101 Fm alloy Inorganic materials 0.000 description 1
- 229910001199 N alloy Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Thin Magnetic Films (AREA)
- Magnetic Record Carriers (AREA)
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、複合型磁気ヘッド(通称MIGヘッド)な
どに使用される軟磁性膜に係わり、特に、熱安定性に優
れ、飽和磁化の高いものに関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to soft magnetic films used in composite magnetic heads (commonly known as MIG heads), and in particular, soft magnetic films with excellent thermal stability and high saturation magnetization. related to things.
[従来の技術およびその課題]
磁気記録の分野における高密度記録化の進行(記録媒体
の高I−1c化、Hcは保磁力)に伴い、それに対応す
る磁気ヘッドの材料として高B s(B sは飽和磁化
)のものが要求されてきている。また、耐環境、耐摩耗
等の信頼性の高いヘッドを得るためには、ギャップ形成
等をガラス溶着で行うことが必要となり、ヘッド製造工
程におけるガラス溶着工程の高温に耐え得ることが必要
である。[Prior art and its problems] With the progress of higher density recording in the field of magnetic recording (higher I-1c of recording media, Hc is coercive force), high Bs (B s is saturation magnetization). In addition, in order to obtain a head with high reliability such as environmental resistance and wear resistance, it is necessary to perform gap formation etc. by glass welding, and it is necessary to be able to withstand the high temperature of the glass welding process in the head manufacturing process. .
従来の高Bsの軟磁性材料(膜)としては、FeS i
−A I(センダスト)及びCo系のアモルファスがあ
るが、前者のセンダストのBsは約10000G(ガウ
ス)であり、今後の一層の高密度化の要求に対しては不
十分である。一方、後者のアモルファスは、13000
G以上の高いBsのものら得られているが、アモルファ
ス合金ではBsを高くするためにアモルファス形成元素
(Ti、Zr、Hf、Nb、Ta、Mo。As a conventional high Bs soft magnetic material (film), FeSi
-AI (Sendust) and Co-based amorphous are available, but the former Sendust has a Bs of about 10,000 G (Gauss), which is insufficient to meet future demands for higher density. On the other hand, the latter amorphous is 13,000
However, in amorphous alloys, amorphous forming elements (Ti, Zr, Hf, Nb, Ta, Mo.
W等)を少なくする必要があるために、アモルファス構
造の安定性が低下し、ガラス溶着に必要な温度(はぼ5
00℃以上)には到底耐え得るものではない。The stability of the amorphous structure decreases, and the temperature required for glass welding (about 5
00°C or higher).
本発明は上記事情に鑑みてなされたものであって、Hc
が小さく、μ(透磁率)か高く、その特性が熱的に安定
であるとともに高いBsを有する軟磁性膜の提供を目的
としている。The present invention has been made in view of the above circumstances, and
The object of the present invention is to provide a soft magnetic film having a small μ (magnetic permeability), a high μ (magnetic permeability), thermally stable properties, and a high Bs.
[課題を解決するための手段]
上記目的を達成するために、請求項1記載の発明は、式
CoaFebMcNd
(ただし、MはTi、Zrj−1f、Nb、Ta、fv
lo、Wのうち少なくとも一種以上、COはコバルト、
Feは鉄、Nは窒素を示し、またa、b、c、dは各々
原子%を表ず)で示され、上記a、b、c、d、eが、
70≦ a≦97
1≦b≦10
1≦c≦4.9
01≦d≦20
a+b+c+d= 100
なる組成よりなる軟磁性合金膜である。[Means for Solving the Problems] In order to achieve the above object, the invention according to claim 1 is based on the formula CoaFebMcNd (where M is Ti, Zrj-1f, Nb, Ta, fv
at least one of lo and W; CO is cobalt;
Fe is iron, N is nitrogen, and a, b, c, d each represents atomic %), and the above a, b, c, d, e are
The soft magnetic alloy film has the following composition: 70≦a≦97 1≦b≦10 1≦c≦4.9 01≦d≦20 a+b+c+d=100.
また請求項2記載の発明は、Feの固溶した面心立方構
造を有するcoの微結晶を含むことを特徴とする請求項
l記載の組成を有する軟磁性合金膜である。The invention as set forth in claim 2 is a soft magnetic alloy film having the composition as set forth in claim 1, characterized in that it contains cobalt microcrystals having a face-centered cubic structure in which Fe is dissolved in solid solution.
また請求項3記載の発明は、請求項1または請求項2記
載の軟磁性合金膜と、窒素を含まない上記Co a F
e b M c (a+b+c=100)なる組成を
有する軟磁性合金膜を交互に積層してなる軟磁性積層膜
である。Further, the invention according to claim 3 is characterized in that the soft magnetic alloy film according to claim 1 or 2 and the Co a F which does not contain nitrogen.
This is a soft magnetic laminated film formed by alternately laminating soft magnetic alloy films having a composition of e b M c (a+b+c=100).
また請求項4記載の発明は、請求項3記載の軟磁性積層
膜の窒素の濃度を膜厚方向に変調せしめてなることを特
徴とする軟磁性組成変調膜である。A fourth aspect of the invention is a soft magnetic composition modulated film characterized in that the nitrogen concentration of the soft magnetic laminated film according to the third aspect is modulated in the film thickness direction.
以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.
」二足軟磁性合金膜において、Co(コバルト)は主成
分であり、磁性を担う元素であり、15000以上のB
sを得るためにはa≧70原子%原子下at%という)
が必要である。(aが70at%程度の場合は、F e
(b)を10at%を越えない範囲で多くする必要があ
る。)また、軟磁性を得るためには、a≦97at%で
なければならない。"In the bipedal soft magnetic alloy film, Co (cobalt) is the main component and is an element responsible for magnetism, and B of 15,000 or more
In order to obtain s, a≧70 atomic percent (at.%)
is necessary. (If a is about 70 at%, Fe
It is necessary to increase (b) within a range not exceeding 10 at%. ) Furthermore, in order to obtain soft magnetism, a≦97at% must be satisfied.
Feは、飽和磁化を増加させるため、また磁歪を調整す
るため、更にまたCoに固溶して面心立方構造のCo(
fcc −Co)を安定化するために必要である。Co
は本来、Peが固溶しないと六方稠密構造(hap)が
安定であるが、この結晶は、結晶磁気異方性が極めて大
きいため、軟磁性を得ることが難しいので、より軟磁性
の得易いfcc−Coを主体とする必要がある。上記の
効果を出すためには少なくともb≧fat%とする必要
があるが、添加しすぎると磁歪が正(プラス)に大きく
なりすぎるため、10−”台の磁歪を保つためにはb≦
10at%としなければならない。In order to increase the saturation magnetization and adjust the magnetostriction, Fe is further dissolved in Co to form a face-centered cubic structure of Co (
fcc-Co). Co
Originally, the hexagonal close-packed structure (HAP) is stable without solid solution of Pe, but since this crystal has extremely large magnetocrystalline anisotropy, it is difficult to obtain soft magnetism, so it is easier to obtain soft magnetism. It is necessary to mainly use FCC-Co. In order to produce the above effect, it is necessary to satisfy at least b≧fat%, but if too much is added, the magnetostriction becomes too large, so in order to maintain magnetostriction in the 10-” range, b≦
Must be 10 at%.
上記M(T i、Zr、Hf、Nb、Mo、W)は、軟
磁性を得るために必要であり、軟磁性を得るためにはC
≧fat%とする必要があり、また添加しすぎるとBs
か低下するので、Bs上15000GとするためにはC
≦4.9at%としなければならない。The above M (Ti, Zr, Hf, Nb, Mo, W) is necessary to obtain soft magnetism, and in order to obtain soft magnetism, C
It is necessary to make it ≧fat%, and if too much is added, Bs
Therefore, in order to achieve 15000G above Bs, C
Must be ≦4.9 at%.
N(窒素)はMとの相互作用により、Co(Fe固溶)
の結晶粒を小さくする作用があり、これによりCoの結
晶磁気異方性の悪影響が軽減され、軟磁気特性が良好に
なる。軟磁性を得るためには、d≧0 、1 at%と
する必要があり、Bs上15000Gとするためには、
d≦20at%とする必要がある。N (nitrogen) interacts with M to form Co (Fe solid solution)
Co has the effect of reducing the crystal grain size of Co, thereby reducing the adverse effects of the magnetocrystalline anisotropy of Co and improving soft magnetic properties. In order to obtain soft magnetism, it is necessary to set d≧0, 1 at%, and in order to obtain 15000G above Bs,
It is necessary to satisfy d≦20at%.
本発明による軟磁性膜は、フェライトなどの基体表面に
、スパッタ法や真空蒸着法等の薄膜作製装置により薄膜
形成して製造される。スパッタ装置としては、)’IF
2極スパヅタ、マグネトロンスパッタ、3極スパツタ、
イオンビームスパッタ、対向ターゲット式スパッタ等の
既存の装置を使用することができる。ターゲットとして
は、Co−FMの合金ターゲットのほか、Coターゲッ
ト上にFe、Mのペレットを配置した複合ターゲットを
用いることができる。The soft magnetic film according to the present invention is manufactured by forming a thin film on the surface of a substrate such as ferrite using a thin film manufacturing apparatus such as a sputtering method or a vacuum evaporation method. As a sputtering device, )'IF
2-pole sputter, magnetron sputter, 3-pole sputter,
Existing equipment such as ion beam sputtering and facing target sputtering can be used. As the target, in addition to a Co-FM alloy target, a composite target in which Fe and M pellets are arranged on a Co target can be used.
また、N(窒素)を膜中に添加する方法としては、Ar
等の不活性ガス中に窒素ガスを混合したガスでスパッタ
を行う反応性スパッタが有効である。Furthermore, as a method of adding N (nitrogen) into the film, Ar
Reactive sputtering, which performs sputtering using a mixture of nitrogen gas and other inert gases, is effective.
第1図は、このようにして作製された軟磁性合金膜の一
例を示す図であって、図中符号lは軟磁性合金膜、2は
基板である。この軟磁性合金膜lは、Co−F e−M
−N合金からなる均一組成の薄膜であり、従来の軟磁性
膜と比較して、良好な磁気特性が得られる。FIG. 1 is a diagram showing an example of a soft magnetic alloy film produced in this manner, in which reference numeral 1 indicates a soft magnetic alloy film and 2 indicates a substrate. This soft magnetic alloy film l is Co-Fe-M
It is a thin film of uniform composition made of a -N alloy, and provides better magnetic properties than conventional soft magnetic films.
しかしながら、第1図に示す軟磁性合金膜lのような単
層膜においては、膜と垂直な磁気異方性等を生じ、軟磁
気特性が今一つである。この軟磁気特性を更に向上させ
るためには、窒化膜と非窒化膜を交互に多数積層して、
異方性の垂直成分をなくすことが有効である。第2図は
、請求項3記載の発明による軟磁性積層膜の一例を示す
図であって、図中符号3は窒化膜、4は非窒化膜、5は
軟磁性積層膜である。この軟磁性積層膜5は、Ar十N
、ガス中でスパッタして形成された窒化膜3と純Arガ
ス中でスパッタして形成された非窒化膜4を交互に多数
積層(−層あたり100〜1000人厚)して構成され
ている。この軟磁性積層膜5では、異方性の垂直成分を
なくすことができるので、優れた軟磁気特性を得ること
ができる。このような膜を作製するには、ガスの導入系
が複数あるスパッタ装置を用い、A rを流したままに
し、N、を断続的に流すことにより行なわれ、このとき
放電は連続したままで行うこともできる。However, in a single layer film such as the soft magnetic alloy film 1 shown in FIG. 1, magnetic anisotropy perpendicular to the film occurs, and the soft magnetic properties are inferior. In order to further improve this soft magnetic property, a large number of nitride films and non-nitride films are laminated alternately.
It is effective to eliminate the vertical component of anisotropy. FIG. 2 is a diagram showing an example of a soft magnetic laminated film according to the third aspect of the invention, in which reference numeral 3 is a nitride film, 4 is a non-nitride film, and 5 is a soft magnetic laminated film. This soft magnetic laminated film 5 is made of Ar and N
It is constructed by alternately laminating a large number of nitride films 3 formed by sputtering in gas and non-nitride films 4 formed by sputtering in pure Ar gas (100 to 1000 layers thick per layer). . In this soft magnetic laminated film 5, the perpendicular component of anisotropy can be eliminated, so that excellent soft magnetic properties can be obtained. To produce such a film, a sputtering device with multiple gas introduction systems is used, and Ar is kept flowing while N is intermittently supplied. At this time, the discharge remains continuous. You can also do this.
上記軟磁性積層膜5は、そのままの状聾では不安定であ
り、ガラスボンディング時等の熱により、各層間で窒素
の拡散が起こり、組成変調構造となるが、軟磁気特性が
損なわれることはない。The soft magnetic laminated film 5 is unstable in its original state, and nitrogen diffusion occurs between each layer due to heat during glass bonding, resulting in a compositionally modulated structure, but the soft magnetic properties are not impaired. do not have.
更に軟磁性を向上させるためには、スパッタ中に基板と
平行に磁界をかけること、熱処理中に磁界をかけること
等が有効である。In order to further improve the soft magnetism, it is effective to apply a magnetic field parallel to the substrate during sputtering, or to apply a magnetic field during heat treatment.
[実施例]
RF2極スパッタ装置により、Coターゲット上にFe
とTaのペレットを配置した複合ターゲットを用い、A
r+lO体積%N、の混合ガスで反応性スパッタした層
を200人、純Arでスパッタした層を300人交互に
積層(合計240層、tota15.5 μm厚)させ
、これを550°Cで回転磁界中アニールすることによ
り、表1に示す組成の膜が得られた。[Example] Fe was deposited on a Co target using an RF two-pole sputtering device.
Using a composite target with pellets of A and Ta arranged,
200 layers of reactive sputtering with a mixed gas of r + lO volume % N, and 300 layers of pure Ar sputtering were alternately stacked (total 240 layers, total thickness 15.5 μm), and this was rotated at 550 °C. By annealing in a magnetic field, films having the compositions shown in Table 1 were obtained.
また、F e−9i−A I(センダスト)スパッタ膜
を成膜し、従来例とした。In addition, a Fe-9i-AI (Sendust) sputtered film was formed as a conventional example.
そして、これらの膜のHa、Bs、比抵抗および飽和磁
化を測定した。その結果を表2に示す。Then, Ha, Bs, resistivity, and saturation magnetization of these films were measured. The results are shown in Table 2.
表 1
表 2
表2に示すように、本発明による膜は、従来のF e−
8i−A I膜に比較してHcが大きく、軟磁性はやや
劣るらのの、P e−5i−A I膜よりはるかに高い
16200GaussものBsを有している。Table 1 Table 2 As shown in Table 2, the membrane according to the present invention
Although it has a larger Hc than the 8i-AI film and is slightly inferior in soft magnetism, it has a Bs of 16,200 Gauss, which is much higher than the Pe-5i-AI film.
この本発明の膜のX線回折図形を第3図に示す。The X-ray diffraction pattern of the membrane of the present invention is shown in FIG.
図中、回折図形■成膜後、■熱処理後には、微弱でブロ
ードしたrcc−Co(Feが固溶)の回折ピ1りが認
められ、膜が微細なrcc−coの結晶を主体として構
成されていることがわかる。この回折図形は550°C
の熱処理前後ではほとんど変化がなく、550℃の熱処
理を施I2ても結晶粒が粗大化することなく微細なまま
である。また(l l t)面のピークの半値幅から求
めた平均結晶粒径は約0.01μmである。本発明の膜
は、このような微細な組織を有することにより軟磁気特
性が得られているのがわかる。なお、第3図の回折図形
■に示す本発明の膜では、膜中の結晶粒はほとんど無配
向であるが、膜面と平行にrcc−Coの(l 11)
面が配向するように成膜条件をコントロールすることに
より、更に良好な軟磁気特性が得られる。In the figure, a weak and broad diffraction peak of RCC-Co (Fe is solid solution) is observed in the diffraction patterns (1) after film formation, (2) after heat treatment, and the film is mainly composed of fine RCC-Co crystals. I can see that it is being done. This diffraction pattern is 550°C
There is almost no change before and after the heat treatment, and even after heat treatment I2 at 550°C, the crystal grains remain fine without coarsening. Further, the average crystal grain size determined from the half width of the peak of the (l l t) plane is about 0.01 μm. It can be seen that the film of the present invention obtains soft magnetic properties by having such a fine structure. In addition, in the film of the present invention shown in the diffraction pattern (■) in Figure 3, the crystal grains in the film are almost unoriented, but the (l 11) of RCC-Co is parallel to the film surface.
By controlling the film formation conditions so that the planes are oriented, even better soft magnetic properties can be obtained.
[発明の効果]
以上説明したように、本発明による軟磁性膜は、磁気l
\ラッド造における600°C付近のガラス溶着工程に
十分耐え得る高い耐熱性を有することにより、ガラスボ
ンディングの信頼性を高めることができる。また、この
ような高い耐熱性を有する軟磁性膜としては、従来にな
いB s= 15000G以上という極めて高い飽和磁
化を有することにより、高Hcの記録媒体に十分対応で
き、優れた記録特性を有する磁気ヘッドを提供すること
ができる。[Effects of the Invention] As explained above, the soft magnetic film according to the present invention
\The reliability of glass bonding can be improved by having high heat resistance that can sufficiently withstand the glass welding process of around 600°C in rad construction. In addition, as a soft magnetic film with such high heat resistance, it has an extremely high saturation magnetization of B s = 15,000 G or more, which is unprecedented, so it can fully support high Hc recording media and has excellent recording characteristics. A magnetic head can be provided.
第1図は請求項1及び2に記載した発明の一例を示す軟
磁性合金膜の断面図、第2図は請求項3記載の発明の一
例を示す軟磁性積層膜の断面図、第3図は本発明の詳細
な説明するための軟磁性膜のX線回折図形である。
l・・・軟磁性合金膜 2・・・基板3・・・窒
化膜 4・・・非窒化膜5・・・軟磁性積
層膜。
第1図
第2図
手続令由正書(自発)FIG. 1 is a cross-sectional view of a soft magnetic alloy film showing an example of the invention described in claims 1 and 2, FIG. 2 is a cross-sectional view of a soft magnetic laminated film showing an example of the invention described in claim 3, and FIG. is an X-ray diffraction pattern of a soft magnetic film for explaining the present invention in detail. l... Soft magnetic alloy film 2... Substrate 3... Nitride film 4... Non-nitride film 5... Soft magnetic laminated film. Figure 1 Figure 2 Procedural Order Authorization (Volunteer)
Claims (4)
Wのうち少なくとも一種以上、Coはコバルト、Feは
鉄、Nは窒素を示し、またa,b,c,dは各々原子%
を表す) で示され、上記a,b,c,d,eが、 70≦a≦97 1≦b≦10 1≦c≦4.9 0.1≦d≦20 a+b+c+d=100 なる組成よりなる軟磁性合金膜。(1) Formula CoaFebMcNd (where M is Ti, Zr, Hr, Nb, Ta, Mo,
At least one type of W, Co means cobalt, Fe means iron, and N means nitrogen, and a, b, c, and d each represent atomic percent.
), and the above a, b, c, d, and e have the following composition: 70≦a≦97 1≦b≦10 1≦c≦4.9 0.1≦d≦20 a+b+c+d=100 Soft magnetic alloy film.
晶を含むことを特徴とする請求項1記載の組成を有する
軟磁性合金膜。(2) A soft magnetic alloy film having the composition according to claim 1, characterized in that it contains Co microcrystals having a face-centered cubic structure in which Fe is dissolved in solid solution.
窒素を含まない上記CoaFebMc(a+b+c=1
00)なる組成を有する軟磁性合金膜を交互に積層して
なる軟磁性積層膜。(3) the soft magnetic alloy film according to claim 1 or claim 2;
The above CoaFebMc (a+b+c=1
A soft magnetic laminated film formed by alternately laminating soft magnetic alloy films having a composition of 00).
方向に変調せしめてなることを特徴とする軟磁性組成変
調膜。(4) A soft magnetic composition modulated film, characterized in that the nitrogen concentration of the soft magnetic laminated film according to claim 3 is modulated in the film thickness direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30581888A JPH02152209A (en) | 1988-12-02 | 1988-12-02 | Soft magnetic film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30581888A JPH02152209A (en) | 1988-12-02 | 1988-12-02 | Soft magnetic film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02152209A true JPH02152209A (en) | 1990-06-12 |
Family
ID=17949742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30581888A Pending JPH02152209A (en) | 1988-12-02 | 1988-12-02 | Soft magnetic film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02152209A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5439754A (en) * | 1990-07-05 | 1995-08-08 | Kabushiki Kaisha Toshiba | Ferromagnetic film, method of manufacturing the same, and magnetic head |
JP2002352408A (en) * | 2001-05-23 | 2002-12-06 | Showa Denko Kk | Magnetic recording medium, its manufacturing method, and magnetic recording/reproducing device |
-
1988
- 1988-12-02 JP JP30581888A patent/JPH02152209A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5439754A (en) * | 1990-07-05 | 1995-08-08 | Kabushiki Kaisha Toshiba | Ferromagnetic film, method of manufacturing the same, and magnetic head |
JP2002352408A (en) * | 2001-05-23 | 2002-12-06 | Showa Denko Kk | Magnetic recording medium, its manufacturing method, and magnetic recording/reproducing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63119209A (en) | Soft magnetic thin-film | |
JPH02229406A (en) | Soft magnetic alloy film | |
JPH02152209A (en) | Soft magnetic film | |
JPH09270322A (en) | Laminated magnetic film, manufacturing method thereof and magnetic head using it | |
JP2710441B2 (en) | Soft magnetic laminated film | |
JPS63293707A (en) | Multi-layered fe-co magnetic film and magnetic head | |
JPH0484403A (en) | Soft magnetic thin film | |
JPH03265104A (en) | Soft magnetic alloy film | |
JP2866911B2 (en) | Magnetic head | |
JPS63106916A (en) | Magnetic recording medium | |
JPH0827908B2 (en) | Magnetic head | |
JPH05114530A (en) | Manufacture of soft magnetic alloy film and manufacture of magnetic head | |
JPH0316203A (en) | Heat-resistant high saturation magnetic flux density film | |
JPH02152208A (en) | Soft magnetic alloy film | |
JP2784105B2 (en) | Soft magnetic thin film | |
JPS5975610A (en) | Iron base magnetic alloy thin film and manufacture thereof | |
JP3233538B2 (en) | Soft magnetic alloys, soft magnetic thin films and multilayer films | |
JP3056401B2 (en) | Soft magnetic alloy film | |
KR100193703B1 (en) | Manufacturing method of soft magnetic alloy film, magnetic head and soft magnetic alloy film | |
JPH04144210A (en) | Soft magnetic film with high saturation magnetic flux density | |
JP2808547B2 (en) | Composite magnetic head | |
JP3087265B2 (en) | Magnetic alloy | |
JPH0439905A (en) | Magnetically soft alloy film | |
JPH04214831A (en) | Soft magnetic film | |
JPH06124846A (en) | Manufacture of soft magnetic film, manufacture of soft magnetic multi layer film and magnetic head |