Nothing Special   »   [go: up one dir, main page]

JPH02117797A - Alloy for valve build-up - Google Patents

Alloy for valve build-up

Info

Publication number
JPH02117797A
JPH02117797A JP17942289A JP17942289A JPH02117797A JP H02117797 A JPH02117797 A JP H02117797A JP 17942289 A JP17942289 A JP 17942289A JP 17942289 A JP17942289 A JP 17942289A JP H02117797 A JPH02117797 A JP H02117797A
Authority
JP
Japan
Prior art keywords
alloy
resistance
pbo
hardness
pbso4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17942289A
Other languages
Japanese (ja)
Other versions
JPH0780063B2 (en
Inventor
Shinji Oishi
大石 真治
Masahiro Nakagawa
仲川 政宏
Haratsugu Koyama
原嗣 小山
Kanichi Tanaka
田中 完一
Shozo Nagai
省三 永井
Kensuke Hidaka
日高 謙介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Toyota Motor Corp
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd, Toyota Motor Corp filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to EP89307568A priority Critical patent/EP0357216B1/en
Priority to DE68912689T priority patent/DE68912689T2/en
Priority to US07/385,075 priority patent/US4948559A/en
Priority to US07/428,293 priority patent/US5019338A/en
Publication of JPH02117797A publication Critical patent/JPH02117797A/en
Publication of JPH0780063B2 publication Critical patent/JPH0780063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To maintain necessary high temperature hardness, and also, to contrive the improvement of a PbO resistance and a PbO+PbSO4 resistance by specifying the composition of a valve build-up use alloy. CONSTITUTION:A valve build-up use alloy consists of 30-40% Cr, 15-31% Ni, 7-20% Mo, 0.7-2.2% C, <=1.5% Si, Fe as the remainder and inevitable impurities, when the whole is 100weight%. Especially, Cr coexists with C and improves hardness of the alloy, and also, makes an important contribution to the improvement of a PbO resistance and a PbO+PbSO4 resistance. Also, Ni is dissolved into a solid solution of a substrate and contributes to the improvement of toughness of the alloy and the maintenance of high temperature hardness, coexists with Cr and works so as to improve the PbO resistance. Mo also strengthens the alloy, and also, couples with C, forms a double carbide of Cr and Mo, improves high temperature hardness of the alloy, and also, makes an important contribution to the improvement of the PbO+PbSO4 resistance. Accordingly, the valve build-up use alloy of the composition maintains high temperature hardness required for a use condition of a valve for an internal combustion engine, and also, has a characteristic being excellent in the PbO resistance and the PbO+PbSO4 resistance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内燃機関用のバルブ、特に自動車エンジンの
エギゾ〜ストバルブに肉盛するためのバルブ自認用合金
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a valve-specific alloy for overlaying valves for internal combustion engines, particularly exhaust valves of automobile engines.

[従来の技術] 従来の内燃機関用のバルブの多くは、その摩耗部分に各
種の表面硬化用合金を溶接肉盛して使用されてきた。特
に、自動車エンジンのエギゾーストバルブには、肉盛用
合金としてCo−Crを主として少量のW、MO,C等
を添加したCo基合金が高温硬さや耐酸化鉛腐食性(以
下、″耐PbO性改善と記す)に優れていることから多
く使用されてきた。しかしながら、このCo基合金は高
価なCOを多量に含有しているため、極めて高価な肉盛
材料である。自動車エンジンのエギゾーストバルブの肉
盛材料としては、より安価な材料で、しかもCo基合金
と同等の特性を発揮できる肉盛材料の出現が望まれてい
た。
[Prior Art] Many conventional valves for internal combustion engines have been used by welding various surface hardening alloys onto the worn parts. In particular, for the exhaust valves of automobile engines, Co-based alloys containing mainly Co-Cr and small amounts of W, MO, C, etc. are used as overlay alloys for high-temperature hardness, lead oxide corrosion resistance (hereinafter referred to as ``PbO resistance''). However, since this Co-based alloy contains a large amount of expensive CO, it is an extremely expensive overlay material.It is used in exhaust valves of automobile engines. There has been a desire for a build-up material that is less expensive and can exhibit properties equivalent to those of Co-based alloys.

このために開発されたエンジンパルプ用Fe基肉盛用合
金として、特開昭59−153872号公報に開示され
たFe−Cr−Ni系合金がある。
As a Fe-based overlay alloy for engine pulp developed for this purpose, there is a Fe-Cr-Ni alloy disclosed in Japanese Patent Application Laid-open No. 153872/1983.

このFe−Cr−Ni系合金は鋳物または溶接棒により
肉盛されてバルブの耐摩耗性部を成形するものであり、
そのために、素地の結晶粒の成長制御、微細化を目的と
してw、r+が添加され、脱酸、脱硫作用を目的として
Mnが添加され、さらに耐PbO性改善を目的としてl
が添加されている。しかしながら、このFe−Cr−N
i系合金は、本発明者等が実際に調査した結果、耐Pb
0性に劣ることがわかった。しかも、最近、作業性、肉
盛効率、自動化の容易性の観点から溶接棒を用いて肉盛
する方法に代って合金粉末を用いた肉盛法が注目されつ
つある。ところが、このFe−Cr−Ni系合金を粉末
肉盛法に適用した場合、粉末の付着率が劣る、ビードの
形状にムラができる、肉盛層中にビンホールヤプローホ
ールが発生する、肉盛層中に酸化物等が混入する、等の
欠点があることがわかった。これは、Fe−Cr−Ni
系合金の素地の結晶粒の成長制御および微細化を目的と
して添加されるT1、耐PbO性の改善を目的として添
加されるAQに起因するものと推測される。
This Fe-Cr-Ni alloy is overlaid with a casting or welding rod to form the wear-resistant part of the valve.
To this end, w and r+ are added to control the growth and refinement of crystal grains in the substrate, Mn is added to deoxidize and desulfurize, and l is added to improve PbO resistance.
is added. However, this Fe-Cr-N
As a result of actual investigation by the present inventors, the i-based alloy has a high resistance to Pb.
It was found to be inferior to 0. Moreover, recently, a build-up method using alloy powder has been attracting attention in place of the build-up method using a welding rod from the viewpoint of workability, build-up efficiency, and ease of automation. However, when this Fe-Cr-Ni alloy is applied to the powder build-up method, the powder adhesion rate is poor, the shape of the bead becomes uneven, bottle holes occur in the build-up layer, and the build-up layer becomes difficult to build up. It was found that there were drawbacks such as oxides being mixed into the layer. This is Fe-Cr-Ni
This is presumed to be due to T1, which is added for the purpose of controlling the growth and refinement of crystal grains in the base alloy, and AQ, which is added for the purpose of improving PbO resistance.

さらに、前記Fe基肉盛用合金はど安価ではないが、N
i基肉盛用合金として特開昭62−179891号公報
に開示されたNi−Cr−MO系合金がある。このNi
−Cr−MO系合金は、高温硬さ、耐PbO性に優れ、
かつ粉末肉盛も良好に行うことができる。しかしながら
、本発明者等は、最近、エギゾーストバルブの腐食は酸
化鉛のみによるものではなく、硫酸鉛を含む酸化鉛にも
よっていることを確認しており、このNi −Cr−M
O系合金は、この硫酸鉛を含む酸化鉛に対する耐食性(
以下、′耐PbO+Pb5O+性″と記す)に劣ってい
ることがわかった。
Furthermore, although the Fe-based alloy for overlaying is not cheap, N
As an alloy for i-based overlay, there is a Ni-Cr-MO alloy disclosed in Japanese Patent Application Laid-Open No. 179891/1983. This Ni
-Cr-MO alloy has excellent high temperature hardness and PbO resistance,
Moreover, powder overlay can also be performed satisfactorily. However, the present inventors have recently confirmed that the corrosion of exhaust valves is not only caused by lead oxide, but also by lead oxide including lead sulfate.
O-based alloys have corrosion resistance to lead oxides including lead sulfate (
It was found that it was inferior in terms of ``PbO+Pb5O+ resistance'' (hereinafter referred to as ``PbO+Pb5O+ resistance'').

[発明が解決しようとする課題] 本発明は、溶接肉盛法および粉末肉盛法に適用でき、し
かも内燃機関用バルブの使用条件、特に最近の高性能自
動車エンジン用バルブの苛酷な使用条件にも耐えること
ができるように、必要な高温硬さを維持し、かつ耐Pb
O性及び耐PbO+Pb5Ot性に優れた肉盛用合金を
開発することを解決すべき技術課題とする。
[Problems to be Solved by the Invention] The present invention is applicable to weld build-up methods and powder build-up methods, and is suitable for the severe operating conditions of valves for internal combustion engines, especially valves for recent high-performance automobile engines. It maintains the necessary high temperature hardness and is resistant to Pb.
The technical problem to be solved is to develop an alloy for overlaying with excellent O resistance and PbO+Pb5Ot resistance.

[課題を解決するための手段] 本発明のバルブ肉盛用合金は、全体を100重間%(以
下、%という)とした場合、クロム30〜40%、ニッ
ケル15〜31%、モリブデン7〜20%、炭素0.7
〜2.2%、ケイ素1.5%以下、残部鉄と不可避不純
物とからなることを特徴とする特に、本発明の肉盛用合
金は、Fe−Cr−Ni系合金にモリブデンを7%以上
、好ましくは10%以上添加することに特徴があり、こ
れにより、必要な高温硬さを維持し、かつ耐PbO性お
よび耐Pb5Ot性のいずれにも優れた合金とすること
ができる。また、粉末肉盛用合金の組成成分として不適
なTi、ASI、Mn等を積極的に含んでいないので、
粉末肉盛法にも好適となる。
[Means for Solving the Problems] The valve overlay alloy of the present invention contains 30 to 40% chromium, 15 to 31% nickel, and 7 to 7% molybdenum, when the entire weight is 100% (hereinafter referred to as %). 20%, carbon 0.7
In particular, the alloy for overlay of the present invention is characterized by comprising 2.2% or less of silicon, 1.5% or less of silicon, and the balance iron and unavoidable impurities. , preferably in an amount of 10% or more, thereby making it possible to maintain the necessary high-temperature hardness and to obtain an alloy that is excellent in both PbO resistance and Pb5Ot resistance. In addition, it does not actively contain Ti, ASI, Mn, etc., which are inappropriate as compositional components for powder overlay alloys.
It is also suitable for powder overlay method.

本発明の合金成分を上記の通り限定した理由を以下に説
明する。
The reason why the alloy components of the present invention are limited as described above will be explained below.

(Cr) Crは、Fe、Ni、Moと固溶して合金の基質となる
初晶固溶体を構成する。また、Crの一部はMOととも
にCと結合して、CrSMoを主体とする複炭化物を形
成する。本発明の合金組成域では、この複炭化物は上記
固溶体と共晶を形成し、共晶組織中に存在する。したが
って、CrはCと共存して合金の硬さを向上させる働き
を有する。ざらに、Crは耐PbO性及び耐PbO+P
b5Os性の向上に重要な寄与をする。すなわち、耐P
bO性に対しては合金表面にクロム酸化物を形成させ、
また耐PbO+PbSO4性に対しては合金表面にクロ
ム酸化物及びクロム硫化物を形成させることによって、
腐食の進行を防止する動きを有する。
(Cr) Cr constitutes a primary solid solution that forms a solid solution with Fe, Ni, and Mo and serves as a matrix for the alloy. Moreover, a part of Cr combines with C together with MO to form a double carbide mainly composed of CrSMo. In the alloy composition range of the present invention, this double carbide forms a eutectic with the solid solution and exists in the eutectic structure. Therefore, Cr coexists with C and has the function of improving the hardness of the alloy. In general, Cr has PbO resistance and PbO+P resistance.
It makes an important contribution to improving b5Os properties. In other words, P resistance
For bO properties, chromium oxide is formed on the alloy surface,
In addition, for PbO + PbSO4 resistance, by forming chromium oxide and chromium sulfide on the alloy surface,
It has a movement that prevents the progress of corrosion.

crが30%以下では上記作用が劣り、40%以上添加
しても上記作用の向上がなく、しかも合金の靭性が低下
する傾向があり、好ましくない。
If cr is less than 30%, the above-mentioned effects will be poor, and if it is added in an amount of 40% or more, the above-mentioned effects will not be improved, and the toughness of the alloy will tend to decrease, which is not preferable.

以上の理由から、Crの添加量は30〜40%と限定し
た。
For the above reasons, the amount of Cr added was limited to 30 to 40%.

(N1) Niは、基質の固溶体中に固溶して、合金の靭性向上と
高温硬さの維持に寄与する。Ni配合最に対する合金の
ビッカース硬さの関係線図を第1図に示す。また、N1
はCrと共存して耐PbO性を向上させる働きを有する
。これは、合金表面に形成される前述のクロム酸化物被
膜がNiの存在により、より緻密で、かつ合金との密着
が強固になるためである。
(N1) Ni dissolves in the solid solution of the matrix and contributes to improving the toughness of the alloy and maintaining high-temperature hardness. FIG. 1 shows a graph showing the relationship between the Vickers hardness of the alloy and the Ni content. Also, N1
Coexists with Cr and has the function of improving PbO resistance. This is because the aforementioned chromium oxide film formed on the alloy surface becomes denser and has stronger adhesion to the alloy due to the presence of Ni.

Ni量に対する耐PbO性及び耐P bo+ P bS
O4性(Ni量と腐食減量の関係線図)を第2図に示す
。Niが15%以下では耐PbO性を向上させる効果が
少なく、31%以上添加しても、その効果の向上は期待
できないばかりか、Niの多量添加は、耐PbO+Pb
5O+性を劣化させる傾向がある。これは合金表面に低
融点のニッケル硫化物が生成し、腐食が促進されるため
である。
PbO resistance and resistance to Ni amount P bo+ P bS
The O4 properties (relationship diagram between Ni content and corrosion loss) are shown in Figure 2. If Ni is less than 15%, the effect of improving PbO resistance is small, and even if it is added more than 31%, no improvement in the effect can be expected.
It tends to deteriorate the 5O+ property. This is because nickel sulfide with a low melting point is formed on the alloy surface, accelerating corrosion.

したがって、Niを多量に添加することは好ましくない
Therefore, it is not preferable to add a large amount of Ni.

以上の理由から、Niの添加量は15〜31%と限定し
た。
For the above reasons, the amount of Ni added was limited to 15 to 31%.

<MO> MOは、基質の固溶体中に固溶し、合金を強化すると同
時に合金の靭性を向上させる。またCrとともにCと結
合し、Qr、MO複炭化物を形成し、合金の高温硬さを
向上させる働きを有する。
<MO> MO dissolves in the solid solution of the matrix, strengthens the alloy, and simultaneously improves the toughness of the alloy. It also combines with C together with Cr to form a Qr, MO double carbide, which has the function of improving the high-temperature hardness of the alloy.

さらに、MOは耐PbO性を向上させ、特に耐PbO+
Pb5Oz性の向上に重要な寄与をする。
Furthermore, MO improves PbO resistance, especially PbO+
It makes an important contribution to improving Pb5Oz properties.

すなわち、合金表面に前述のクロム酸化物、クロム硫化
物とともにモリブデン硫化物を形成させることにより、
腐食の進行を防止する働きを有する。
That is, by forming molybdenum sulfide together with the aforementioned chromium oxide and chromium sulfide on the alloy surface,
It works to prevent the progression of corrosion.

この耐PbO+PbSOs性はMOが10%で最もよく
、これより少ない添加で悪くなる傾向があり、Ni添加
量と関係するもののほぼ7%で一つの限界がある。した
がって、MOが7%以下では、耐PbO+PbSO4性
が低下し、目的とする合金が得られない。また、20%
以上添加すると、合金の硬さが高くなり、靭性が低下す
るので好ましくない。
This PbO+PbSOs resistance is best when MO is 10%, and tends to deteriorate when less than this is added, and there is a limit at approximately 7%, which is related to the amount of Ni added. Therefore, if MO is 7% or less, the PbO+PbSO4 resistance decreases and the desired alloy cannot be obtained. Also, 20%
Adding more than this amount is not preferable because the hardness of the alloy increases and the toughness decreases.

以上の理由から、MOの添加量は7〜20%と限定した
For the above reasons, the amount of MO added was limited to 7 to 20%.

(C) Cは、基質のFe−Niを主体とする固溶体中に一部固
溶し、基質の強化と硬さを高めるが、大部分はCr、M
Oを主体とする複炭化物を形成し、基質固溶体との共晶
複炭化物となる。したがって、Cは合金の硬さを高め、
耐摩耗性を向上させるとともに、合金の融点を下げる働
きを有する。
(C) C partially forms a solid solution in the Fe-Ni-based solid solution of the substrate and increases the strength and hardness of the substrate, but most of it is contained in Cr, M
It forms a double carbide mainly composed of O, and becomes a eutectic double carbide with the substrate solid solution. Therefore, C increases the hardness of the alloy;
It works to improve wear resistance and lower the melting point of the alloy.

Cが0.7%以下ではその動きが少なく、2゜2%を越
えると、複炭化物が増え、過共晶となりCr、Moの複
炭化物が初品として晶出するため、合金の靭性が低下す
るので好ましくない。
When C is less than 0.7%, its movement is small, and when it exceeds 2.2%, the number of double carbides increases and becomes hypereutectic, where double carbides of Cr and Mo crystallize as the initial product, reducing the toughness of the alloy. Therefore, it is not desirable.

以上の理由から、Cの添加量は0.7〜2.2%と限定
した。
For the above reasons, the amount of C added was limited to 0.7 to 2.2%.

(Sl) 3iは、通常、脱酸剤として添加されるものであるが、
本発明の合金にあっては、3iを1.5%以上添加する
と、Fe−Niを主体とする基質固溶体とMO珪化物と
の低融点の共晶組織を形成することにより、合金の靭性
を低下させる。
(Sl) 3i is usually added as a deoxidizing agent, but
In the alloy of the present invention, when 3i is added in an amount of 1.5% or more, the toughness of the alloy is improved by forming a low melting point eutectic structure between a matrix solid solution mainly composed of Fe-Ni and MO silicide. lower.

以上の理由から、Siの添加量は1.5%以下に制限し
た。
For the above reasons, the amount of Si added was limited to 1.5% or less.

(不可避不純物) 本発明の合金は粉末肉盛用として用いることもできる。(inevitable impurities) The alloy of the present invention can also be used for powder overlay.

この場合、粉末肉盛用合金の特性としての粉末肉盛性、
ずなわら、粉末肉盛時の付着率、ビルドの形状、肉盛層
中の欠陥等が問題となる。
In this case, powder build-up properties as characteristics of the alloy for powder build-up,
However, problems include the adhesion rate during powder overlay, the shape of the build, and defects in the overlay layer.

本発明者等は、本発明の合金に含まれる種々の不可避不
純物について検討した結果、粉末の裏面酸化等による酸
素[O]@は0.2%以下が好ましいことがわかった。
The present inventors studied various inevitable impurities contained in the alloy of the present invention, and found that it is preferable that the content of oxygen [O]@ due to back side oxidation of the powder is 0.2% or less.

脱酸剤として添加されるMn、AQ、Tiにあっては各
々0.1%以下であることが好ましいことがわかった。
It has been found that Mn, AQ, and Ti added as deoxidizers are each preferably 0.1% or less.

[0]が0゜2%、Mn、AQ、Tiが各々0.1%を
越えるとじ一ド形状にムラが生じ、ときには肉盛層中に
欠陥が生じることがある。
When [0] exceeds 0.2% and Mn, AQ, and Ti each exceed 0.1%, unevenness occurs in the binding shape, and sometimes defects may occur in the overlay layer.

ざらに、これらMn、A5?、Tiなどの活性な金属が
各々0.1%以上混入すると、耐PbO性において、前
述の合金表面に形成されるクロム酸化物の保護被膜にも
影響を及ぼす。すなわち、該クロム酸化物保護被膜は、
Mn、AQ、T iなどの酸化物を含むクロム酸化物保
護被膜となり、これにより、該保護被膜自身の緻密性お
よび該保護被膜と合金との密着性が劣ることとなり、十
分な保護被膜効果が得られない。その結果、合金の耐P
bO性を劣化させる。
Roughly, these Mn, A5? When 0.1% or more of active metals such as , Ti, etc. are mixed in, the PbO resistance is affected and the protective film of chromium oxide formed on the surface of the alloy is also affected. That is, the chromium oxide protective coating is
This results in a chromium oxide protective coating containing oxides such as Mn, AQ, and Ti, which results in poor density of the protective coating itself and poor adhesion between the protective coating and the alloy, resulting in insufficient protective coating effects. I can't get it. As a result, the P resistance of the alloy
Degrades bO properties.

以上の様に、不可避不純物として含まれるMn、A$2
.Tiを各々0.1%以下とした場合、耐PbO性によ
り優れ、粉末肉盛法にもより好適な合金となる。
As mentioned above, Mn, A$2, which is included as an unavoidable impurity
.. When each Ti content is 0.1% or less, the alloy has better PbO resistance and is more suitable for the powder overlay method.

[実施例] 以下、本発明の肉盛用合金を実施例により説明する。[Example] Hereinafter, the overlay alloy of the present invention will be explained using examples.

通常の溶解法により、それぞれ第1表に示される成分組
成となるよう配合し溶製した本発明の実施例合金、及び
比較例としての従来合金について、常温硬さ、高温硬さ
、耐PbO性、耐P bo+ Pb5Os性、粉末肉盛
性について試験を行い、その結果を第1表に示す。
The example alloy of the present invention and the conventional alloy as a comparative example, which were blended and melted using a normal melting method so as to have the component compositions shown in Table 1, have the following properties: hardness at room temperature, hardness at high temperature, and PbO resistance. , P bo+ Pb5Os resistance, and powder build-up properties were tested, and the results are shown in Table 1.

なお、第1表に示す実験結果の実施例の合金、No、3
、No、5、N006、NO,16、N0017及びN
o、18ざらに比較例の合金No。
In addition, the alloy No. 3 of the example of the experimental results shown in Table 1
, No. 5, N006, No. 16, N0017 and N
o, 18 rough comparative example alloy No.

4、N005の高温硬さのデータ、耐PbO性のデータ
及び耐PbO+Pb5O+のデータを用いいて、ニッケ
ル含有量と高温硬さとの関係、ニッケル含有量と耐Pb
O性及び耐PbO+PbSO4性試験時の腐食減量との
関係をそれぞれ第1図、及び第2図に示した。なお、各
測定方法および試験方法は以下の通りである。
4. Using the high temperature hardness data, PbO resistance data, and PbO+Pb5O+ data of N005, the relationship between nickel content and high temperature hardness, nickel content and Pb resistance
The relationship between the corrosion weight loss during the O resistance and PbO+PbSO4 resistance tests is shown in FIGS. 1 and 2, respectively. In addition, each measurement method and test method are as follows.

(1)常温硬さ試験 本実施例合金および比較例合金を電気炉でアルゴンガス
雰囲気溶解し、内径15mmの黒鉛鋳型(底部に冷し金
使用)に鋳造し、これを15I11mφx10mmに切
断したものを試験片とした。
(1) Room temperature hardness test The alloy of this example and the alloy of comparative example were melted in an argon gas atmosphere in an electric furnace, cast into a graphite mold with an inner diameter of 15 mm (cooling metal was used at the bottom), and this was cut into 15I11mφ x 10mm. It was used as a test piece.

試験は、ピッカルス硬さ計(荷重20kg重)を用い、
試験片の急冷部(冷し金と接した部分)で行った。
The test was conducted using a Pickars hardness tester (load: 20 kg).
The test was carried out at the quenching part of the test piece (the part in contact with the cooling metal).

(2)高温硬さ 上記(1)で用いた試験片を高温ビッカース硬度計(荷
重5kg重)を用いて、700℃でビッカース硬さを測
定した。
(2) High-temperature hardness The Vickers hardness of the test piece used in (1) above was measured at 700° C. using a high-temperature Vickers hardness tester (load: 5 kg).

(3)耐PbO性試験 本実施例合金及び比較例合金を電気炉でアルゴンガス雰
囲気溶解し、ガラス管(内径5mmφ)に吸引鋳造し、
これを5mmφx20mmに切断したものを試験片とし
た。試験は、この試験片を920℃に加熱したPbO(
30G>中に1時間浸漬させ、その時の腐食減量を測定
した。
(3) PbO resistance test The present example alloy and comparative example alloy were melted in an argon gas atmosphere in an electric furnace, and suction cast into a glass tube (inner diameter 5 mmφ).
This was cut into 5 mmφ x 20 mm to make a test piece. The test was conducted using PbO (
30G> for 1 hour, and the corrosion weight loss at that time was measured.

(4)耐PbO+Pb5O+性試験 上記(3)と同じ試験片を用いた。試験は、この試験片
を900℃に加熱したPbO+40重量%Pb5O+ 
(30a)中に1時間浸漬させ、その時の腐食減量を測
定した。
(4) PbO+Pb5O+ resistance test The same test piece as in (3) above was used. In the test, this test piece was heated to 900°C with PbO + 40% by weight Pb5O +
(30a) for 1 hour, and the corrosion loss at that time was measured.

(5)粉末肉盛試験 本実施例合金及び比較例合金を通常のガスアトマイズで
粉末となし、80〜350メツシユの粉末をプラズマ粉
末肉盛装置を用い、第2表に示す溶接条件で5UH35
母材(50wX100Qx10t>に肉盛し、その時の
母材との濡れ性、ビー ド形状から評価した。
(5) Powder overlay test The alloy of this example and the alloy of the comparative example were made into powder by normal gas atomization, and the powder of 80 to 350 mesh was 5UH35 using a plasma powder overlay machine under the welding conditions shown in Table 2.
The material was overlaid on the base material (50w x 100Q x 10t) and evaluated based on the wettability with the base material and bead shape.

(6)実機台上耐久試験およびその結果第1表に示す本
実施例合金3及び比較例合金1を通常のガスアトマイズ
で粉末となし、80〜350メツシユの粉末をプラズマ
粉末肉盛装置を用い、第3表に示す溶接条件で5UH3
5バルブ索形材(傘径φ43m1ll)に肉盛した俊、
所定の寸法、形状に仕上げて、本実施例合金3を肉盛し
たバルブ、比較例合金1を肉盛したバルブをそれぞれ成
形した。なお使用した実施例合金3の粉末の[0]量は
750ppmであった。
(6) Actual machine bench durability test and results The present Example Alloy 3 and Comparative Example Alloy 1 shown in Table 1 were made into powder by ordinary gas atomization, and the powder of 80 to 350 mesh was made using a plasma powder overlay device. 5UH3 under the welding conditions shown in Table 3
Shun built on 5-valve rope material (umbrella diameter φ43ml),
The valves were finished to predetermined dimensions and shapes, and a valve overlaid with Example Alloy 3 and a valve overlaid with Comparative Example Alloy 1 were molded, respectively. Note that the [0] amount of the powder of Example Alloy 3 used was 750 ppm.

総排気量2.5し、直列6気筒のガソリンエンジンの第
1〜3気筒に上記本実施例合金3を肉盛したバルブ、第
4〜6気筒に上記比較例合金1を肉盛したバルブをそれ
ぞれ搭載し、第4表に示す試験条件にて実機台上耐久試
験を行った。
The total displacement was 2.5, and the valves of an in-line six-cylinder gasoline engine were overlaid with the above-mentioned Example Alloy 3 on the first to third cylinders, and the valves were overlaid with the above-mentioned Comparative Example Alloy 1 on the fourth to sixth cylinders. An on-board durability test was conducted on the actual machine under the test conditions shown in Table 4.

耐久試験終了後の本実施例合金3を肉盛したバルブ及び
比較例合金1を肉盛したバルブのフエー・ス面の摩耗量
は、各々8〜12μm110〜21μmであった。また
、フェース面の腐食深さは各々2.5μm123μmで
あった。
After the end of the durability test, the amount of wear on the face of the valve overlaid with Example Alloy 3 and the valve overlaid with Comparative Example Alloy 1 was 8 to 12 μm and 110 to 21 μm, respectively. Further, the corrosion depth of the face surface was 2.5 μm and 123 μm, respectively.

〈評価) 第1表からもわかるように、本発明の実施例合金は、常
温でのビッカース硬さがHV390−590で、700
℃でのビッカース硬さがいずれもHV300以上であり
、優れた高温硬さを有している。また、本発明の実施例
合金は、920℃に加熱したPbOおよび900℃に加
熱したPbO十40重徂%PbSO4中に浸漬した時の
腐食減損がともに100mMcm2 ・hr以下であり
、優れた耐食性を有している。さらに、本発明の実施例
合金を粉末状として肉盛した場合、肉盛作業性には何等
問題はなく、付着率も90%以上で、肉盛層中の欠陥も
認られなかった。また、実機台上耐久試験の結果からも
わかるように、本発明の実施例合金を粉末肉盛したエン
ジンバルブは耐摩社性、および耐食性(耐PbO性、耐
PbSOs性)に優れ、高性能エンジンの苛酷な使用条
件を十分満足する性能を有するものである。
<Evaluation> As can be seen from Table 1, the example alloys of the present invention have a Vickers hardness of HV390-590 and a hardness of 700 at room temperature.
All have Vickers hardness at ℃ of HV300 or higher, and have excellent high-temperature hardness. In addition, the example alloy of the present invention exhibits excellent corrosion resistance, with corrosion loss of less than 100 mMccm2 hr when immersed in PbO heated to 920°C and PbO140% by weight PbSO4 heated to 900°C. have. Further, when the example alloy of the present invention was deposited in powder form, there was no problem in the workability of the deposit, the adhesion rate was 90% or more, and no defects were observed in the deposit layer. In addition, as can be seen from the results of the on-board durability test on actual machines, engine valves powder-plated with the example alloys of the present invention have excellent wear resistance and corrosion resistance (PbO resistance, PbSOs resistance), and are suitable for high-performance engines. It has performance that fully satisfies the harsh conditions of use.

一方、第1表からもわかるように、比較例合金は、その
溝成成分のうちのいずれかの成分含有量が本発明の範囲
から外れると、本発明の実施例合金に比して前記特性の
うち少なくともいずれかの特性が劣ったものになること
がわかる。また、実機台上耐久試験の結果からもわかる
ように、比較例合金1を肉盛したバルブは、耐摩耗性お
よび耐食性に劣っている。なお第1表において、比較例
合金3は本発明の実施例合金と同等の特性を有している
が、これは、比較例合金3において成分含有量が本発明
範囲を外れているのはCrの41゜2%のみであり、本
発明でCr含有吊の上限を4O%とした理由がCrをそ
れ以上添加しても高温硬さ、耐食性等の効果の向上が望
めないことにあるからである。
On the other hand, as can be seen from Table 1, when the content of any one of the groove constituents falls outside the range of the present invention, the comparative alloy has the above-mentioned characteristics compared to the example alloy of the present invention. It can be seen that at least one of the characteristics becomes inferior. Further, as can be seen from the results of the actual bench durability test, the valves overlaid with Comparative Example Alloy 1 were inferior in wear resistance and corrosion resistance. In Table 1, Comparative Example Alloy 3 has the same properties as the Example Alloy of the present invention, but this is because the component content in Comparative Example Alloy 3 is outside the range of the present invention. The reason why the upper limit of Cr content is set at 40% in the present invention is that even if more Cr is added, no improvement in effects such as high temperature hardness and corrosion resistance can be expected. be.

[発明の効果] 以上詳述したように、本発明の肉盛用合金は、高温li
!!Tさに優れ、安価で、しかも耐PbO性、耐PbO
+PbSOx性に優れている。ざらに粉末肉盛性も良好
であり、本発明の合金を粉末肉盛したエギゾーストバル
ブは高性能自動車エンジンの苛酷な使用条件にも充分に
耐える優れた効果を有する。
[Effects of the Invention] As detailed above, the overlay alloy of the present invention
! ! Excellent T, inexpensive, PbO resistant, PbO resistant
+Excellent PbSOx properties. It also has good powder build-up properties, and the exhaust valve powder built-up with the alloy of the present invention has an excellent effect of fully withstanding the harsh operating conditions of high-performance automobile engines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はニッケル含有量と700℃におけるビッカース
硬さとの関係を示すグラフ、第2図はニック−ル含有最
と耐PbO性及び耐PbO+PbSO4性試験時の腐食
減量との関係を示すグラフである。 特許出願人  トヨタ自動車株式会社 同    福田金属箔粉工業株式会社 代理人   弁理士  大川 宏
Figure 1 is a graph showing the relationship between nickel content and Vickers hardness at 700°C, and Figure 2 is a graph showing the relationship between nickel content and corrosion loss during PbO resistance and PbO + PbSO4 resistance tests. . Patent Applicant: Toyota Motor Corporation, Fukuda Metal Foil & Powder Industry Co., Ltd., Patent Attorney: Hiroshi Okawa

Claims (1)

【特許請求の範囲】[Claims] (1)全体を100重量%とした場合、クロム30〜4
0重量%、ニッケル15〜31重量%、モリブデン7〜
20重量%、炭素0.7〜2.2重量%、ケイ素1.5
重量%以下、残部鉄と不可避不純物とからなることを特
徴とするバルブ肉盛用合金。
(1) If the whole is 100% by weight, chromium 30-4
0% by weight, nickel 15~31% by weight, molybdenum 7~
20% by weight, carbon 0.7-2.2% by weight, silicon 1.5
An alloy for overlaying a valve, characterized in that the balance is iron and unavoidable impurities in an amount equal to or less than % by weight.
JP1179422A 1988-07-30 1989-07-12 Alloy powder for valve overlay Expired - Fee Related JPH0780063B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP89307568A EP0357216B1 (en) 1988-07-30 1989-07-25 Alloy for building up valve
DE68912689T DE68912689T2 (en) 1988-07-30 1989-07-25 Alloy for armoring valves.
US07/385,075 US4948559A (en) 1988-07-30 1989-07-26 Alloy for building up valve
US07/428,293 US5019338A (en) 1988-07-30 1989-10-26 Alloy for building JP valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19188888 1988-07-30
JP63-191888 1988-07-30

Publications (2)

Publication Number Publication Date
JPH02117797A true JPH02117797A (en) 1990-05-02
JPH0780063B2 JPH0780063B2 (en) 1995-08-30

Family

ID=16282122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1179422A Expired - Fee Related JPH0780063B2 (en) 1988-07-30 1989-07-12 Alloy powder for valve overlay

Country Status (1)

Country Link
JP (1) JPH0780063B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226546A (en) * 1990-01-30 1991-10-07 Toyota Motor Corp Engine intake valve clad by welding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120767A (en) * 1982-01-12 1983-07-18 Mitsubishi Metal Corp Fe-ni-cr alloy for valve and valve sheet of internal combustion engine
JPS6147219A (en) * 1984-08-10 1986-03-07 Mitsuboshi Belting Ltd Manufacturing method of cast nylon pipe
JPS626631A (en) * 1985-07-02 1987-01-13 Daiki Sangyo Kk Drying of shiitake mushroom by circulation drier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120767A (en) * 1982-01-12 1983-07-18 Mitsubishi Metal Corp Fe-ni-cr alloy for valve and valve sheet of internal combustion engine
JPS6147219A (en) * 1984-08-10 1986-03-07 Mitsuboshi Belting Ltd Manufacturing method of cast nylon pipe
JPS626631A (en) * 1985-07-02 1987-01-13 Daiki Sangyo Kk Drying of shiitake mushroom by circulation drier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226546A (en) * 1990-01-30 1991-10-07 Toyota Motor Corp Engine intake valve clad by welding

Also Published As

Publication number Publication date
JPH0780063B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
US4204031A (en) Iron-base sintered alloy for valve seat and its manufacture
US20120288399A1 (en) High-hardness hardfacing alloy powder
EP1775351A1 (en) Acid resistant austenitic alloy for valve seat insert
US3876475A (en) Corrosion resistant alloy
JPH07178589A (en) Fe-based alloy composition for building up
JP2970670B1 (en) Hardfacing alloys and engine valves
US5082625A (en) Corrosion-resistant alloy for build-up welding
JP3287865B2 (en) Cobalt-based alloy with excellent wear resistance and aggressiveness
US3990892A (en) Wear resistant and heat resistant alloy steels
US5495837A (en) Engine valve having improved high-temperature wear resistance
JPS6221063B2 (en)
JPH0638998B2 (en) Fe-based overlay alloy powder
US5019338A (en) Alloy for building JP valve
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
KR20030055751A (en) Cast iron with improved oxidation resistance at high temperature
JPS60231591A (en) Wire for submerged arc welding of cr-mo group low alloy steel
JPH02117797A (en) Alloy for valve build-up
JPS5927369B2 (en) Co-based alloy for diesel engine valves and valve seats
JPS5940212B2 (en) Co-based alloy for engine valves and valve seats of internal combustion engines
JPH06297188A (en) Fe base alloy for cladding by welding
JPS6338415B2 (en)
JPS626622B2 (en)
JPS5970744A (en) High-hardness ni alloy for valve and valve seat for engine
JPS626621B2 (en)
JPS6046172B2 (en) Ni-based alloy for engine valves and valve seats of internal combustion engines

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees