Nothing Special   »   [go: up one dir, main page]

JPH021171B2 - - Google Patents

Info

Publication number
JPH021171B2
JPH021171B2 JP57119633A JP11963382A JPH021171B2 JP H021171 B2 JPH021171 B2 JP H021171B2 JP 57119633 A JP57119633 A JP 57119633A JP 11963382 A JP11963382 A JP 11963382A JP H021171 B2 JPH021171 B2 JP H021171B2
Authority
JP
Japan
Prior art keywords
epoxy resin
group
weight
nitrosophenylhydroxylamine
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57119633A
Other languages
Japanese (ja)
Other versions
JPS5911318A (en
Inventor
Kazuhiko Morio
Hisashi Murase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP57119633A priority Critical patent/JPS5911318A/en
Publication of JPS5911318A publication Critical patent/JPS5911318A/en
Publication of JPH021171B2 publication Critical patent/JPH021171B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱性、電気特性に優れた熱硬化性エ
ポキシ樹脂組成物に関する。詳しくは潜在性に優
れ、実質的にイオン性がなく、工業的に入手し易
く取扱いの容易なエポキシ樹脂組成物に関する。 エポキシ樹脂の硬化触媒として有機金属錯体を
使用することは古くから知られている。しかしそ
の多くは硬化に長時間の加熱を要し、又工業的に
入手し難かつたり、取扱いが容易でない。 ところがある種の限定された有機金属錯体、と
りわけアセチルアセトン錯体を利用すると潜在性
と硬化性に優れ、且つ物性の優れた硬化物が得ら
れることから最近活発に研究が行われるようにな
り、なかでも特開昭56−2319号、同56−4625号、
同57−10622号、同57−10623号、同57−42721号
各公報記載のケイ素化合物を促進剤として含む系
や特公昭57−2735号、特開昭55−116731号各公報
記載のエポキシ基含有シリコン樹脂、特公昭56−
25926号公報記載のフエノール性促進剤を含む組
成物の必須成分、特公昭57−9742号、特開昭53−
115800号各公報記載の酸無水物を含む組成物など
が注目に値する。 有機金属錯体又は塩の有機部分はその活性に重
要な役割を果たすため、十分注意して選択を行う
必要がある。又、工業的に入手し易いものである
ことが重要であることは言うまでもない。 本発明の目的は、上記の点に鑑み、潜在性に優
れ、実質的にイオン性のない工業的入手の容易な
硬化触媒を含有する熱硬化性エポキシ樹脂組成物
を提供することにある。 更に本発明の目的は、耐熱性、電気特性に優
れ、ゲル化時間の速い熱硬化性エポキシ樹脂組成
物を提供することにある。 本発明の熱硬化性エポキシ樹脂組成物は必須成
分として、(A)エポキシ樹脂と、(B)N―ニトロソフ
エニルヒドロキシルアミンの金属錯体とを含有す
ることを特徴とする。 更に、本発明の熱硬化性エポキシ樹脂組成物は
必要に応じて上記成分に加えて(C)硬化促進剤とし
て有機カルボン酸無水物類、ポリフエノール類、
ケイ素原子に直接結合する水酸基、アルコキシ
基、あるいはアリールオキシ基を有する有機ケイ
素化合物類からなる群より選択された1種以上の
化合物を含有することを特徴とする。 本発明に使用されるエポキシ樹脂(A)とは従来公
知の芳香族エポキシ樹脂、脂環族エポキシ樹脂、
脂肪族エポキシ樹脂が挙げられる。ここで芳香族
エポキシ樹脂として特に好ましいものは、少なく
とも1個の芳香族核を有する多価フエノール又は
そのアルキレンオキサイド付加体のポリグリシジ
ルエーテルであつて、例えばビスフエノールA又
はそのアルキレンオキサイド付加体とエピクロル
ヒドリンとの反応によつて製造されるグリシジル
エーテル、エポキシノボラツク樹脂が挙げられ
る。又脂肪族エポキシ樹脂として特に好ましいも
のとしては少なくとも1個の脂環族環を有する多
価アルコールのポリグリシジルエーテル又はシク
ロヘキセン又はシクロペンテン環含有化合物を過
酸化水素、過酸等の適当な酸化剤でエポキシ化す
ることによつて得られるシクロヘキセンオキサイ
ド又はシクロペンテンオキサイド含有化合物があ
る。少なくとも1個の脂環族環を有する多価アル
コールのポリグリシジルエーテルの代表例として
は、水素添加ビスフエノールA又はそのアルキレ
ンオキサイド付加体とエピクロルヒドリンとの反
応によつて製造されるグリシジルエーテルが挙げ
られる。 更に脂肪族エポキシ樹脂として特に好ましいも
のは脂肪族多価アルコール又はそのアルキレンオ
キサイド付加物のポリグリシジルエーテルがあ
り、その代表例としては、1,6―ヘキサンジオ
ールのジグリシジルエーテル、グリセリンのトリ
グリシジルエーテル、ポリエチレングリコールの
ジグリシジルエーテル、ポリプロピレングリコー
ルのジグリシジルエーテル、エチレングリコー
ル、プロピレングリコール、グリセリン等の脂肪
族多価アルコールに1種又は2種以上のアルキレ
ンオキサイド(エチレンオキサイド、プロピレン
オキサイド)を付加することにより得られるポリ
エーテルポリオールのポリグリシジルエーテルが
挙げられる。更に脂肪族高級アルコールのモノグ
リシジルエーテルやフエノール、クレゾール又は
これらにアルキレンオキサイドを付加することに
より得られるポリエーテルアルコールのモノグリ
シジルエーテル等も希釈剤として配合する事がで
きる。 更に本発明のエポキシ樹脂(A)として分子内にエ
ポキシ基を有するエポキシシラン等を用いること
ができる。 このような分子内にエポキシ基を有する有機ケ
イ素化合物を使用する場合は、硬化促進剤(C)を用
いなくてもすむ場合もある。 本発明の必須成分を構成するN―ニトロソフエ
ニルヒドロキシルアミンの金属錯体(B)はポリマー
の重合禁止剤、硬化遅延剤として工業的に市販さ
れており、又、N―ニトロソフエニルヒドロキシ
ルアミンのアンモニウム塩水溶液と水溶性金属塩
を混合することにより容易に製造することができ
る。 これらの金属錯体は配合や中心金属の種類にも
依るが、対応するアルコキシドやカルボン酸塩
類、アセチルアセトン錯体に比較しより強い活性
を示すことが多い。 N―ニトロソフエニルヒドロキシルアミンの金
属錯体を構成する金属は、チタン、鉄、ニツケ
ル、アルミニウム、コバルト、マンガン、クロ
ム、ジルコニウム、マグネシウム、亜鉛、スズ、
バナジウム及びその他の金属元素等の金属から選
択される。 本発明に用いられるエポキシ樹脂(A)とN―ニト
ロソフエニルヒドロキシルアミンの金属錯体(B)は
通常エポキシ樹脂100重量部に対しN―ニトロソ
フエニルヒドロキシルアミンの金属錯体(B)0.05乃
至15重量部の割合で使用される。 本発明に用いられる促進作用を示す化合物(硬
化促進剤)は有機カルボン酸無水物類(C−1)、
ポリフエノール類(C−2)、ケイ素原子に直結
する水酸基、アルコキシ基乃至アリールオキシ基
を有する有機ケイ素化合物類(C−3)から選択
される。 有用な有機カルボン酸無水物類(C−1)は、
従来公知の単官能及び多官能性カルボン酸無水物
が含まれる。単官能カルボン酸無水物の例はヘキ
サヒドロフタル酸無水物、メチル―ヘキサヒドロ
フタル酸無水物、テトラヒドロフタル酸無水物、
メチル―テトラヒドロフタル酸無水物、フタル酸
無水物、メチルナジツク酸無水物、ドデセニルコ
ハク酸無水物、無水クロレンジツク酸などであ
る。又多官能カルボン酸無水物の例は無水ピロメ
リツト酸、ベンゾフエノンテトラカルボン酸無水
物、エチレングリコールビストリメリテート、ポ
リアゼライン酸ポリ無水物などである。 ポリフエノール類(C−2)としては、カテコ
ール、レゾルシノール、ビスフエノールA、ピロ
ガロール、ヒドロキシベンズアルデヒド、ノボラ
ツク樹脂、レゾルシン樹脂など芳香族環に水酸基
を有する化合物から選択される。 もう1つの有用な促進作用を示す化合物はケイ
素原子に直結した水酸基、アルコキシ基(メトキ
シ基、エトキシ基など)、アリールオキシ基(フ
エノキシ基、パラクロルフエニルオキシ基など)
を含有する有機ケイ素化合物(C−3)である。
水酸基を有する有機ケイ素化合物の例は、ジフエ
ニルシランジオール、トリフエニルシラノール、
トリアセチルシラノール、ジフエニルエチルシラ
ノール、トリメチルシラノール、トリブチルシラ
ノール、1,3―ジヒドロキシ―1,3―ジメチ
ル―1,3―ジフエニルジシロキサン、1,5―
ジヒドロキシ―1,1,5,5―テトラフエニル
―3,3―ジトリルトリシロキサンなどである。
又、アルコキシ基及びアリールオキシ基を有する
有機ケイ素化合物の例は、γ―グリシドキシプロ
ピルトリメトキシシラン、γ―グリシドキシプロ
ピルメチルジメトキシシラン、γ―クロロプロピ
ルメチルジメトキシシラン、γ―メタアクリロキ
シプロピルメトキシシラン、ビニルトリエトキシ
シラン、β―(3,4―エポキシシクロヘキシ
ル)エチルトリメトキシシラン、トリフエニルメ
トキシシラン、ジフエニルジエトキシシラン、ビ
ス(トリメチルシリル)カテコール等である。
又、これらの(部分)加水分解物も有効である。 これらの促進作用を有する化合物(C)の使用量は
エポキシ樹脂(A)100重量部に対して0.1乃至100重
量部の範囲で使用される。 有機カルボン酸無水物類(C−1)を使用する
際は、5乃至20重量部の少量でもよいがむしろエ
ポキシ樹脂の硬化剤として20乃至100重量部使用
することが好ましい。 一方、ポリフエノール類(C−2)及びケイ素
原子に直結する水酸基、アルコキシ基乃至アリー
ルオキシ基を有する有機ケイ素化合物類(C−
3)の使用量は0.1乃至10重量部の量でも十分で
ある。 エポキシ樹脂(A)として分子内にエポキシ基を有
し、且つケイ素原子に直接結合する水酸基、アル
コキシ基、アリールオキシ基を有する有機ケイ素
化合物を用いるときは、場合によつては硬化促進
剤(C)を用いなくてもよい。 本発明の組成物には更に希釈のための溶剤や、
改質のための反応性乃至非反応性の樹脂やプレポ
リマーを配合することができる。 又、顔料、染料、増量剤、難燃剤、静電防止
剤、ゲル化防止剤、密着性改良剤、流れ調整剤、
界面活性剤、酸化防止剤などを配合することもで
きる。これらの添加剤の量は機能と硬化性のバラ
ンスで決められるが、こうした組成物は金属、木
材、ゴム、プラスチツクス、ガラス、セラミツク
製品等に使用することができる。 本発明の組成物の具体的な用途としては、例え
ば塗料、インキ、接着剤、成形材料、注型材料、
ガラス繊維含浸テープ、パテ、目止め剤などが挙
げられる。又、本発明の組成物は電気特性が優れ
ることから各種電気用材料にも使用することがで
き、コンデンサー、抵抗、発光ダイオード、半導
体、プリント基板、トランス、モータ、電線、太
陽電池、リレー、スイツチやその他の電気・電子
部品などにも応用することができる。 本発明の組成物は取扱いが容易であり、触媒系
を選択することにより室温硬化乃至は潜在性の優
れた中・高温硬化性組成物を与えることができ
る。又得られた硬化物はとりわけ耐熱性・電気特
性に優れている。 以下本発明を実施例により更に詳細に説明す
る。 製造例 1 N―ニトロソフエニルヒドロキシルアミンアン
モニウム塩3.1gの50ml水溶液に、硫酸チタン
(30%水溶液)4mlを加える。即座に生成する沈
殿を集め減圧にて乾燥し3.2gのN―ニトロソフ
エニルヒドロキシルアミンチタニウム塩を得た。 実施例 1 脂環式エポキシ樹脂ERL−4221(ユニオンカー
バイド社製)、ビスフエノールA型エポキシ樹脂
Ep−4100(旭電化工業社製)、N―ニトロソフエ
ニルヒドロキシルアミンジルコニウム、チタニウ
ム、鉄、アルミニウム錯体、カテコール、フエノ
ールノボラツクXPS−4203B(群栄化学工業社
製)、ビスフエノールA(本州化学社製)を表1に
示す組成比(重量比)にそれぞれ選び樹脂組成物
を調整した。150℃におけるゲル化時間を測定し
た結果をアセチルアセトンアルミニウム、ジルコ
ニウム塩及びステアリン酸アルミニウムを用いた
比較品の結果と共に表1に示した。
The present invention relates to a thermosetting epoxy resin composition having excellent heat resistance and electrical properties. Specifically, the present invention relates to an epoxy resin composition that has excellent latent properties, is substantially free of ionicity, is industrially available, and is easy to handle. The use of organometallic complexes as curing catalysts for epoxy resins has been known for a long time. However, most of them require long heating times for curing, are difficult to obtain industrially, and are not easy to handle. However, the use of certain limited organometallic complexes, especially acetylacetone complexes, has been actively researched recently because it is possible to obtain cured products with excellent latent properties and hardenability, as well as excellent physical properties. JP-A-56-2319, JP-A No. 56-4625,
57-10622, 57-10623, and 57-42721, systems containing silicon compounds as accelerators, and epoxy groups as described in Japanese Patent Publication Nos. 57-2735 and 55-116731. Containing silicone resin, Special Publication Showa 56-
Essential components of compositions containing phenolic accelerators described in Publication No. 25926;
Compositions containing acid anhydrides described in each publication No. 115800 are noteworthy. The organic part of the organometallic complex or salt plays an important role in its activity and must be selected with great care. It goes without saying that it is important that the material is industrially easily available. In view of the above points, an object of the present invention is to provide a thermosetting epoxy resin composition containing an industrially easily available curing catalyst that has excellent latent properties and is substantially non-ionic. A further object of the present invention is to provide a thermosetting epoxy resin composition that has excellent heat resistance and electrical properties and has a quick gelation time. The thermosetting epoxy resin composition of the present invention is characterized by containing (A) an epoxy resin and (B) a metal complex of N-nitrosophenylhydroxylamine as essential components. Furthermore, the thermosetting epoxy resin composition of the present invention may optionally contain organic carboxylic acid anhydrides, polyphenols,
It is characterized by containing one or more compounds selected from the group consisting of organosilicon compounds having a hydroxyl group, an alkoxy group, or an aryloxy group directly bonded to a silicon atom. The epoxy resin (A) used in the present invention is a conventionally known aromatic epoxy resin, alicyclic epoxy resin,
Examples include aliphatic epoxy resins. Particularly preferred aromatic epoxy resins are polyglycidyl ethers of polyhydric phenols having at least one aromatic nucleus or their alkylene oxide adducts, such as bisphenol A or its alkylene oxide adducts and epichlorohydrin. Examples include glycidyl ether and epoxy novolak resin produced by reaction with Particularly preferred aliphatic epoxy resins include polyglycidyl ethers of polyhydric alcohols having at least one alicyclic ring, or compounds containing cyclohexene or cyclopentene rings, which are epoxidized with a suitable oxidizing agent such as hydrogen peroxide or peracid. There are cyclohexene oxide- or cyclopentene oxide-containing compounds obtained by Typical examples of polyglycidyl ethers of polyhydric alcohols having at least one alicyclic ring include glycidyl ethers produced by reacting hydrogenated bisphenol A or its alkylene oxide adduct with epichlorohydrin. . Particularly preferable aliphatic epoxy resins include polyglycidyl ethers of aliphatic polyhydric alcohols or their alkylene oxide adducts; representative examples include diglycidyl ether of 1,6-hexanediol and triglycidyl ether of glycerin. , the addition of one or more alkylene oxides (ethylene oxide, propylene oxide) to aliphatic polyhydric alcohols such as diglycidyl ether of polyethylene glycol, diglycidyl ether of polypropylene glycol, ethylene glycol, propylene glycol, and glycerin. Examples include polyglycidyl ethers of polyether polyols obtained by. Furthermore, monoglycidyl ethers of aliphatic higher alcohols, phenols, cresols, or monoglycidyl ethers of polyether alcohols obtained by adding alkylene oxide to these may also be blended as diluents. Further, as the epoxy resin (A) of the present invention, an epoxy silane or the like having an epoxy group in the molecule can be used. When using such an organosilicon compound having an epoxy group in the molecule, it may be unnecessary to use a curing accelerator (C). The metal complex (B) of N-nitrosophenylhydroxylamine, which constitutes an essential component of the present invention, is commercially available as a polymerization inhibitor and curing retardant for polymers. It can be easily produced by mixing an aqueous ammonium salt solution and a water-soluble metal salt. Although these metal complexes depend on the composition and the type of central metal, they often exhibit stronger activity than the corresponding alkoxides, carboxylates, and acetylacetone complexes. The metals constituting the metal complex of N-nitrosophenylhydroxylamine include titanium, iron, nickel, aluminum, cobalt, manganese, chromium, zirconium, magnesium, zinc, tin,
Selected from metals such as vanadium and other metallic elements. The epoxy resin (A) and the metal complex of N-nitrosophenylhydroxylamine (B) used in the present invention are usually 0.05 to 15 parts by weight of the metal complex of N-nitrosophenylhydroxylamine (B) per 100 parts by weight of the epoxy resin. used in proportion. Compounds exhibiting an accelerating effect (curing accelerator) used in the present invention include organic carboxylic acid anhydrides (C-1),
It is selected from polyphenols (C-2) and organosilicon compounds (C-3) having a hydroxyl group, an alkoxy group or an aryloxy group directly connected to a silicon atom. Useful organic carboxylic acid anhydrides (C-1) are:
Conventionally known monofunctional and polyfunctional carboxylic acid anhydrides are included. Examples of monofunctional carboxylic anhydrides are hexahydrophthalic anhydride, methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride,
These include methyl-tetrahydrophthalic anhydride, phthalic anhydride, methylnadic anhydride, dodecenylsuccinic anhydride, chloreneditsic anhydride, and the like. Examples of polyfunctional carboxylic anhydrides include pyromellitic anhydride, benzophenonetetracarboxylic anhydride, ethylene glycol bistrimelitate, and polyazelaic acid polyanhydride. The polyphenols (C-2) are selected from compounds having a hydroxyl group in an aromatic ring, such as catechol, resorcinol, bisphenol A, pyrogallol, hydroxybenzaldehyde, novolac resin, and resorcinol resin. Another compound that shows a useful promoting effect is a hydroxyl group, an alkoxy group (methoxy group, ethoxy group, etc.), an aryloxy group (phenoxy group, parachlorophenyloxy group, etc.) directly bonded to a silicon atom.
It is an organosilicon compound (C-3) containing.
Examples of organosilicon compounds having a hydroxyl group include diphenylsilanediol, triphenylsilanol,
Triacetylsilanol, diphenylethylsilanol, trimethylsilanol, tributylsilanol, 1,3-dihydroxy-1,3-dimethyl-1,3-diphenyldisiloxane, 1,5-
Dihydroxy-1,1,5,5-tetraphenyl-3,3-ditolyltrisiloxane and the like.
Further, examples of organosilicon compounds having an alkoxy group and an aryloxy group include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-methacryloxy These include propylmethoxysilane, vinyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, triphenylmethoxysilane, diphenyldiethoxysilane, bis(trimethylsilyl)catechol, and the like.
Moreover, these (partial) hydrolysates are also effective. The amount of the compound (C) having an accelerating effect is 0.1 to 100 parts by weight per 100 parts by weight of the epoxy resin (A). When organic carboxylic acid anhydride (C-1) is used, it may be used in a small amount of 5 to 20 parts by weight, but it is preferable to use 20 to 100 parts by weight as a curing agent for the epoxy resin. On the other hand, polyphenols (C-2) and organosilicon compounds having a hydroxyl group, alkoxy group or aryloxy group directly connected to a silicon atom (C-2)
3) may be used in an amount of 0.1 to 10 parts by weight. When using an organosilicon compound having an epoxy group in the molecule and a hydroxyl group, alkoxy group, or aryloxy group directly bonded to a silicon atom as the epoxy resin (A), a curing accelerator (C ) may not be used. The composition of the present invention further includes a solvent for dilution,
Reactive or non-reactive resins and prepolymers for modification can be blended. In addition, pigments, dyes, extenders, flame retardants, antistatic agents, antigelation agents, adhesion improvers, flow regulators,
Surfactants, antioxidants, etc. can also be blended. Although the amount of these additives is determined by the balance between functionality and curability, these compositions can be used in metal, wood, rubber, plastics, glass, ceramic products, and the like. Specific uses of the composition of the present invention include, for example, paints, inks, adhesives, molding materials, casting materials,
Examples include glass fiber-impregnated tape, putty, and sealant. In addition, the composition of the present invention has excellent electrical properties and can be used for various electrical materials such as capacitors, resistors, light emitting diodes, semiconductors, printed circuit boards, transformers, motors, electric wires, solar cells, relays, and switches. It can also be applied to other electrical and electronic parts. The composition of the present invention is easy to handle, and by selecting a catalyst system, it is possible to provide a room temperature curing composition or a medium to high temperature curing composition with excellent latent properties. Furthermore, the obtained cured product has particularly excellent heat resistance and electrical properties. The present invention will be explained in more detail below with reference to Examples. Production Example 1 Add 4 ml of titanium sulfate (30% aqueous solution) to 50 ml of an aqueous solution of 3.1 g of N-nitrosophenylhydroxylamine ammonium salt. The immediately formed precipitate was collected and dried under reduced pressure to obtain 3.2 g of N-nitrosophenylhydroxylamine titanium salt. Example 1 Alicyclic epoxy resin ERL-4221 (manufactured by Union Carbide), bisphenol A type epoxy resin
Ep-4100 (manufactured by Asahi Denka Kogyo Co., Ltd.), N-nitrosophenylhydroxylamine zirconium, titanium, iron, aluminum complex, catechol, phenol novolak XPS-4203B (manufactured by Gunei Chemical Industry Co., Ltd.), bisphenol A (Honshu Chemical Co., Ltd.) were selected to have the composition ratios (weight ratios) shown in Table 1, respectively, and the resin compositions were prepared. The results of measuring the gelation time at 150°C are shown in Table 1 together with the results of comparative products using aluminum acetylacetonate, zirconium salt, and aluminum stearate.

【表】 表1より明らかな如く、本発明のエポキシ樹脂
組成物は、従来最もゲル化時間の短いとされるア
セチルアセトン錯体を含有するエポキシ樹脂組成
物と同等以上の速いゲル化時間を有している。 実施例 2 脂環式エポキシ樹脂ERL−4221、ビスフエノ
ールA型エポキシ樹脂Ep−4100、γ―グリシド
キシプロピルトリメトキシシランKBM−403(信
越化学社製)、シリコン化合物SH−6018(東レシ
リコーン社製)、N―ニトロソフエニルヒドロキ
シルアミンアルミニウム錯体を表2に示した組成
に配合し、それぞれの樹脂組成物の150℃でのゲ
ル化時間を測定し、アルミニウムアセチルアセト
ナートを用いた比較品の結果と共に表2に示し
た。又、アルミニウムアセチルアセトナートの代
りにアルミニウム、イソブトキシド及びステアリ
ン酸アルミニウムを用いた比較品の場合はゲル化
が極端に遅かつた。
[Table] As is clear from Table 1, the epoxy resin composition of the present invention has a gelation time that is equal to or faster than the epoxy resin composition containing an acetylacetone complex, which is considered to have the shortest gelation time in the past. There is. Example 2 Alicyclic epoxy resin ERL-4221, bisphenol A type epoxy resin Ep-4100, γ-glycidoxypropyltrimethoxysilane KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.), silicon compound SH-6018 (manufactured by Toray Silicone Co., Ltd.) ), N-nitrosophenylhydroxylamine aluminum complex was blended into the composition shown in Table 2, and the gelation time of each resin composition at 150°C was measured. The results are shown in Table 2. Furthermore, in the case of a comparative product in which aluminum, isobutoxide, and aluminum stearate were used instead of aluminum acetylacetonate, gelation was extremely slow.

【表】【table】

【表】 実施例 3 脂環式エポキシ樹脂ERL−4221 100重量部、
γ―グリシドキシプロピルトリメトキシシラン
KBM−403 1重量部、及びN―ニトロソフエニ
ルヒドロキシルアミンアルミニウム錯体0.5重量
部からなる配合物を調整し、80℃4時間、更に
180℃12時間で硬化し厚さ3mmの板を得た。この
硬化物の熱変形温度(HDT)並びに電気特性
(Tanδ)はHDT165℃、tanδ(150℃)1.05(%)
であつた。 実施例 4 N―ニトロソフエニルヒドロキシルアミンの各
種金属塩(錯体)0.5部を促進剤としEH−700(旭
電化製液状酸無水物)80重量部をエポキシ樹脂
(Ep−4100又はERL−4221)100重量部と混合し、
促進作用をみた。150℃の温度において強い促進
作用(ゲル化10分以内)を示した金属は鉄()、
コバルト()、亜鉛、ジルコニウム、アルミニ
ウム、スズであつた。その他の金属、チタン
()、マンガン()、マグネシウム()、ニツ
ケル、クロム()等を用いたものも1時間以内
にゲル化した。チタン()、マンガン()、マ
グネシウム()、クロム()を用いエポキシ
樹脂としてEp−4100を使用したものは3ケ月後
も良好な貯蔵安定性を有しており、又その他の金
属を使用したのものも比較的長い安定性を示し
た。 実施例 5 γ―グリシドキシプロピルトリメトキシシラン
の加水分解物100重量部、ビスフエノールA型エ
ポキシ樹脂組成物Ep−4000(旭電化製)70重量
部、シリコン系界面活性剤1重量部、メタノール
シリカゾル(日産化学製)300重量部からなる配
合物に硬化剤としてN―ニトロソフエニルヒドロ
キシルアミンアルミニウム錯体1重量部を加えワ
ニスを調製した。このワニスをポリカーボネート
板に塗布後120℃で乾燥硬化を行つたところ、約
30分〜1時間後には耐スチールウール性にたいへ
ん優れた塗膜が得られた。又、ワニスの安定性は
少なくとも3ケ月であつた。
[Table] Example 3 Alicyclic epoxy resin ERL-4221 100 parts by weight,
γ-glycidoxypropyltrimethoxysilane
A blend consisting of 1 part by weight of KBM-403 and 0.5 parts by weight of N-nitrosophenylhydroxylamine aluminum complex was prepared, and the mixture was heated at 80°C for 4 hours.
It was cured at 180°C for 12 hours to obtain a plate with a thickness of 3 mm. The heat distortion temperature (HDT) and electrical properties (Tanδ) of this cured product are HDT 165℃, tanδ (150℃) 1.05 (%)
It was hot. Example 4 Using 0.5 parts of various metal salts (complexes) of N-nitrosophenylhydroxylamine as an accelerator, 80 parts by weight of EH-700 (liquid acid anhydride manufactured by Asahi Denka) was added to an epoxy resin (Ep-4100 or ERL-4221). Mixed with 100 parts by weight,
I saw a promoting effect. The metals that showed a strong acceleration effect (gelation within 10 minutes) at a temperature of 150℃ were iron (),
They were cobalt (), zinc, zirconium, aluminum, and tin. Those using other metals, such as titanium (), manganese (), magnesium (), nickel, and chromium (), also gelled within one hour. Products using Ep-4100 as an epoxy resin using titanium (), manganese (), magnesium (), and chromium () have good storage stability even after 3 months, and products using other metals also showed relatively long stability. Example 5 100 parts by weight of hydrolyzate of γ-glycidoxypropyltrimethoxysilane, 70 parts by weight of bisphenol A type epoxy resin composition Ep-4000 (manufactured by Asahi Denka), 1 part by weight of silicone surfactant, methanol A varnish was prepared by adding 1 part by weight of N-nitrosophenylhydroxylamine aluminum complex as a hardening agent to a formulation consisting of 300 parts by weight of silica sol (manufactured by Nissan Chemical). When this varnish was applied to a polycarbonate plate and dried and cured at 120℃, approx.
After 30 minutes to 1 hour, a coating film with excellent steel wool resistance was obtained. Also, the stability of the varnish was at least 3 months.

Claims (1)

【特許請求の範囲】 1 必須の成分として (A) エポキシ樹脂と、 (B) N―ニトロソフエニルヒドロキシルアミンの
金属錯体 とを含有する熱硬化性エポキシ樹脂組成物。 2 更に、(C)硬化促進剤として、有機カルボン酸
無水物類、ポリフエノール類、ケイ素原子に直接
結合する水酸基、アルコキシ基あるいはアリール
オキシ基を有する有機ケイ素化合物類からなる群
より選択された1種以上の化合物を含有する特許
請求の範囲第1項記載の熱硬化性エポキシ樹脂組
成物。
[Scope of Claims] 1. A thermosetting epoxy resin composition containing (A) an epoxy resin and (B) a metal complex of N-nitrosophenylhydroxylamine as essential components. 2 Furthermore, as a curing accelerator (C) 1 selected from the group consisting of organic carboxylic acid anhydrides, polyphenols, and organosilicon compounds having a hydroxyl group, an alkoxy group, or an aryloxy group directly bonded to a silicon atom. The thermosetting epoxy resin composition according to claim 1, which contains at least one type of compound.
JP57119633A 1982-07-09 1982-07-09 Thermosetting epoxy resin composition Granted JPS5911318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57119633A JPS5911318A (en) 1982-07-09 1982-07-09 Thermosetting epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119633A JPS5911318A (en) 1982-07-09 1982-07-09 Thermosetting epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS5911318A JPS5911318A (en) 1984-01-20
JPH021171B2 true JPH021171B2 (en) 1990-01-10

Family

ID=14766272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119633A Granted JPS5911318A (en) 1982-07-09 1982-07-09 Thermosetting epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS5911318A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302401A (en) * 1998-04-17 1999-11-02 Matsushita Electric Works Ltd Epoxy resin composition and insulating substrate using the same
JP5992962B2 (en) * 2013-07-02 2016-09-14 積水化学工業株式会社 Curable composition for inkjet and method for producing electronic component

Also Published As

Publication number Publication date
JPS5911318A (en) 1984-01-20

Similar Documents

Publication Publication Date Title
KR101512623B1 (en) Epoxy resin hardener compositions and epoxy resin compositions containing such hardener compositions
WO2013183735A1 (en) Epoxy resin, epoxy resin composition and cured product
EP0117113A2 (en) Curing agents for epoxy resins
US4314917A (en) High-solids epoxy prepolymer coating composition
US4342673A (en) High-solids coating compositions
JP4883842B2 (en) Additive for epoxy resin composition and epoxy resin composition thereof
JPH10298405A (en) Epoxy resin composition and cured product composite
JP2013108011A (en) Epoxy resin solution, epoxy resin composition, hardened material and adhesive
JP6186108B2 (en) Phenolic resin composition
JPH021171B2 (en)
JPH0336847B2 (en)
JP2003040970A (en) Method for producing silane-modified epoxy resin, resin composition, semicured material and cured material
JPH05306384A (en) Thermosetting tacky adhesive composition
JP3451104B2 (en) Epoxy resin composition
CA1182948A (en) Curable epoxy resins
JP2002249539A (en) Alkoxy group-containing silane modified epoxy resin, its manufacturing method, epoxy resin composition and its cured product
US3716598A (en) Hardenable epoxy resin compositions
JPH01240516A (en) Epoxy resin composition
JP6147886B2 (en) Phenolic resin composition
JP2003048953A (en) Methoxy group-containing silane-modified novolak epoxy resin and semicured material and cured material obtained from the same resin composition
JPH0222347A (en) Surface treating agent, method for treating surface, solid substance with treated surface and resin composition
JP2001181370A (en) Curable alicyclic group-containing compound and composition thereof
JPH01144437A (en) Epoxy resin composition
JPH06128360A (en) Liquid epoxy resin composition
JP2003041183A (en) Coating composition and its cured film