Nothing Special   »   [go: up one dir, main page]

JPH0159215B2 - - Google Patents

Info

Publication number
JPH0159215B2
JPH0159215B2 JP14278583A JP14278583A JPH0159215B2 JP H0159215 B2 JPH0159215 B2 JP H0159215B2 JP 14278583 A JP14278583 A JP 14278583A JP 14278583 A JP14278583 A JP 14278583A JP H0159215 B2 JPH0159215 B2 JP H0159215B2
Authority
JP
Japan
Prior art keywords
potassium
rutile
sand
melt
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14278583A
Other languages
Japanese (ja)
Other versions
JPS6034617A (en
Inventor
Yoshinori Fujiki
Takefumi Mihashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP14278583A priority Critical patent/JPS6034617A/en
Publication of JPS6034617A publication Critical patent/JPS6034617A/en
Priority to US06/891,425 priority patent/US4810439A/en
Publication of JPH0159215B2 publication Critical patent/JPH0159215B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 本発明は耐熱性、断熱性、耐化学性及び補強性
の優れたルチル−プリデライト−六チタン酸カリ
ウム複合繊維の製造法に関する。更に詳しくは天
然産のルチルサンドまたはアナターゼサンドをそ
のまま使用し、その中に含まれている不純物を有
効成分として活用して優れた特性を持つルチル−
プリデライト−六チタン酸カリウム複合繊維を製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing rutile-pridelite-potassium hexatitanate composite fibers having excellent heat resistance, heat insulation properties, chemical resistance, and reinforcing properties. For more details, we use naturally produced rutile sand or anatase sand as is, and utilize the impurities contained therein as active ingredients to create rutile with excellent properties.
The present invention relates to a method for producing pridelite-potassium hexatitanate composite fiber.

従来、耐熱性、断熱材として繊維状六チタン酸
カリウムK2Ti6O13が知られている。これはフラ
ツクス法、メルト法、徐冷焼成法などによつて製
造されているが、これらのいずれの方法において
も、原料である二酸化チタンは、例えばイルメナ
イト鉱石を硫酸法あるいは塩素法の処理によつて
製造された99%以上の高純度のものが使用されて
きた。従つて原料コストが高くなる欠点があつ
た。
Fibrous potassium hexatitanate K 2 Ti 6 O 13 has been known as a heat-resistant and heat-insulating material. It is manufactured by the flux method, melt method, slow cooling and sintering method, etc., but in all of these methods, the raw material titanium dioxide is produced by treating ilmenite ore with a sulfuric acid method or a chlorine method. Highly purified products of over 99% purity have been used. Therefore, there was a drawback that the cost of raw materials was high.

本発明の目的は低廉な耐熱性、断熱材を提供せ
んとするものである。
An object of the present invention is to provide an inexpensive heat-resistant and heat-insulating material.

本発明者らは、天然産のルチルサンド、アナタ
ーゼサンドの組成について検討した結果、それに
含有されている主要固溶不純物はFe2O3、Al2O3
CrO3であり、これらはプリデライトKx(Mx
Ti8-x)O16(ただし、MはFe、Al、Cr、Gaを、
xは1.5<x<2を表わす)のM〓席を占有する成
分となるものであることが分つた。
The present inventors investigated the composition of naturally produced rutile sand and anatase sand, and found that the main solid solution impurities contained therein were Fe 2 O 3 , Al 2 O 3 ,
CrO 3 and these are pridelite K x (M x
Ti 8-x ) O 16 (M is Fe, Al, Cr, Ga,
It was found that this is a component that occupies the M〓 seat (x represents 1.5<x<2).

そこで、これらの天然産の不純物含有のもの
を、不純物を除去することなく、炭酸カリウムと
K2O・n(Ti・M)O2(ただし、nは1.5〜2.5、M
は含有不純物金属を表わす)の割合に混合して使
用したところ、従来の高純度二酸化チタンと同様
に調和溶融し、該溶融体を結晶化して層状構造を
有する繊維状物となる。そしてこの層間を占有す
るK2O成分を抽出した後、熱処理すると、ルチル
−プリデライト−六チタン酸カリウム複合繊維が
得られることを究明し得た。この知見に基いて本
発明を完成した。
Therefore, these naturally produced impurity-containing materials were mixed with potassium carbonate without removing the impurities.
K 2 O・n(Ti・M)O 2 (where n is 1.5 to 2.5, M
represents the impurity metal contained), it harmonically melts like conventional high-purity titanium dioxide, and the melt crystallizes to form a fibrous material having a layered structure. It was found that a rutile-pridellite-potassium hexatitanate composite fiber can be obtained by heat-treating the fiber after extracting the K 2 O component occupying the interlayer space. The present invention was completed based on this knowledge.

本発明の要旨は、 一般式(Ti、M)O2(ただし、Mは含有不純物
金属を表わす)で示される天然産のルチルサンド
またはアナターゼサンドと、酸化カリウムまたは
加熱によつて酸化カリウムを生成するカリウム化
合物あるいはこれらの混合物とを、一般式K2O・
n(Ti、M)O2(ただし、nは1.5〜2.5、Mは前記
と同じ)で示す割合に混合し、これら混合物を加
熱して溶融体を生成し、該溶融体から二チタン酸
カリウム(K2O・2TiO2)と同じ層状構造の結晶
体からなる繊維状物を冷却固化により形成させ、
次いで該繊維状物中のK2O成分の一部を抽出した
後、800℃以上溶融温度未満で熱処理することを
特徴とする方法である。
The gist of the present invention is to produce potassium oxide using naturally occurring rutile sand or anatase sand represented by the general formula (Ti, M)O 2 (where M represents the impurity metal contained) and potassium oxide or by heating. or a mixture thereof, with the general formula K 2 O.
n(Ti,M)O 2 (where n is 1.5 to 2.5 and M is the same as above), the mixture is heated to form a melt, and potassium dititanate is extracted from the melt. (K 2 O・2TiO 2 ) is formed by cooling and solidifying a fibrous material consisting of crystals with the same layered structure.
This method is characterized in that a part of the K 2 O component in the fibrous material is then extracted and then heat-treated at a temperature of 800° C. or higher and lower than the melting temperature.

本発明において使用する天然産のルチルサンド
は漂砂鉱床から砂状に得られ、約95%のTiO2
位であり、不純物として、Fe2O3、Al2O3
Cr2O3、SiO2、Nb2O5、ZrO2、V2O5、などが含
まれ、その含有量は例えば、Fe2O30.6%、
ZrO20.7%、SiO20.6%、Cr2O30.3%、V2O50.7%、
Nb2O50.3%、Al2O30.4%である。これらの不純
物の特にFe2O3、Al2O3、Cr2O3などがプリデライ
トの構成成分として有効に活用し得られる。アナ
ターゼサンドもほぼ同様な組成成分を有してい
る。
The naturally occurring rutile sand used in the present invention is obtained in the form of sand from alluvial deposits, has a TiO 2 grade of approximately 95%, and contains Fe 2 O 3 , Al 2 O 3 , and impurities.
Cr 2 O 3 , SiO 2 , Nb 2 O 5 , ZrO 2 , V 2 O 5 , etc. are included, and the content is, for example, Fe 2 O 3 0.6%,
ZrO2 0.7%, SiO2 0.6%, Cr2O3 0.3 %, V2O5 0.7 %,
Nb 2 O 5 0.3%, Al 2 O 3 0.4%. These impurities, particularly Fe 2 O 3 , Al 2 O 3 , Cr 2 O 3 and the like, can be effectively utilized as constituents of priderite. Anatase Sand also has almost the same compositional components.

ルチルサンド等の原料はカリウム成分と反応し
易いことが望ましいため粒度を細かくして使用す
ることが好ましい。
Since it is desirable that raw materials such as rutile sand react easily with potassium components, it is preferable to use them with fine particle size.

本発明において用いるカリウム成分としては、
K2O、また加熱によりK2Oを生成するカリウム化
合物、例えば、KOH、K2CO3、KHCO3、などの
単独あるいは混合物が挙げられる。
As the potassium component used in the present invention,
Examples include K 2 O, and potassium compounds that produce K 2 O upon heating, such as KOH, K 2 CO 3 , KHCO 3 , etc. alone or in mixtures.

天然産のルチルサンドと前記カリウム成分と
を、一般式、K2O・n(TiM)O2(n、Mは前記
と同じ)を生成する割合に混合して、これを1100
℃に加熱溶融し、この溶融体を冷却固化すると、
層状構造を有する結晶性繊維状物が得られる。
Naturally produced rutile sand and the above-mentioned potassium component are mixed at a ratio that produces the general formula K 2 O・n(TiM)O 2 (n, M are the same as above), and this is mixed with 1100
When heated and melted at ℃, and this melt is cooled and solidified,
A crystalline fibrous material having a layered structure is obtained.

前記一般式nが1.5より小さい割合に混合する
と、層状構造のものができなくなり、nが1では
繊維化しない。またnが2.5より大きくなると、
溶融点が高くなるばかりでなく、K2Ti4O9組成の
チタン酸カリウムが生成し、繊維の分離ができな
くなる。従つて、nの値は1.5〜2.5、好ましくは
2であることが必要である。
If n is mixed in a ratio of less than 1.5, a layered structure will not be formed, and if n is 1, fibers will not form. Also, when n is larger than 2.5,
Not only does the melting point become high, but potassium titanate with a composition of K 2 Ti 4 O 9 is produced, making it impossible to separate the fibers. Therefore, the value of n needs to be 1.5 to 2.5, preferably 2.

繊維形成方法としては、(1)溶融紡糸方法、例え
ばガラス繊維成形用の各種の方法と同様な方法。
(2)溶融体を別容器に流出させる方法。(3)溶融るつ
ぼの底を急冷する方法。(4)蒸気吹付法によりプツ
シングから流出する溶融体に高圧蒸気を吹付ける
方法が挙げられる。
Fiber forming methods include (1) melt spinning methods, such as methods similar to various methods for forming glass fibers;
(2) A method of draining the molten material into a separate container. (3) A method of rapidly cooling the bottom of a melting crucible. (4) A method of spraying high-pressure steam onto the molten material flowing out from the pushing using the steam spraying method.

冷却固化により繊維状に成形すると、結晶学的
に層状構造を有する結晶質のチタン酸カリウムの
繊維状物となる。これを水、温水、沸とう水で処
理すると、層間に占有するカリウム成分が抽出す
る。この処理は沸とう水で2〜3時間処理する方
法が好ましい。カルシウム成分の一部を抽出した
後、800℃以上に加熱すると、層状構造からトン
ネル構造に変換し、ルチル−プリデライト−六チ
タン酸カリウムの結晶性のよい複合繊維となる。
加熱温度は800℃以上であることが必要であるが、
溶融温度(ルチル:1840℃、プリデライト:約
1500℃、六チタン酸カリウム:1370℃)以下で、
好ましくは約1000℃である。
When formed into a fiber by cooling and solidifying, it becomes a crystalline potassium titanate fiber having a crystallographic layered structure. When this is treated with water, hot water, or boiling water, the potassium component occupying between the layers is extracted. This treatment is preferably carried out using boiling water for 2 to 3 hours. After extracting a portion of the calcium component, heating to 800°C or higher transforms the layered structure into a tunnel structure, resulting in a rutile-pridelite-potassium hexatitanate composite fiber with good crystallinity.
The heating temperature must be 800℃ or higher,
Melting temperature (rutile: 1840℃, pridelite: approx.
1500℃, potassium hexatitanate: 1370℃) or less,
Preferably it is about 1000°C.

実施例 1 天然産ルチルサンド(オーストラリヤの
Associated Minerals Consolidated Limited)
のNS−grade(TiO295.9%、主要不純物:
Fe2O30.6%、ZrO20.7%、SiO20.6%、Cr2O30.3
%、V2O50.7%、Nb2O50.3%、Al2O30.4%であつ
た。)の粒度100〜60μmのものを使用した。
Example 1 Naturally produced rutile sand (Australian
Associated Minerals Consolidated Limited)
NS−grade ( TiO2 95.9%, main impurities:
Fe2O3 0.6 %, ZrO2 0.7%, SiO2 0.6%, Cr2O3 0.3
%, V 2 O 5 0.7%, Nb 2 O 5 0.3%, and Al 2 O 3 0.4%. ) with a particle size of 100 to 60 μm was used.

該ルチルサンドとK2CO3粉末をモル比で2:
1の割合で混合した。この混合物6gを30ml白金
るつぼで1100℃で30分加熱して溶融させた。この
溶融体の入つているるつぼを水冷している鉄板の
上に置いて底部を急冷固化することによつて繊維
を形成させた。この繊維はK2O・2(Ti、M)O2
(ただし、MはFe等の金属)の組成の結晶体であ
つた。
The molar ratio of the rutile sand and K 2 CO 3 powder is 2:
They were mixed at a ratio of 1:1. 6 g of this mixture was heated in a 30 ml platinum crucible at 1100° C. for 30 minutes to melt it. The crucible containing this melt was placed on a water-cooled iron plate, and the bottom portion was rapidly cooled and solidified to form fibers. This fiber is K 2 O.2 (Ti, M) O 2
(However, M is a metal such as Fe).

るつぼを1の冷水中に2時間浸漬して繊維を
分離し、該繊維を更に1の水で、洗浄した。次
いで1の沸とう水中に30分間浸漬して脱カリウ
ム処理を行い、よく水洗して120℃で乾燥させた。
該乾燥物を1000℃で1時間加熱処理した。
The fibers were separated by soaking the crucible in 1 part of cold water for 2 hours, and the fibers were further washed with 1 part of water. Next, it was immersed in boiling water (1) for 30 minutes to remove potassium, washed well with water, and dried at 120°C.
The dried product was heat-treated at 1000°C for 1 hour.

得られた繊維は、2〜5mmの長さで、直径0.01
〜0.2mmであつた。これをX線粉末回析したとこ
ろ、結晶のよいルチル・プリデライト、六チタン
酸カリウムの混合相であつた。
The obtained fibers are 2-5 mm long and 0.01 mm in diameter.
It was ~0.2mm. When this was subjected to X-ray powder diffraction, it was found to be a mixed phase of well-crystalline rutile pridellite and potassium hexatitanate.

混合各相の室温における熱伝導率はルチル
0.104(W・cm-1・K-1)、プリデライト例えば
K2Al2Ti6O16組成では0.029(W・cm-1・K-1)、六
チタン酸カリウム0.037(W・cm-1・K-1)でいず
れも小さい値を示し、複合相となつても熱伝導率
は0.020(W・cm-1・K-1)で小さく、断熱特性に
優れたものである。
The thermal conductivity of each mixed phase at room temperature is rutile.
0.104 (W・cm -1・K -1 ), pridelite e.g.
The K 2 Al 2 Ti 6 O 16 composition shows a small value of 0.029 (W cm -1 K -1 ) and potassium hexatitanate 0.037 (W cm -1 K -1 ), indicating that it is not a composite phase. Even after aging, the thermal conductivity is as low as 0.020 (W·cm -1 ·K -1 ), and it has excellent heat insulating properties.

この混合相の各相の割合は、カリウム量、不純
物量で変化し、原料が同じであれば、脱カリウム
処理を制御することにより一定割合にすることが
できる。
The ratio of each phase in this mixed phase changes depending on the amount of potassium and the amount of impurities, and if the raw materials are the same, the ratio can be kept constant by controlling the potassium removal treatment.

なお、天然産アナターゼも同様にして複合繊維
が得られる。
Incidentally, a composite fiber can be obtained from naturally produced anatase in the same manner.

本発明の方法によると、従来の繊維状二チタン
酸カリウムを製造する場合におけるように高純度
のチタン原料を使用せず、天然産のルチルサンド
またはアナターゼをそのまま使用するので原料費
が約1/10と安価となり、しかも天然原料中に含ま
れる不純物を反応させてプリデライト相を形成さ
せ、ルチル−プリデライト−六チタン酸カリウム
の結晶性のよい複合繊維の耐熱性の優れたものと
なし得た優れた効果を有する。
According to the method of the present invention, unlike the conventional production of fibrous potassium dititanate, high-purity titanium raw materials are not used, and naturally produced rutile sand or anatase is used as is, so the raw material cost is approximately 1/1/2. 10, it is inexpensive, and the impurities contained in the natural raw materials are reacted to form the pridelite phase, resulting in a composite fiber with good crystallinity of rutile-pridelite-potassium hexatitanate that has excellent heat resistance. It has a good effect.

Claims (1)

【特許請求の範囲】[Claims] 1 一般式(Ti、M)O2(ただし、Mは含有不純
物金属を表わす)で示される天然産のルチルサン
ドまたはアナターゼサンドと、酸化カリウムまた
は加熱によつて酸化カリウムを生成するカリウム
化合物あるいはこれらの混合物とを、一般式
K2O・n(Ti、M)O2(ただし、nは1.5〜2.5、M
は前記と同じ)で示す割合に混合し、これら混合
物を加熱して溶融体を生成し、該溶融体から二チ
タン酸カリウム(K2O・2TiO2)と同じ層状構造
の結晶体からなる繊維状物を冷却固化により形成
させ、次いで該繊維状物中のK2O成分の一部を抽
出した後、800℃以上溶融温度未満で熱処理する
ことを特徴とするルチル−プリデライト−六チタ
ン酸カリウム複合繊維の製造法。
1 Naturally produced rutile sand or anatase sand represented by the general formula (Ti, M)O 2 (where M represents the impurity metal contained) and potassium oxide or a potassium compound that produces potassium oxide by heating, or these and the general formula
K 2 O・n (Ti, M) O 2 (where n is 1.5 to 2.5, M
are the same as above), the mixture is heated to form a melt, and from the melt a fiber consisting of a crystalline substance with the same layered structure as potassium dititanate (K 2 O 2TiO 2 ) is produced. rutile-pridellite-potassium hexatitanate, which is characterized in that a fibrous material is formed by cooling and solidifying, and then a part of the K 2 O component in the fibrous material is extracted, and then heat-treated at a temperature of 800°C or higher and lower than the melting temperature. Method for manufacturing composite fibers.
JP14278583A 1983-08-04 1983-08-04 Production of rutile-pridelite-potassium hexatitanate composite fiber Granted JPS6034617A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14278583A JPS6034617A (en) 1983-08-04 1983-08-04 Production of rutile-pridelite-potassium hexatitanate composite fiber
US06/891,425 US4810439A (en) 1983-08-04 1986-08-04 Process for producing potassium hexatitanate fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14278583A JPS6034617A (en) 1983-08-04 1983-08-04 Production of rutile-pridelite-potassium hexatitanate composite fiber

Publications (2)

Publication Number Publication Date
JPS6034617A JPS6034617A (en) 1985-02-22
JPH0159215B2 true JPH0159215B2 (en) 1989-12-15

Family

ID=15323541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14278583A Granted JPS6034617A (en) 1983-08-04 1983-08-04 Production of rutile-pridelite-potassium hexatitanate composite fiber

Country Status (1)

Country Link
JP (1) JPS6034617A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178398A (en) * 1988-01-11 1989-07-14 Showa Alum Corp Aluminum brazing sheet

Also Published As

Publication number Publication date
JPS6034617A (en) 1985-02-22

Similar Documents

Publication Publication Date Title
US4810439A (en) Process for producing potassium hexatitanate fibers
JPS6125657B2 (en)
JP2010285334A (en) Method for producing composite oxide fine particle
JPH0159215B2 (en)
JPH0223482B2 (en)
JPH0159214B2 (en)
JPH0338239B2 (en)
JPH0346405B2 (en)
JPS6163529A (en) Production of titanium compound fiber
JP2631859B2 (en) Method for producing titania fiber
US4390513A (en) Process for manufacturing fibrous potassium titanate
JPS6241176B2 (en)
JPH0360776B2 (en)
JPH0159216B2 (en)
JPS63260821A (en) Production of potassium titanate fiber
JPS6121915A (en) Manufacture of titanium compound fiber
JPS6121914A (en) Manufacture of titanium compound fiber
JPH0450063B2 (en)
JPS61210000A (en) Production of titanium compound fiber
JPS62260796A (en) Production of potassium titanate fiber
JPH05105447A (en) Production of potassium hexatitanate fiber
JPS6364997A (en) Production of potassium titanate fiber
JPH09301737A (en) Monoclinic celsian-containing crystallized glass, glass having composition fit for its production and production
JPS6379799A (en) Production of potassium titanate fiber
JPH0543236A (en) Production of combined barium hexatitanate fiber