Nothing Special   »   [go: up one dir, main page]

JPH02152172A - Manufacture of microporous membrane for zinc bromide battery - Google Patents

Manufacture of microporous membrane for zinc bromide battery

Info

Publication number
JPH02152172A
JPH02152172A JP63305739A JP30573988A JPH02152172A JP H02152172 A JPH02152172 A JP H02152172A JP 63305739 A JP63305739 A JP 63305739A JP 30573988 A JP30573988 A JP 30573988A JP H02152172 A JPH02152172 A JP H02152172A
Authority
JP
Japan
Prior art keywords
silicon dioxide
polyethylene
membrane
microporous membrane
dioctyl phthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63305739A
Other languages
Japanese (ja)
Inventor
Akihiko Hirota
広田 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63305739A priority Critical patent/JPH02152172A/en
Publication of JPH02152172A publication Critical patent/JPH02152172A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To reduce the membrane resistance of a microporous membrane to a limit value or less and to enable the use of the membrane as a separator for a zinc bromide battery by specifying a mixing ratio of polyethylene powder, silicon dioxide powder, and dioctyl phthalate. CONSTITUTION:Dioctyl phthalate is absorbed into silicon dioxide powder to form a muddy mixture, then polyethylene powder is mixed thereto. The mixture is kneaded at 120 deg.C or higher for 20 minutes or more, then it is pressed in a plate with a heat press at a temperature of 120 deg.C or higher. The plate is immersed in trichloroethane at room temperature for 2 hours or more to extract dioctyl phthalate until the weight reduction rate of it becomes 50% or more. The mixing ratio of dioctyl phthalate to 1g of silicon dioxide is at least 14g, and that of silicon dioxide to 1g of polyethylene is at least 0.15g. The membrane resistance can be reduced to 0.02OMEGA-100cm<2>/piece or less.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は臭化亜鉛電池用微細多孔質膜の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a method for producing a microporous membrane for zinc bromide batteries.

B1発明の概要 この発明は臭化亜鉛電池用微細多孔質膜の製造方法にお
いて、 ジオクスチルフタレート抽出前後の重量減少率を50%
以上とするとともに二酸化ケイ素1gに対するジオクス
チルフタレート配合量を少なくとも14g以上とし、し
かもポリエチレン1gに対する二酸化ケイ素配合量を少
なくとも0.15g以上の配合比にして成形したことに
より、臭化亜鉛電池用セパレータとして使用可能な膜抵
抗限界値以下にすることができるようにしたものである
B1 Summary of the Invention This invention provides a method for producing a microporous membrane for zinc bromide batteries, which reduces the weight loss rate by 50% before and after extraction of dioxtylphthalate.
In addition to the above, the zinc bromide battery separator is molded with a blending ratio of at least 14 g or more of dioxtylphthalate per 1 g of silicon dioxide, and a blending ratio of at least 0.15 g of silicon dioxide per 1 g of polyethylene. The membrane resistance can be lowered to below the limit value that can be used as a membrane.

C1従来の技術 第5図は亜鉛−臭素電池の基本構成を示す説明図で、図
において、lは電解槽、2は電解槽l内を陰極側と陽極
側に仕切るセパレータで、陰極側には陰極電極3を設け
ると共にZnBr*の水溶液からなる陰極電解液4を収
納し、また陽極側には陽極電極5を設けると共にZ n
B rt  B rtの水溶液から成る陽極電解液6を
収納する。7.8は夫々陰極電解液4および陽極電解液
6を貯蔵する貯蔵槽、9は電解槽1の陰極側と貯蔵槽7
との間に設けられた循環路、IOは電解槽lの陽極側と
貯蔵槽8との間に設けられた循環路、11.12は夫々
循環路9.lOに設けられたポンプ、13.14は夫々
陰極電極3および陽極電極5に接続された陰極端子およ
び陽極端子である。
C1 Conventional technology Figure 5 is an explanatory diagram showing the basic configuration of a zinc-bromine battery. In the figure, l is an electrolytic cell, 2 is a separator that partitions the inside of the electrolytic cell l into a cathode side and an anode side, and a separator on the cathode side. A cathode electrode 3 is provided and a cathode electrolyte 4 made of an aqueous solution of ZnBr* is stored therein, and an anode electrode 5 is provided on the anode side and a ZnBr* aqueous solution is provided.
An anolyte electrolyte 6 made of an aqueous solution of B rt B rt is stored therein. 7.8 are storage tanks for storing the catholyte 4 and anolyte 6, respectively; 9 is the cathode side of the electrolytic cell 1 and the storage tank 7;
IO is a circulation path provided between the anode side of the electrolytic cell l and the storage tank 8, and IO is a circulation path provided between the storage tank 8 and the anode side of the electrolytic cell 1. Pumps 13 and 14 provided in IO are cathode terminals and anode terminals connected to cathode electrode 3 and anode electrode 5, respectively.

上記の金属−臭素電池は図示の充電時には直流電源を各
端子13.14に接続するとともにポンプIf、12に
より各電解液4.6を循環させる。
When the metal-bromine battery described above is charged as shown, a DC power source is connected to each terminal 13.14, and each electrolyte 4.6 is circulated by a pump If, 12.

陰極側ではZn” ” + 2e−−+Znの反応によ
り電解液4中のZn+1と端子13より注入されたe−
とが反応し、Znが析出する。又、陽極側では2 Br
−−*Brt+ 2e−、、Br*+Br−−BrsD
6発明が解決しようとする課題 上記臭化亜鉛電池において、正極電解液と負極電解液を
隔離するセパレータは、電池の自己放電やクローン効率
の低下を防ぐ重要な構成材料であり、この電池系では主
にポリオレフィン系の樹脂をマトリックスとする微細多
孔質膜を用いている。
On the cathode side, Zn+1 in the electrolyte 4 and e- injected from the terminal 13 due to the reaction of Zn"" + 2e--+Zn.
reacts, and Zn is precipitated. Also, on the anode side, 2 Br
--*Brt+ 2e-,, Br*+Br--BrsD
6 Problems to be Solved by the Invention In the zinc bromide battery described above, the separator that separates the positive electrode electrolyte and the negative electrode electrolyte is an important constituent material that prevents self-discharge of the battery and a decrease in clone efficiency. A microporous membrane whose matrix is mainly polyolefin resin is used.

この電池系でのポリオレフィン系微細多孔質膜は、ポリ
エチレン粉末、二酸化ケイ素粉末、及びジオクスチルフ
タレート(以下り、0.Pと称す)を適量混合して、加
圧ニーダで混練りし、できた混合物をヒートプレスで板
状にした後、トリクロロエタンでり、0.Pを抽出して
微細多孔質膜に成形する。このようにして成形された膜
は混合物の組成比の違いによって、膜の抵抗値及び臭素
バリヤー性が微妙に変化することが以前から知られてい
た。従って、信頼性のある電池特性を得るためには、膜
の特性も均一にしなければならず、そのためには、膜特
性の基準値を求め、その値を維持できる膜を製造し得る
組成比を決定する必要がある。
The polyolefin microporous membrane for this battery system is made by mixing appropriate amounts of polyethylene powder, silicon dioxide powder, and dioxtylphthalate (hereinafter referred to as 0.P) and kneading the mixture in a pressure kneader. The mixture was made into a plate shape using a heat press, and then diluted with trichloroethane. P is extracted and formed into a microporous membrane. It has long been known that the resistance value and bromine barrier properties of the membrane formed in this way vary slightly depending on the composition ratio of the mixture. Therefore, in order to obtain reliable battery characteristics, the characteristics of the membrane must also be made uniform. To achieve this, it is necessary to determine the reference value of the membrane characteristics and determine the composition ratio that will produce a membrane that can maintain that value. Need to decide.

この発明の目的は原料の配合比を限定して、膜抵抗値を
小さくするようにした臭化亜鉛電池用微細多孔質膜の製
造方法を提供するにある。
An object of the present invention is to provide a method for manufacturing a microporous membrane for zinc bromide batteries, which reduces the membrane resistance by limiting the blending ratio of raw materials.

21課題を解決するための手段 この発明はポリエチレン粉末、二酸化ケイ素粉末及びジ
オクスチルフタレートを混練し、板状にした後、トリク
ロロエタンでジオクスチルフタレートを抽出して成形す
る微細多孔質膜の製造方法において、 ジオクスチルフタレートは二酸化ケイ素に吸収させ、二
酸化ケイ素とジオクスチルフタレートの泥状混合物に形
成してからポリエチレン粉末と混合し、少なくとも12
0℃以上、20分以上混練する工程と、この工程で得ら
れた混合物をヒートプレス機によって少なくとも120
℃以上で板状に成形する工程と、この工程で得られた板
状成形物のジオクスチルフタレート抽出はトリクロロエ
タンを用いて常温で、2時間以上同液に浸漬し、板状成
形物の内部及び表面にあるジオクスチルフタレートを抽
出除去する工程とを有し、前記ジオクスチルフタレート
抽出前後の重量減少率を50%以上とするととらに前記
二酸化ケイ素1gに対するジオクスチルフタレート配合
量を少なくとも14g以上とし、しかも前記ポリエチレ
ン1gに対する二酸化ケイ素配合mを少なくとも0.1
5g以上の配合比にして成形したものである。
21 Means for Solving the Problems This invention involves the production of a microporous membrane by kneading polyethylene powder, silicon dioxide powder, and dioxtylphthalate, forming it into a plate, and then extracting the dioxtylphthalate with trichloroethane and molding it. In the method, dioxtylphthalate is adsorbed onto silicon dioxide, formed into a slurry mixture of silicon dioxide and dioxtylphthalate, and then mixed with polyethylene powder to form a mixture of at least 12
A step of kneading at 0° C. or higher for 20 minutes or more, and a step of kneading the mixture obtained in this step at least 120° C. using a heat press machine.
The process of molding into a plate at temperatures above ℃ and the extraction of dioxtylphthalate from the plate-shaped molded product obtained in this process are carried out using trichloroethane at room temperature and immersed in the same solution for 2 hours or more. and a step of extracting and removing the dioxtylphthalate present on the surface, and the weight reduction rate before and after the extraction of the dioxtylphthalate is set to be 50% or more, and the amount of dioxtylphthalate blended with respect to 1 g of silicon dioxide is at least 14 g or more, and the silicon dioxide content m per 1 g of the polyethylene is at least 0.1
It is molded with a blending ratio of 5g or more.

19作用 上記のような配合比で多孔質膜として種々の膜サンプル
を作製して特性を比較検討し、臭化亜鉛電池用セパレー
タとして使用可能な膜抵抗値を製造する。これにはり、
0.Pを抜く前と抜いた後でのサンプルの重量減少率は
少なくとも50℃以上必要であり、その減少率を維持す
るためのD0.P混合1は二酸化ケイ素1gにつき14
g以上必要であり、二酸化ケイ素混合量はポリエチレン
Igにつき少なくとも0.15g以上必要であることを
得た。
19 Effect Various membrane samples were prepared as porous membranes with the above-mentioned compounding ratio, and their properties were compared and examined to produce a membrane resistance value that can be used as a separator for zinc bromide batteries. To this,
0. The weight loss rate of the sample before and after removing P must be at least 50°C, and D0. P mixture 1 is 14 per gram of silicon dioxide
It was found that the amount of silicon dioxide mixed is at least 0.15 g per polyethylene Ig.

G、実施例 以下この発明の詳細な説明する。G. Example This invention will be described in detail below.

〈実施例1〉 ポリエチレン粉末に昭和電工製ショーレックス9600
8G、二酸化ケイ素に日本アエロジル製AERO9IL
200、及びり、0.P 国産化学−級を用い、それぞ
れ、300g、53g及び800gにして、種々温度及
び時間で混練した。なお、D、0.Pは予じめ二酸化ケ
イ素に混合して泥状にし、ポリエチレン粉末と混合し易
いようにした。このようにして混合物にしたものを、そ
れぞれ130℃でヒートプレスし、1mm厚の板状に成
形したものを、トリクロロエタンに6時間浸漬してり、
0.Pを抽出する。D、0.Pを抽出する前後で試料の
重量を測定し、重量減少率を求めた。
<Example 1> Showa Denko's Shorex 9600 was added to the polyethylene powder.
8G, Nippon Aerosil AERO9IL for silicon dioxide
200, and 0. Using domestically produced chemical grade P, the amounts were respectively 300g, 53g and 800g, and kneaded at various temperatures and times. In addition, D, 0. P was mixed with silicon dioxide in advance to form a slurry so that it could be easily mixed with polyethylene powder. The mixture thus prepared was heat pressed at 130°C, formed into a 1 mm thick plate, and immersed in trichloroethane for 6 hours.
0. Extract P. D, 0. The weight of the sample was measured before and after extracting P, and the weight reduction rate was determined.

その結果を次に示す。The results are shown below.

通常、重量減少率は、最適の条件ならば約70%である
けれども、D、0.P抽出時間や、その後の乾燥状態に
よって若干低く現れる。表によれば混練り時間及び温度
が20分未満で120℃より低いと、重重減少率は、い
ずれも低く、条件が良いとは言えない。また板状にした
時の成形状態ら悪くなっている。従って樹脂や無機微粉
体及び有機液状体の性質によって条件は種々変化するが
、上記の組成比の場合は、混練り時間及び温度は、それ
ぞれ20分以上で、120℃以上が良いと判断できる。
Normally, the weight reduction rate is about 70% under optimal conditions, but D, 0. The P content may appear slightly lower depending on the P extraction time and subsequent drying conditions. According to the table, when the kneading time and temperature are less than 20 minutes and lower than 120°C, the weight loss rate is low in both cases, and the conditions cannot be said to be good. Moreover, the molding condition when it was made into a plate shape was also poor. Therefore, the conditions vary depending on the properties of the resin, inorganic fine powder, and organic liquid, but in the case of the above composition ratio, it can be determined that the kneading time and temperature are preferably 20 minutes or more and 120° C. or more, respectively.

〈実施例2〉 実施例1と同様の材料を用い、ポリエチレン、二酸化ケ
イ素及びり、0.Pの重量比がそれぞれ、■300g:
 43g: 650g、■300g:53g800g、
  ■300g: 63g: 950g及び■300g
ニア 5g:l l 30gの4種の試料を1aua厚
の板状に混練り成形し、トリクロロエタンに種々時間を
変化させて浸漬し、D、0.P抽出前後の重量減少率を
求めた。その結果を第1図に示した。
<Example 2> Using the same materials as in Example 1, polyethylene, silicon dioxide, and 0. The weight ratio of P is 300g:
43g: 650g, ■300g: 53g800g,
■300g: 63g: 950g and ■300g
Four kinds of samples of 5 g: l l 30 g were kneaded and formed into a plate shape of 1 aua thickness, and immersed in trichloroethane for various times to give D, 0. The weight loss rate before and after P extraction was determined. The results are shown in Figure 1.

なお上記試料No、■〜■とも混練り温度及び時間は、
120℃、20分である。この結果、どの組成比でも、
常温でり、0.Pを抽出した場合、第1図に示す様に約
2時間までに抽出量は急激に増加するが、それ以上では
あまり抽出が進まず、重量減少率が60%を超えるのは
12時間以上必要でることが判る。
In addition, the kneading temperature and time for the above sample Nos.
120°C for 20 minutes. As a result, no matter the composition ratio,
At room temperature, 0. When extracting P, as shown in Figure 1, the amount of extraction increases rapidly within about 2 hours, but beyond that, the extraction does not progress much, and it takes more than 12 hours for the weight loss rate to exceed 60%. I know it will come out.

これらの結果から、常温でのり、0.Pの抽出時間につ
いては、少なくとも2時間以上必要であり、抽出限界の
重量減少率的70%に対して約9割、すなわち重量減少
率が約60%を超えるためには、12〜24時間必要で
あることが認められる。
From these results, it was found that the glue at room temperature was 0. Regarding the extraction time of P, at least 2 hours are required, and 12 to 24 hours are required for the weight reduction rate to exceed about 90% of the extraction limit of 70%, that is, about 60%. It is recognized that

〈実施例3ン 上記実施例と同様の材料を用い、ポリエチレンと二酸化
ケイ素を用いてり、0.Pと混合成形する。その後、D
、0.Pを抽出し、膜抵抗を測定した後、サンプルのり
、0.P抽出前後の重量の変化率と膜抵抗の関係を調べ
、それらをプロットしたものが第2図である。この第2
図から、膜抵抗値はり、0.P混合量が多いとよく抽出
され、かつ多孔質化される度合が大きいサンプルはど、
低くなる傾向があるが、臭化亜鉛電池用セパレーターと
して使用可能になる0、02Ω−100cm”7枚以下
の膜抵抗値となるためには少なくとも、減少率が50%
以上でなければならないことが認められる。
Example 3 Using the same materials as in the above example, polyethylene and silicon dioxide were used. Mix and mold with P. After that, D
,0. After extracting P and measuring the membrane resistance, sample glue, 0. Figure 2 shows the relationship between the weight change rate and membrane resistance before and after P extraction and is plotted. This second
From the figure, the membrane resistance value is 0. Samples that are extracted well when a large amount of P is mixed and are highly porous are
Although it tends to be lower, the reduction rate must be at least 50% in order to achieve a membrane resistance value of 0.02Ω-100cm"7 or less, which can be used as a separator for zinc bromide batteries.
It is recognized that it must be more than that.

〈実施例4〉 上記実施例3の実験から、次に二酸化ケイ素1gに対す
るり、0.Pの量と、サンプルの重量減少率との関係を
調べたものが第3図である。第3図からり、0.Pが二
酸化ケイ素に吸収される量には限界があり、二酸化ケイ
素1gについて、吸収されるり、0.P量は23〜24
gが限界である。一方、サンプルの重量の減少率は、二
酸化ケイ素とり、0.Pの混合物にポリエチレンを加え
て成形し、多孔質膜が可能となって始めて測定出来る数
値である。ここでは、減少率50%以上となるには、二
酸化ケイ素1gにつきり、0.P量は少なくとも14g
以上必要となる。
<Example 4> From the experiment of Example 3 above, next, 0.0% per gram of silicon dioxide was added. Figure 3 shows the relationship between the amount of P and the weight loss rate of the sample. Figure 3 Karari, 0. There is a limit to the amount of P that can be absorbed by silicon dioxide. P amount is 23-24
g is the limit. On the other hand, the weight reduction rate of the sample was 0. This value can only be measured after adding polyethylene to a mixture of P and molding it to form a porous membrane. Here, in order to achieve a reduction rate of 50% or more, 0.00% is required per 1g of silicon dioxide. P amount is at least 14g
More than that is required.

〈実施例5〉 上記実施例3の実験から次にポリエチレンIgに対する
二酸化ケイ素の量と、サンプルの膜抵抗値との関係を調
べたものが第4図である。第4図からポリエチレン1g
に対する二酸化ケイ素の混合量が変化するに従って出来
たサンプルの膜抵抗値も変化する。特に二酸化ケイ素量
が0.1g〜0.2gの範囲内で膜抵抗値に急激な変化
がみられ、そこを境にして膜としての特性が左右される
<Example 5> From the experiment of Example 3 above, the relationship between the amount of silicon dioxide relative to polyethylene Ig and the membrane resistance value of the sample was investigated in FIG. 4. From Figure 4, 1g of polyethylene
As the amount of silicon dioxide mixed in the sample changes, the film resistance value of the sample also changes. In particular, when the amount of silicon dioxide is in the range of 0.1 g to 0.2 g, a rapid change in membrane resistance is observed, and the properties of the membrane are influenced by this point.

、この第4図により、この発明の臭化亜鉛電池用セパレ
ーターとして使用可能な0.02Ω−100am’/枚
以下となるためには、二酸化ケイ紫電はポリエチレンI
gにつき少なくとも0.15g以上必要である。
According to this FIG. 4, in order to have a resistance of 0.02Ω-100am'/sheet or less, which can be used as a separator for zinc bromide batteries of the present invention, silicon dioxide must be replaced by polyethylene I.
At least 0.15 g or more is required per g.

以上、実施例1〜5により膜抵抗が002Ω100c+
u’/枚以下となる様な微細多孔質膜をポリエチレン、
二酸化ケイ素、及びり、0.Pを原料にして得るために
は、(1)D、0.Pを抽出した前後でのサンプルの重
量減少率の変化が少なくとも50%以上必要であること
、(2)配合されるり、0.Pikは二酸化ケイ素1g
につき少なくとも14g以上必要であること、(3)配
合される二酸化ケイ素量はポリエチレン1gにつき少な
くとも0.15g以上必要である。すなわち、上記原料
を用いてこの発明で使用される臭化亜鉛電池用微細多孔
質膜を膜抵抗0.02Ω−100cm”7枚以下に製造
する方法として、ポリエチレン二酸化ケイ素/D、0.
Pを Iglo、t5g〜/2+g〜とする配合比にす
れば良い。
As described above, according to Examples 1 to 5, the membrane resistance was 002Ω100c+
A microporous membrane of less than u'/sheet is made of polyethylene,
silicon dioxide, and 0. In order to obtain P as a raw material, (1) D, 0. The change in weight loss rate of the sample before and after P extraction must be at least 50%; Pik is 1g of silicon dioxide
(3) The amount of silicon dioxide to be blended must be at least 0.15 g or more per 1 g of polyethylene. That is, as a method for manufacturing the microporous membrane for zinc bromide batteries used in the present invention using the above raw materials to have a membrane resistance of 0.02Ω-100cm” or less of 7 sheets, polyethylene silicon dioxide/D, 0.
The blending ratio may be such that P is Iglo, t5g~/2+g~.

H、発明の効果 以上述べたように、この発明によれば、ポリオレフィレ
樹脂としてポリエチレン粉末、無機微粉体として二酸化
ケイ素、有機液状抽出溶剤としてり、0.Pを用い、こ
れらを適量混合、混練りした後、板状に成形し、さらに
、それをトリクロロエタンでり、0.Pを抽出して微細
多孔質膜を製造オる際に混練り条件、成形条件、及びり
、OP抽出条件からり、0.P抽出前後のサンプルの重
量減少率、及び各原料の配合比により臭化亜鉛電池用セ
パレーターとして使用可能な微細多孔質膜の膜抵抗値を
0.02Ω−100cm2/枚以Fにすることができる
H. Effects of the Invention As described above, according to the present invention, polyethylene powder is used as the polyolefin resin, silicon dioxide is used as the inorganic fine powder, and organic liquid extraction solvent is used. After mixing and kneading appropriate amounts of these using P, it is formed into a plate shape, and further, it is coated with trichloroethane to give a 0. When producing a microporous membrane by extracting P, depending on the kneading conditions, molding conditions, and OP extraction conditions, 0. Depending on the weight loss rate of the sample before and after P extraction and the blending ratio of each raw material, the membrane resistance value of a microporous membrane that can be used as a separator for zinc bromide batteries can be set to 0.02Ω-100cm2/sheet or less F. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図はこの発明の実施例を示し、第1図は
浸漬時間対重量減少率の関係を、第2図は重量減少率対
膜抵抗値の関係を、第3図は二酸化ケイ素1gに対する
り、0.P量の関係を、第4図はポリエチレンIgに対
する二酸化ケイ素置対膜抵抗値の関係をそれぞれ示す特
性図、第5図は亜鉛−臭素電池の基本構成の説明図であ
る。 第1図 特性図 浸漬時間 (hr) 第2図 特性図 重量減少率 (%) 第5図 亜鉛 臭素電池の基本構成の説明図 ○ ■ 第3図 特性図 第4図 特性図 ポリエチレ71gに対する二酸化ケイ素量(g) 手続補正書(^ 発) 平成1 年3月20日
Figures 1 to 4 show examples of the present invention. Figure 1 shows the relationship between immersion time and weight loss rate, Figure 2 shows the relationship between weight loss rate and membrane resistance value, and Figure 3 shows the relationship between immersion time and weight loss rate. 0.0% per gram of silicon. FIG. 4 is a characteristic diagram showing the relationship between the amount of P and the relationship between silicon dioxide placement and membrane resistance value for polyethylene Ig, and FIG. 5 is an explanatory diagram of the basic configuration of a zinc-bromine battery. Figure 1 Characteristic diagram Soaking time (hr) Figure 2 Characteristic diagram Weight loss rate (%) Figure 5 Explanatory diagram of basic structure of zinc bromine battery ○ ■ Figure 3 Characteristic diagram Figure 4 Characteristic diagram Silicon dioxide for 71 g of polyethylene Amount (g) Procedural amendment (issued by ^) March 20, 1999

Claims (1)

【特許請求の範囲】[Claims] (1)ポリエチレン粉末、二酸化ケイ素粉末及びジオク
スチルフタレートを混練し、板状にした後、トリクロロ
エタンでジオクスチルフタレートを抽出して成形する微
細多孔質膜の製造方法において、ジオクスチルフタレー
トは二酸化ケイ素に吸収させ、二酸化ケイ素とジオクス
チルフタレートの泥状混合物に形成してからポリエチレ
ン粉末と混合し、少なくとも120℃以上、20分以上
混練する工程と、この工程で得られた混合物をヒートプ
レス機によって少なくとも120℃以上で板状に成形す
る工程と、この工程で得られた板状成形物のジオクスチ
ルフタレート抽出はトリクロロエタンを用いて常温で、
2時間以上同液に浸漬し、板状成形物の内部及び表面に
あるジオクスチルフタレートを抽出除去する工程とを有
し、前記ジオクスチルフタレート抽出前後の重量減少率
を50%以上とするとともに前記二酸化ケイ素1gに対
するジオクスチルフタレート配合量を少なくとも14g
以上とし、しかも前記ポリエチレン1gに対する二酸化
ケイ素配合量を少なくとも0.15g以上の配合比にし
て成形した臭化亜鉛電池用微細多孔質膜の製造方法。
(1) In the method for producing a microporous membrane in which polyethylene powder, silicon dioxide powder, and dioctyl phthalate are kneaded and formed into a plate shape, dioctyl phthalate is extracted with trichloroethane and molded. A step of absorbing into silicon dioxide to form a slurry mixture of silicon dioxide and dioxtylphthalate, mixing it with polyethylene powder, and kneading it at a temperature of at least 120°C or more for 20 minutes or more, and heating the mixture obtained in this step. The step of molding into a plate shape using a press at at least 120°C or higher, and the extraction of dioxtylphthalate from the plate-shaped molded product obtained in this step, are carried out at room temperature using trichloroethane.
and immersing it in the same solution for 2 hours or more to extract and remove diostylphthalate inside and on the surface of the plate-shaped molded product, and the weight reduction rate before and after the extraction of diostylphthalate is 50% or more. and at least 14 g of dioxtylphthalate per 1 g of silicon dioxide.
A method for producing a microporous membrane for a zinc bromide battery, which is as described above, and is molded at a blending ratio of at least 0.15 g of silicon dioxide per 1 g of the polyethylene.
JP63305739A 1988-12-02 1988-12-02 Manufacture of microporous membrane for zinc bromide battery Pending JPH02152172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63305739A JPH02152172A (en) 1988-12-02 1988-12-02 Manufacture of microporous membrane for zinc bromide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63305739A JPH02152172A (en) 1988-12-02 1988-12-02 Manufacture of microporous membrane for zinc bromide battery

Publications (1)

Publication Number Publication Date
JPH02152172A true JPH02152172A (en) 1990-06-12

Family

ID=17948759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63305739A Pending JPH02152172A (en) 1988-12-02 1988-12-02 Manufacture of microporous membrane for zinc bromide battery

Country Status (1)

Country Link
JP (1) JPH02152172A (en)

Similar Documents

Publication Publication Date Title
US4797190A (en) Ionic semiconductor materials and applications thereof
DE69717674T3 (en) FESTELECTROLYTE COMPOUND MEMBRANE FOR ELECTROCHEMICAL REACTION DEVICE
KR100573655B1 (en) Ion Conductive Matrix, Membrane and Composite Electrode Comprising Said Matrix, Method for Casting or Preparing Said Membrane or Electrode, and Electrochemical Cell, Fuel Cell and Water Electrolizer Comprising Said Membrane or Electrode
CN109786820B (en) Boron-containing plastic crystal polymer and preparation method and application thereof
EP0256205B1 (en) Carbon electrode
CN109755043A (en) Self-healing integration gel state supercapacitor and preparation method thereof
EP1720209A1 (en) Separator for lead acid storage battery
JPH09251857A (en) Solid ion conductor
US4731310A (en) Cathodic electrode
CN110048058A (en) A kind of compound lithium ion battery separator and preparation method thereof
US4060668A (en) Primary electrochemical cell
CN1417252A (en) Ionic solid electrolyte, its preparation process and electrochemical system with the electrolyte
DE102004012197A1 (en) Proton-conducting material, proton-conducting membrane and fuel cell
EP0373791A1 (en) A non-hydrous electrolyte lithium primary cell and a method for manufacturing manganese dioxide therefor.
KR20000070029A (en) Battery paste dispersant
JPH02152172A (en) Manufacture of microporous membrane for zinc bromide battery
CN114566617B (en) Wet tubular positive electrode and method for manufacturing same
JPH09231957A (en) Separator for zinc bromine secondary battery
CN110783516A (en) Lithium ion battery diaphragm, lithium ion battery and preparation method thereof
CN116231068B (en) Solid electrolyte membrane, preparation method thereof and solid lithium metal battery
JPH02223161A (en) Manufacture of fine porous film for zinc bromide battery
JP4561191B2 (en) Method for producing positive active material for paste
RU2565688C1 (en) Composition and method of producing polymer proton-conducting composite material
CN112768837B (en) Preparation method of diaphragm, diaphragm and lithium ion battery
EP0279407A2 (en) Electroconductive polymer film and method for producing the same