Nothing Special   »   [go: up one dir, main page]

JPH0142915B2 - - Google Patents

Info

Publication number
JPH0142915B2
JPH0142915B2 JP15418380A JP15418380A JPH0142915B2 JP H0142915 B2 JPH0142915 B2 JP H0142915B2 JP 15418380 A JP15418380 A JP 15418380A JP 15418380 A JP15418380 A JP 15418380A JP H0142915 B2 JPH0142915 B2 JP H0142915B2
Authority
JP
Japan
Prior art keywords
organosilicon polymer
oxidation
ceramics
far
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15418380A
Other languages
Japanese (ja)
Other versions
JPS5777083A (en
Inventor
Yoshio Hasegawa
Kazuhiko Fujii
Takashi Hamamatsu
Yutaka Kubota
Kazushige Fukuda
Hiroshi Katsura
Mitsuo Sugawara
Haruyuki Ueno
Tokuaki Hatsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUROSAKI YOGYO KK
TOKUSHU MUKI ZAIRYO KENKYUSHO
Original Assignee
KUROSAKI YOGYO KK
TOKUSHU MUKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUROSAKI YOGYO KK, TOKUSHU MUKI ZAIRYO KENKYUSHO filed Critical KUROSAKI YOGYO KK
Priority to JP15418380A priority Critical patent/JPS5777083A/en
Publication of JPS5777083A publication Critical patent/JPS5777083A/en
Publication of JPH0142915B2 publication Critical patent/JPH0142915B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭化物、室化物、珪素化合物、硼化物
等の非酸化物系セラミツクス、金属または金属と
非酸化物系との複合体よりなり、耐熱性、耐酸化
性が改善した成形焼結体の製造方法に関する。 〔従来の技術〕 本発明者らは先に特願昭55−89988号(特開昭
57−16029号公報)において、主鎖骨格が下記(A)、
(B)、(C)、(D)、(E)および(F)なる構造単位から主とし
てなり、 該構造単位が鎖状、分枝状、および環状構造を
形成し、さらに主鎖骨格中に
The present invention is a molded sintered body made of non-oxide ceramics such as carbides, nitrides, silicon compounds, borides, metals, or composites of metals and non-oxides, and which has improved heat resistance and oxidation resistance. Regarding the manufacturing method. [Prior Art] The present inventors previously published Japanese Patent Application No. 55-89988 (Japanese Unexamined Patent Publication No.
57-16029), the main chain skeleton is as follows (A),
Mainly composed of structural units (B), (C), (D), (E) and (F), The structural units form chain, branched, and cyclic structures, and furthermore, there are

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、この有機珪素重合体が従来のポリカ
ルボシラント同様にn−ヘキサン、キシレン、テ
トロヒドロフラン、ベンゼン等の有機溶媒に溶解
し、また60〜300℃の加熱により溶融する熱軟化
性物質であり、かつまたこれを非酸化性雰囲気、
例えば窒素、アルゴン、ヘリウム、アンモニア、
水素、炭化水素ガス中で800℃以上に加熱するこ
とによつてグラフアイトを含む炭化珪素を生成す
ることに着目し、耐熱性、耐酸化性耐火物の強化
含浸剤、コーテイング材としてより優れた特性を
賦与することを見出し完成したものである。 第1図〜第6図に、本発明において使用する前
記有機珪素重合体の特性として、赤外線吸収スペ
クトル、遠赤外スペクトル、紫外吸収スペクトル
の各チヤートを示す。 第1図及び第4図は赤外線吸収スペクトルを示
すチヤートであつて、830cm-1付近と1250cm-1
Si−CH3に基づく吸収を、また1410、2900、2950
cm-1にC−Hに基づく吸収を、さらに2100cm-1
Si−H、1030と1355cm-1にSi−CH2−Siに基づく
吸収を示している。 第2図及び第5図に示す遠赤外吸収スペクトル
において450〜300cm-1の遠赤外領域における吸収
は、Si−Si結合に基づくものであつて、400cm-1
383cm-1、362cm-1における吸収は環状ポリシラン
に特有のものである。 さらに第3図及び第6図の紫外線吸収スペクト
ルにおいては、340〜370mmに吸収末端を生じてお
り、有機ケイ素の骨格中に、 の鎖状或いは環状のポリシラン部分を含むことが
が分る。 前記有機珪素重合体の数平均分子量が400以下
の場合は、非酸化性雰囲気中で所定の温度で熱処
理した場合、残渣が殆どゼロとなつてしまい、耐
酸化性の向上を初め諸特性の向上の面で効果がな
い。また、5000以上では、キシレン、T.H.Fを初
めとする有機溶媒に対して未溶解分を含むか或い
は非常に難溶性となり、更に巨大高分子含むた
め、成形焼結体の気孔内に含浸しにくく、含浸効
率が悪く実用的ではなくなる。このため、本発明
に使用する有機珪素重合体の数平均分子量は400
〜5000である必要がある。 該有機珪素重合体をアルゴン気流中で1400℃で
1時間加熱したものは、X線回析によつて炭化物
の他にグラフアイトが同定されることから、この
余剰炭素の存在によつてシリコン(Si)、バナジ
ウム、(V)、硼素(B)、チタニウム(Ti)、ア
ルミニウム(Al)、ジルコニウム(Zr)を始めハ
フニウム(Hf)、トリウム(Th)、ニオブ
(Nb)、モリブデン(Mo)、タングステン(W)、
クロム(Cr)、タンタラム(Ta)等の金属元素に
対して化学的に結合して、強固な結合を生じるた
めに有効な炭化物を形成し得ることから、これら
の金属原子を含む金属および非酸化物系セラミツ
クス焼結体に対して強固な接着性を有するもので
ある。 また、表面のクリーンなSiCおよび炭素に対し
ても化学的な結合によつて強固な接着性を示し、
珪化物やSiC以外の炭化物に対しても化学的な結
合を示す。 さらに室化物や硼化物に対しては一般的に行わ
れる焼結手段で化学結合を示さないが、該有機珪
素重合体を熱分解することにより生成するグラフ
アイトを含む炭化珪素が損傷を受けずに存在する
ので、それが窒化物や硼化物に対して物理的なか
らみ合いの結合を生ぜしめることができる。 被覆後の熱処理温度は非酸化雰囲気で800〜
2000℃の範囲で行なう必要がある。800℃以下で
は有機珪素重合体が不安定な状態にあつて酸化さ
れ易く、また、2000℃以上になると結晶成長によ
り強度が低下し、更に非酸化物系セラミツクスと
組み合わせる場合には、分解や蒸発が起こり、ま
た金属体との組合せにおいては金属体の溶融が起
こり好ましくない。 上記コーテイング材の被覆、含浸、それに被覆
後の熱処理は、必要により繰り返すことにより、
より高密度な被覆層を得ることができる。 このように、本発明で使用する該有機珪素重合
体と上記金属、炭化物、珪化物または炭素との化
学的結合によりおよび窒化物や硼化物に対して
は、該有機珪素ポリマーから加熱によつて生成し
たグラフアイトを含む炭化珪素との物理的な絡み
合いによる結合を利用して、含浸、塗布等の用法
によつてセラミツクス或いは通常のFe、Mo、Fe
−Cuなどの金属焼結体へ適用でき、これらの成
形焼結体の耐酸化性、耐食性の向上に著しく効果
的である。 さらに本発明においては該有機珪素重合体のみ
でなく、化学的結合性、膨張性近似および一体化
の面から例えば炭化物、窒化物、珪素化合物及び
硼化物などの非酸化系セラミツクス金属または非
酸化系セラミツクスと金属の複合体の粉体材料を
混合して塗布しての性能を高めることができる。 以下本発明の実施例を説明する。 〔実施例〕 実施例 1 5の三口フラスコに無水キシレン2.5とナ
トリウム400gを入れ撹拌しながらジメチルジク
ロロシラン1を45分で滴下した。滴下終予後、
10時間加熱還流し沈澱物を生成させた。 この沈澱を濾過し、まずメタノールで洗浄した
後水で洗浄し、乾燥後さらにアセトンとベンゼン
で洗浄して白色粉末で
The present invention is characterized by the fact that this organosilicon polymer is soluble in organic solvents such as n-hexane, xylene, tetrahydrofuran, benzene, etc., like conventional polycarbosilants, and has heat softening properties that melt when heated at 60 to 300°C. substance, and also in a non-oxidizing atmosphere,
For example, nitrogen, argon, helium, ammonia,
We focused on producing silicon carbide containing graphite by heating it to 800℃ or higher in hydrogen or hydrocarbon gas, and developed it as an excellent impregnating agent and coating material for heat-resistant, oxidation-resistant refractories. It was completed by discovering that it imparts certain characteristics. 1 to 6 show charts of an infrared absorption spectrum, a far-infrared spectrum, and an ultraviolet absorption spectrum as characteristics of the organosilicon polymer used in the present invention. Figures 1 and 4 are charts showing infrared absorption spectra, at around 830 cm -1 and at 1250 cm -1 .
Absorption based on Si−CH 3 and 1410, 2900, 2950
Absorption based on C-H at cm -1 and further at 2100 cm -1
Si-H shows absorption based on Si-CH 2 -Si at 1030 and 1355 cm -1 . In the far-infrared absorption spectra shown in FIGS. 2 and 5, absorption in the far-infrared region of 450 to 300 cm -1 is based on Si-Si bonds, and 400 cm -1 ,
The absorption at 383 cm -1 and 362 cm -1 is unique to cyclic polysilane. Furthermore, in the ultraviolet absorption spectra shown in Figures 3 and 6, an absorption end occurs between 340 and 370 mm, and in the organosilicon skeleton, It can be seen that it contains a chain or cyclic polysilane moiety. When the number average molecular weight of the organosilicon polymer is 400 or less, when heat-treated at a predetermined temperature in a non-oxidizing atmosphere, there will be almost no residue, resulting in improved oxidation resistance and other properties. It is ineffective in terms of In addition, if the molecular weight exceeds 5000, it will contain undissolved components or be extremely poorly soluble in organic solvents such as xylene and THF, and will also contain giant polymers, making it difficult to impregnate into the pores of the shaped sintered body. Impregnation efficiency is poor and impractical. Therefore, the number average molecular weight of the organosilicon polymer used in the present invention is 400.
Must be ~5000. When the organosilicon polymer was heated at 1400°C for 1 hour in an argon stream, graphite was identified in addition to carbides by X-ray diffraction. Si), vanadium (V), boron (B), titanium (Ti), aluminum (Al), zirconium (Zr), hafnium (Hf), thorium (Th), niobium (Nb), molybdenum (Mo), Tungsten (W),
Metals containing these metal atoms and non-oxidized It has strong adhesion to physical ceramic sintered bodies. It also exhibits strong adhesion to clean SiC and carbon surfaces through chemical bonding.
It also shows chemical bonds with carbides other than silicides and SiC. Furthermore, although urides and borides do not show chemical bonds by commonly used sintering methods, silicon carbide containing graphite produced by thermally decomposing the organosilicon polymer is not damaged. , it can create a physical entanglement bond with nitrides and borides. The heat treatment temperature after coating is 800℃ in a non-oxidizing atmosphere.
It is necessary to carry out the test within the range of 2000℃. At temperatures below 800°C, organosilicon polymers are unstable and easily oxidized; at temperatures above 2000°C, their strength decreases due to crystal growth; and when combined with non-oxide ceramics, they may decompose or evaporate. This is undesirable, and when used in combination with a metal body, the metal body may melt. By repeating the coating, impregnation, and post-coating heat treatment as necessary,
A denser coating layer can be obtained. As described above, chemical bonding between the organosilicon polymer used in the present invention and the metal, carbide, silicide, or carbon, and nitrides and borides, can be achieved by heating the organosilicon polymer. Utilizing the bond created by physical entanglement with silicon carbide containing graphite, it is possible to form ceramics or ordinary Fe, Mo, Fe through methods such as impregnation and coating.
-It can be applied to metal sintered bodies such as Cu, and is extremely effective in improving the oxidation resistance and corrosion resistance of these shaped sintered bodies. Furthermore, in the present invention, not only the organosilicon polymer but also non-oxidized ceramics, metals or non-oxidized materials such as carbides, nitrides, silicon compounds, and borides are used from the viewpoint of chemical bonding, expansibility approximation, and integration. Ceramics and metal composite powder materials can be mixed and applied to enhance performance. Examples of the present invention will be described below. [Example] Example 1 2.5 g of anhydrous xylene and 400 g of sodium were placed in the three-necked flask of Example 1, and 1 dimethyldichlorosilane was added dropwise over 45 minutes while stirring. Prognosis at the end of instillation,
The mixture was heated under reflux for 10 hours to form a precipitate. This precipitate was filtered, first washed with methanol, then water, dried, and further washed with acetone and benzene to form a white powder.

【式】(n≧10)な るポリシランを380g得た。 このポリシラン100gに無水ハロゲン化アルミ
ニウムAlCl3を16.0gを添加混合し、還流管を備
えた1の石英管中で窒素気流下で8時間反応さ
せ、反応終予後、キシレン溶液として濾過し、不
純物を除去後、320℃まで窒素雰囲気中で蒸溜し、
キシレンおよび低沸点成分を除去して濃縮して有
機珪素重合体を得た。 収量は50.5gであり、数平均分子量は4100であ
つた。 上記調製該有機珪素重合体70重量部、溶媒n−
ヘキサン30重量部の溶液に反応焼結によつて得ら
れた窒化珪素焼結体(200×100×20mm)(1)を含浸
して10気圧の加圧含浸容器中で3時間処理し、試
料を取り出して空気中100℃で5時間加熱して残
ヘキサンを完全除去すると同時に上記有機珪素ポ
リマーを架橋不融化した後、窒素気流中で1450℃
に加熱焼成した。 この操作を1回行つたものを(2)、2回行つたも
のを(3)、3回行つたものを(4)として特性を比較す
ると、(1)に対して(2)は強度、酸化抵抗、溶融鉄に
対する分解抵抗、転炉スラグに対する侵食抵抗が
増しており、処理回数の多いものはまたさらにそ
の特性を増している。それらの結果を第1表にま
とめて示す。
380g of polysilane having the formula (n≧10) was obtained. To 100 g of this polysilane, 16.0 g of anhydrous aluminum halide AlCl 3 was added and mixed, and the mixture was reacted for 8 hours under a nitrogen stream in a quartz tube equipped with a reflux tube. When the reaction was over, it was filtered as a xylene solution to remove impurities. After removal, it is distilled to 320℃ in a nitrogen atmosphere,
Xylene and low-boiling components were removed and concentrated to obtain an organosilicon polymer. The yield was 50.5 g, and the number average molecular weight was 4100. 70 parts by weight of the organosilicon polymer prepared above, solvent n-
A silicon nitride sintered body (200 x 100 x 20 mm) (1) obtained by reaction sintering was impregnated in a solution of 30 parts by weight of hexane and treated in a pressurized impregnation container at 10 atmospheres for 3 hours. was taken out and heated in air at 100°C for 5 hours to completely remove residual hexane and at the same time cross-link and infusible the organosilicon polymer, and then heated at 1450°C in a nitrogen stream.
It was heated and fired. Comparing the characteristics of the product that has undergone this operation once (2), the product that has been performed twice (3), and the product that has undergone this operation three times (4), (2) has stronger strength compared to (1). The oxidation resistance, decomposition resistance to molten iron, and erosion resistance to converter slag are increased, and those that have been treated many times also have increased properties. The results are summarized in Table 1.

【表】 実施例 2 上記合成したオポリシラン100gに無水塩化ガ
リウムGaCl33.0gを添加混合し実施例1と同様の
方法で16.5時間反応させて、数平均分子量2050の
有機珪素重合体58.5gを得た。 市販の発熱体等に使用される多孔質の炭化珪素
焼結体(φ25×100mm)(5)を、該有機珪素重合体
70重量部、溶媒としてキシレン30重量部の溶液中
に浸漬し、そのままラバーモールドに入れてアイ
ソスタテイツクプレスを用いて500Kg/cm2の圧力
で3分間加圧含浸し、試料を取り出して空気中、
常温放置および100℃、5時間の加熱によつてキ
シレンを完全除去し、次いで253.7nmの相対強度
が90%である紫外線ランプを30時間照射し、有機
珪素重合体を架橋不融化した後、Ar気流中で
1300℃に加熱焼成して(6)を得た。 (6)を800℃以下で熱処理したものは、該有機珪
素重合体の加熱物が不安定な状態にあり、酸化し
易い。(6)を2000℃以上に加熱すると結晶成長によ
る強度低下が見られる。既に特願昭52−127630号
(特開昭54−61299号)で示したポリシランにフエ
ニル基含有ポリボロシキサンを作用させて製造し
たシロキサン結合を一部含む有機珪素ポリマーを
同一サンポルに同様に含浸、非酸化性雰囲気で加
熱処理した(7)と比較して、(6)は更に優れた耐酸化
性(1400℃)と1300℃における溶融銑鉄に対する
耐食性を示した。 試験の結果をまとめて第2表に示す。
[Table] Example 2 3.0 g of anhydrous gallium chloride GaCl 3 was added and mixed to 100 g of the above-synthesized opolysilane and reacted for 16.5 hours in the same manner as in Example 1 to obtain 58.5 g of an organosilicon polymer with a number average molecular weight of 2050. Ta. A porous silicon carbide sintered body (φ25 x 100 mm) (5) used in commercially available heating elements, etc. is
The sample was immersed in a solution containing 30 parts by weight of xylene as a solvent, put into a rubber mold, impregnated under pressure for 3 minutes at a pressure of 500 kg/cm 2 using an isostatic press, and then taken out and placed in the air. ,
Xylene was completely removed by leaving at room temperature and heating at 100°C for 5 hours, and then irradiated with an ultraviolet lamp with a relative intensity of 90% at 253.7 nm for 30 hours to crosslink and infusible the organosilicon polymer. in the air current
The mixture was heated and calcined at 1300°C to obtain (6). When (6) is heat-treated at 800°C or lower, the heated organosilicon polymer is in an unstable state and is easily oxidized. When (6) is heated above 2000℃, a decrease in strength due to crystal growth is observed. An organosilicon polymer containing a portion of siloxane bonds produced by reacting polysilane with phenyl group-containing polyborosoxane, which has already been disclosed in Japanese Patent Application No. 52-127630 (Japanese Unexamined Patent Publication No. 54-61299), is similarly impregnated into the same sample. Compared to (7), which was heat-treated in an oxidizing atmosphere, (6) showed even better oxidation resistance (1400°C) and corrosion resistance against molten pig iron at 1300°C. The test results are summarized in Table 2.

【表】 実施例 3 実施例1で用いた数平均分子量4100の有機珪素
ポリマーを実施例2に記載した方法で黒鉛電極棒
(8)、黒鉛電解板(9)に含浸し、次いでAr気流で
1200℃に加熱処理し、更に今度は同ポリマーを処
理物の表面に溶融被覆した後、Ar気流中で1450
℃に加熱した。(8)の処理物を、(10)、(9)の処理物を
とし、大気中加熱により酸化抵抗を比較した結
果、酸化減量率は800℃、2時間で未処理物に対
して処理物は何れも1/10〜1/18を示した、空気中
1000℃における酸化減量率も1/5〜1/10であつた。 以上の結果をまとめて第3表に示す。
[Table] Example 3 The organosilicon polymer with a number average molecular weight of 4100 used in Example 1 was prepared using the method described in Example 2 to form a graphite electrode rod.
(8), impregnated into a graphite electrolytic plate (9), and then heated with Ar air flow.
After heat treatment at 1200℃ and then melt coating the same polymer on the surface of the treated object, it was heated to 1450℃ in an Ar gas flow.
heated to ℃. As a result of comparing the oxidation resistance of the treated product (8), (10) and (9) by heating in the air, the oxidation loss rate was 800℃ for 2 hours compared to the untreated product. Both showed 1/10 to 1/18, in the air
The oxidation loss rate at 1000°C was also 1/5 to 1/10. The above results are summarized in Table 3.

〔発明の効果〕〔Effect of the invention〕

本発明により酸化抵抗、強度、それに侵食抵抗
の向上が認められ優れたセラミツクス体を得るこ
とができ、優れたエンジン、ブレード、ノーズコ
ーン、熱交換器等高温用部品、シール材、パツキ
ン材、軸受材、ブレーキ材等耐摩耗部品、タン
ク、ダクト、パイプ、バルブ等で耐食性の要求さ
れる部分、その他電気材料、電子材料、圧電材
料、原子力用材料等を製造できる。
According to the present invention, it is possible to obtain an excellent ceramic body with improved oxidation resistance, strength, and corrosion resistance, and is excellent for high-temperature parts such as engines, blades, nose cones, heat exchangers, sealing materials, packing materials, and bearings. It can manufacture wear-resistant parts such as materials, brake materials, parts that require corrosion resistance such as tanks, ducts, pipes, and valves, as well as other electrical materials, electronic materials, piezoelectric materials, and materials for nuclear power.

【図面の簡単な説明】[Brief explanation of drawings]

添付図は発明において使用する前記有機珪素重
合体の特性を示す。第1図、第2図及び第3図は
実施例1により製造した有機珪素重合体の赤外線
吸収スペクトル、遠赤外スペクトル、柴外吸収ス
ペクトルの各チヤートを示す。第4図、第5図及
び第6図は実施例2により製造した有機珪素重合
体の赤外線吸収スペクトル、遠赤外線吸収スペク
トル及び柴外線吸収スペクトルの各チヤートを示
す。
The attached figure shows the properties of the organosilicon polymer used in the invention. 1, 2, and 3 show charts of infrared absorption spectrum, far-infrared spectrum, and infrared absorption spectrum of the organosilicon polymer produced in Example 1. FIG. 4, FIG. 5, and FIG. 6 show charts of infrared absorption spectrum, far-infrared absorption spectrum, and plasma radiation absorption spectrum of the organosilicon polymer produced in Example 2.

Claims (1)

【特許請求の範囲】 1 非酸化物系セラミツクス、金属又は金属と非
酸化物系セラミツクスとの複合体よりなる成形焼
結体基体上に、 主鎖骨格が下記(A)、(B)、(C)、(D)、(E)および(F)な
る構造単位から主としてなり、 該構造単位が鎖状、分枝状、および環状構造を
形成し、さらに主鎖骨格中に (2≦n≦10)のポリシラン骨格を有し、遠赤外
吸収スペクトルにおいて450〜300cm-1の遠赤外領
域に吸収を有し、紫外線吸収スペクトルにおいて
吸収末端が340〜370nmに生じ、数平均分子量が
400〜5000である有機ケイ素重合体を、単独また
は非酸化物系セラミツクス粉末、金属粉末または
金属と非酸化物系セミツクスとの複合体粉末の一
種または二種以上の混合物として表面被覆し、非
酸化性雰囲気中で800〜2000℃の範囲で熱処理す
ることを特徴とする耐熱性、耐酸化性セラミツク
スの製造方法。
[Scope of Claims] 1. On a shaped sintered body base made of non-oxide ceramics, metals, or composites of metals and non-oxide ceramics, the main chain skeletons are as follows (A), (B), ( Mainly composed of structural units C), (D), (E) and (F), The structural units form chain, branched, and cyclic structures, and furthermore, there are It has a polysilane skeleton of (2≦n≦10), has absorption in the far-infrared region of 450 to 300 cm -1 in the far-infrared absorption spectrum, and has an absorption end in the ultraviolet absorption spectrum of 340 to 370 nm. The average molecular weight is
400 to 5000, either alone or as a mixture of one or more of non-oxide ceramic powder, metal powder, or composite powder of metal and non-oxide semiconductor, to form a non-oxidation 1. A method for producing heat-resistant and oxidation-resistant ceramics, characterized by heat treatment in a temperature range of 800 to 2000°C in a neutral atmosphere.
JP15418380A 1980-10-31 1980-10-31 Heat-resistant oxidation-resistant ceramics Granted JPS5777083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15418380A JPS5777083A (en) 1980-10-31 1980-10-31 Heat-resistant oxidation-resistant ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15418380A JPS5777083A (en) 1980-10-31 1980-10-31 Heat-resistant oxidation-resistant ceramics

Publications (2)

Publication Number Publication Date
JPS5777083A JPS5777083A (en) 1982-05-14
JPH0142915B2 true JPH0142915B2 (en) 1989-09-18

Family

ID=15578644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15418380A Granted JPS5777083A (en) 1980-10-31 1980-10-31 Heat-resistant oxidation-resistant ceramics

Country Status (1)

Country Link
JP (1) JPS5777083A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635250A (en) * 1985-04-26 1997-06-03 Sri International Hydridosiloxanes as precursors to ceramic products
US5332701A (en) * 1990-12-14 1994-07-26 Massachusetts Institute Of Technology Ceramic synthesis by pyrolysis of metal-containing polymer and metal
US5632925A (en) * 1995-01-10 1997-05-27 Logic Tools L.L.C. Ceramic or Modified silicone filled molding tools for high temperature processing

Also Published As

Publication number Publication date
JPS5777083A (en) 1982-05-14

Similar Documents

Publication Publication Date Title
Riedel et al. Silicon-based polymer-derived ceramics: synthesis properties and applications-a review dedicated to Prof. Dr. Fritz Aldinger on the occasion of his 65th birthday
Bill et al. Precursor‐derived covalent ceramics
JPS5830264B2 (en) Golden croaker
JP2009513805A (en) Silicon carbide precursor and its use
Proust et al. Polymer-derived Si-C-Ti systems: From titanium nanoparticle-filled polycarbosilanes to dense monolithic multi-phase components with high hardness
US6277440B1 (en) Preparation of ceramic matrix composites by infiltration of fibrous preforms with fluids or slurries and subsequent pyrolysis
US5837364A (en) Ceramic matrix composites using modified hydrogen silsesquioxane resin
US5332701A (en) Ceramic synthesis by pyrolysis of metal-containing polymer and metal
US20020165332A1 (en) Preceramic polymers to hafnium carbide and hafnium nitride ceramic fibers and matrices
JPH0741365A (en) Preparation of high-density boron carbide ceramics
JPH0142915B2 (en)
CA1152536A (en) Dense sintered silicon carbide ceramic
CA2092279A1 (en) Silicon-filled aluminum polymer precursors to sic-a1n ceramics
JP2660346B2 (en) Ceramic composite materials
KR101331403B1 (en) Process for silicon carbide coating on graphite
JPS63399B2 (en)
JP2000185981A (en) Porous molded article of silicon carbide and its production
US9533918B2 (en) Method for fabricating ceramic material
JPH1112038A (en) Production of silicon carbide fiber-reinforced silicon carbide composite material
Ramasesha et al. Reactive infiltration of aluminum into molybdenum disilicide preform
JP3051931B1 (en) High-strength silicon carbide sintered body and method for producing the same
JP2881189B2 (en) Method for producing silicon nitride-silicon carbide composite ceramics
JPS6133701B2 (en)
JP2999749B2 (en) Fluorine-containing organosilicon compound and chemically modified ceramic powder and ceramic sintered body using the same
JPH054353B2 (en)