Nothing Special   »   [go: up one dir, main page]

JPH0138122B2 - - Google Patents

Info

Publication number
JPH0138122B2
JPH0138122B2 JP1619481A JP1619481A JPH0138122B2 JP H0138122 B2 JPH0138122 B2 JP H0138122B2 JP 1619481 A JP1619481 A JP 1619481A JP 1619481 A JP1619481 A JP 1619481A JP H0138122 B2 JPH0138122 B2 JP H0138122B2
Authority
JP
Japan
Prior art keywords
titanium trichloride
polymer
catalyst
solid titanium
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1619481A
Other languages
Japanese (ja)
Other versions
JPS57131204A (en
Inventor
Masayoshi Hasuo
Sadanori Suga
Yukitoshi Suzuki
Nobuaki Goko
Yasuhiro Nishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1619481A priority Critical patent/JPS57131204A/en
Publication of JPS57131204A publication Critical patent/JPS57131204A/en
Publication of JPH0138122B2 publication Critical patent/JPH0138122B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリオレフインの製造方法に関す
る。更に詳しくは、固体三塩化チタンと有機アル
ミニウム化合物および特定の組み合せの電子供与
性化合物とからなる触媒系を用いてオレフインを
重合する方法に関する。 従来、固体三塩化チタン系触媒と有機アルミニ
ウム化合物からなる触媒系を用いてオレフインの
重合、なかでもα―オレフインの立体特異性重合
を行うに当り、第3成分として電子供与性化合物
を用いることはよく知られている。その際、電子
供与性化合物を触媒系の第3成分として用いるこ
との目的は、一には、生成重合体の立体規則性を
少しでも向上させることによつて副生する非晶性
重合体の量を減少させ、結晶性重合体の歩留りを
改良するか、あるいは生成重合体から得られた成
形品の剛性を改良することであり、一には、生成
重合体粉末の嵩密度、粒径分布の如き粉体性状を
改良することによつて重合粉体あるいはスラリー
の取扱いや移送を容易にしたり、反応器の容量を
減少させたりすることであり、それらの目的の為
に、これまで非常に数多くの検討がなされ、それ
相当の成果が得られて来たことは衆知のことであ
る。例えば特公昭44−21337および特公昭49−
4832においては、TiCl4をAlにより還元し、つい
で粉砕、活性化して得られる三塩化チタンとジエ
チルアルミニウムモノクロリドの如き有機アルミ
ニウム化合物からなる触媒系を用いてプロピレン
の重合を行うに当り第3成分としてメタクリル酸
エステルあるいはアクリル酸エステルの如きカル
ボン酸誘導体や、エチルビニルエーテルの如きビ
ニルエーテル類を用いることによつて、ポリプロ
ピレンの立体規則性を向上させる方法が提案され
ている。更に、特公昭46−12140においては第3
成分として安息香酸エチルの如き安息香酸誘導体
を用いることによつて、同様にポリプロピレンの
立体規則性を向上させる方法が提案されている。
ここに挙げた様な含酸素化合物は第3成分として
用いた場合、生成重合体の立体規則性が向上する
反面、重合速度の低下が少く、これらの点に関し
ては工業的に有用な第3成分の一つであると言え
る。また、特公昭39−19546においては、三塩化
チタンと有機アルミニウム化合物からなる触媒系
を用いて、実質的に酸素化合物を含まない脂肪族
又は脂環族飽和炭化水素溶媒中でプロピレンの重
合を行うに当り、第3成分または重合溶媒の一部
としてトルエンの如き芳香族炭化水素を用いるこ
とによつて、立体規則性と重合粉末の嵩密度を向
上させる方法が提案されており、本発明者らの一
部も先に特公昭55−9001において、特定の方法で
製造した高活性三塩化チタン系触媒錯体と有機ア
ルミニウム化合物及び芳香族炭化水素からなる触
媒系を用いてプロピレンを重合し、立体規則性、
重合体粉末の嵩密度の共に高いポリプロピレンを
高い触媒効率で得る方法を提案した。 一方、ポリプロピレンの大きな用途の一つであ
る包装用フイルムの場合、その透明性及び耐衝撃
性は商品的価値を決める大きな要因であり、透明
性、耐衝撃性共により大きい方が好ましい。とこ
ろが本発明者らの検討によると、第3成分として
従来公知の電子供与性化合物を触媒系の第3成分
として用いてプロピレンを重合した場合立体規則
性、重合体粉末の嵩密度が共に高いポリプロピレ
ンが得られるが、それを水冷インフレフイルムあ
るいはTダイフイルムに押出し成形した場合、そ
の透明性が低下し、耐衝撃性も低下するというこ
とが判明した。しかも第3成分の量を増大するな
どして、生成重合体の立体規則性を向上すればす
る程フイルムのいわゆる“腰”(剛性)は改良さ
れるがその反面前述した透明性と耐衝撃性の低下
は顕著となつた。この理由については勿論定かで
はないが、本発明者らの検討によると、フイルム
の透明性及び耐衝撃性と密接な相関を有するもの
の1つに重合体の分子量分布が挙げられ、この分
子量分布は、更に重合時の第3成分の種類及び量
と密接な相関を有することが判明した。即ち従来
公知の電子供与性化合物を用いた場合、重合体の
立体規則性が向上するのは勿論であるが、同時に
分子量分布も増大し、フイルムの透明性と耐衝撃
性が低下する傾向が認められた。これらフイルム
の両性質と分子量分布が何故相関を有するかは現
段階では不明であるが、本発明者らは、分子量分
布の増大を防止することによつてかかる欠点を解
決すべく鋭意検討を行つた結果ある特定の組み合
せの電子供与性化合物を第3成分として用いた場
合立体規則性は向上するが、分子量分布は小さい
ままに保たれ、結果的にフイルムの透明性と衝撃
強度が改良されることを見出し本発明に到達した
ものであり、これは従来技術からは予測もつかな
い全く驚くべきことである。そして、本発明方法
によれば、組み合わせる触媒、共触媒とも相俟つ
て立体規則性が充分に大きく、嵩密度も大きい重
合体が高活性で、即ち高触媒効率で得られるので
非晶性重合体の除去工程の省略、残存触媒の除去
工程の合理化が可能になるなど、製造プロセス面
からも有利な方法である。 しかして、本発明の要旨は、エーテル又はチオ
エーテルの存在下に液状化した三塩化チタンを含
有する液状物から150℃以下の温度で析出させる
か、又は、四塩化チタンを有機アルミニウム化合
物又は金属アルミニウムで還元して得られた固体
三塩化チタンを錯化剤処理及びハロゲン化合物処
理するかして得られる固体三塩化チタン、有機ア
ルミニウム化合物、芳香族炭化水素および分子内
に芳香族多環縮合環を有するモノカルボン酸エス
テルからなる触媒系を用いてα―オレフインを重
合することを特徴とするポリオレフインの製造方
法に存する。 本発明を詳細に説明するに、触媒として使用さ
れる固体三塩化チタンとしては、四塩化チタンの
水素還元により得られる純粋の三塩化チタン、四
塩化チタンのアルミニウム還元により得られる三
塩化チタン―三塩化アルミニウム共晶体
(TiCl3 -1/3AlCl3)及びこれら三塩化チタンの機
械的粉砕物等も使用可能ではあるが除去すべき非
晶性重合体の生成量が少く、触媒除去工程を簡略
化ないしは省略化でき、得られる重合体の粉末特
性も良好である等の理由により、高活性触媒であ
る下記の固体三塩化チタン系触媒錯体を使用する
のが好ましい。かかる固体三塩化チタン系触媒錯
体は、特開昭47−34478、同48−64170、同50−
112289、同50−143790、同51−16297、同51−
16298、同51−76196、同51−123796等に記載され
ているが、説明するとアルミニウム含有量がチタ
ンに対するアルミニウムの原子比で0.15以下、好
ましくは0.1以下、さらに好ましくは0.02以下で
あり、かつ錯化剤を含有するものである。そして
錯化剤の含有量は、固体三塩化チタン系触媒錯体
中の三塩化チタンに対する錯化剤のモル比で
0.001以上、好ましくは0.01以上である。具体的
には、三塩化チタン、三塩化チタンのチタンに対
するアルミニウムの原子比で0.15以下の式AlR1 p
X3-p(式中、R1は炭素数1〜20の炭化水素基、X
はハロゲン原子、pは0≦p≦2の数を示す)で
表わされるハロゲン化アルミニウムおよび三塩化
チタンに対しモル比で0.001以上の錯化剤を含む
もの、例えば式TiCl3・(AlR1 pX3-ps・(C)t(式
中、R1は炭素数1〜20の炭化水素基であり、X
はハロゲン原子であり、pは0≦p≦2の数であ
り、Cは錯化剤であり、sは0.15以下の数であ
り、tは0.001以上の数である)で表わされるも
のが挙げられるが、もちろん、TiCl3成分、
AlR1 pX3-p成分及び錯化剤C成分のほかに、少量
のヨウ素、三塩化チタンの塩素の一部または全部
がヨウ素もしくは臭素で置換されたもの、あるい
はMgCl2,MgO等の担体用無機固体、ポリエチ
レン、ポリプロピレン等のオレフイン重合体粉末
等を含むものであつてもよい。錯化剤Cとして
は、エーテル、チオエーテル、ケトン、カルボン
酸エステル、アミン、カルボン酸アミド、ポリシ
ロキサン等が挙げられるが、このうちエーテル又
はチオエーテルがとくに好ましい。エーテル又は
チオエーテルとしては、一般式R2−O−R3又は
R2−S−R3(式中、R2,R3は炭素数15以下の炭
化水素基を示す。)で表わされるものが挙げられ
る。AlR1 pX3-pとしては、AlCl3,AlR1Cl2等が挙
げられる。 また、上記固体三塩化チタン系触媒錯体は、そ
のX線回折図形がα型三塩化チタンの最強ピーク
位置に相当する位置(2θ=32.9゜付近)に最大強
度のハローを有するものがとくに好ましい。更に
固体三塩化チタン系触媒錯体の製造時において
150℃を超える温度の熱履歴を受けていないもの
が好ましい。さらに水銀ポロシメーター法で測定
した細孔半径20Å〜500Åの間の累積細孔容積が
0.02cm3/g以上とくに0.03cm3/g〜0.15cm3/gで
あるような極めて微細な孔径の細孔容積に特徴が
あるものが、非晶性重合体を除去する必要がない
点で、とくに好ましい。 しかしてこのような固体三塩化チタン系触媒錯
体は、 (イ) エーテル又はチオエーテルの存在下に液状化
した三塩化チタンを含有する液状物から150℃
以下の温度で析出させる (ロ) 四塩化チタンを有機アルミニウム化合物又は
金属アルミニウムで還元して得られた固体三塩
化チタンを、錯化剤処理及びハロゲン化合物処
理する の(イ)または(ロ)の方法により製造する。 (イ)の方法において液状化した三塩化チタンを含
有する液状物を得る方法としては次の2つの手法
があげられる。 (A) 四塩化チタンを出発原料として、これをエー
テル又はチオエーテル及び必要に応じて適当な
炭化水素溶媒の存在下に有機アルミニウム化合
物で還元する方法。 (B) 固体の三塩化チタンを出発原料として、これ
を必要に応じて適当な炭化水素溶媒の存在下、
エーテル又はチオエーテルで処理する方法。 微粒状固体三塩化チタン系触媒錯体を析出させ
る方法には特に制限はなく、液状物をそのままあ
るいは必要に応じて炭化水素希釈剤を加えての
ち、150℃以下の温度、好ましくは40〜120℃、と
くに好ましくは60〜100℃に昇温して、析出させ
る。なお、三塩化チタン液状物中のチタンとアル
ミニウムとの合計モル数がエーテル又はチオエー
テルのモル数より少ない場合には、遊離化剤を添
加して析出を促進してもよい。遊離化剤として
は、四塩化チタン、アルミニウムハロゲン化物、
例えば三ハロゲン化アルミニウム、アルキルアル
ミニウムジハライド等が好ましい。遊離化剤の使
用量は、液状物中のチタンの5モル倍以下が好ま
しい。 (ロ)の方法における錯化剤としては、さきに錯化
剤Cとして例示したものが、同様に挙げられる。
ハロゲン化合物としては、四塩化チタン又は四塩
化炭素が挙げられる。錯化剤処理とハロゲン化合
物処理は、同時におこなつてもよいが、先ず錯化
剤処理をおこない、次いでハロゲン化合物処理を
おこなつてもよい。錯化剤処理は、通常、希釈剤
中、固体三塩化チタンに、TiCl3に対し0.2〜3モ
ル倍の錯化剤を添加し、−20〜80℃の温度でおこ
なう。錯化剤処理後、得られた固体を分離洗浄す
ることが好ましい。ハロゲン化合物処理は、通
常、希釈剤中、−10〜50℃の温度でおこなう。ハ
ロゲン化合物の使用量は、TiCl3に対し通常、0.1
〜10モル倍、好ましくは1〜5モル倍である。ハ
ロゲン化合物処理後、得られた固体を分離洗浄す
ることが好ましい。 一方、共触媒の有機アルミニウム化合物として
は、一般式AlR4 oCl3-o(式中、R4は炭素数1〜20
の炭化水素基を表わし、nは1.95〜2.10の数を示
す)で表わされる化合物を使用することが好まし
い。そのうちR4がエチル基で示され、nが2の
場合であるジエチルアルミニウムモノクロライド
も十分使用可能であるが、特開昭54−107989、同
55−38833に記載されている共触媒即ちR4がノル
マルプロピル基又はノルマルヘキシル基であるも
のがとくに好ましい。R4がノルマルプロピル基
又はノルマルヘキシル基の場合nは1.95≦n≦
2.10であることが重要であり、この範囲内であれ
ば前述の固体三塩化チタン触媒錯体と組み合せて
重合することによつて重合活性と重合体の立体規
則性とが共に高い結果が得られる。 2種用いられる第3成分の内、芳香族炭化水素
としては、単環または多環を有する炭化水素であ
り、アルキル基、アルケニル基等の炭化水素基、
もしくはハロゲン等の置換基を有しているもので
もよい。具体的にはベンゼン、トルエン、エチル
ベンゼン、キシレン、スチレン、n―プロピルベ
ンゼン、エチルトルエン、トリメチルベンゼン、
テトラメチルベンゼン、クロルベンゼン等の単環
式芳香族炭化水素、ジフエニル、ジフエニルメタ
ン、トリフエニルメタン、ナフタリン、メチルナ
フタリン、ジメチルナフタリン、ビニルナフタリ
ン、フエナントレン、アントラセン、ビニルアン
トラセン等の多環式芳香族炭化水素等が挙げられ
るが、前記固体三塩化チタン系触媒錯体を用いる
場合にはその製造あるいは前重合に使用する溶媒
と同一種である方が、溶媒回収の点から有利であ
ること、安価でかつ取扱いが容易であること、更
にポリマー乾燥時に揮発しやすいこと等の理由に
より、ベンゼン、トルエン、キシレンの如き前記
溶媒にもなりうる常温で液体で比較的低沸点であ
る単環式芳香族炭化水素が好ましい。 分子内に芳香族多環縮合環を有するモノカルボ
ン酸エステル(以下、これを単にモノカルボン酸
エステルと称する)としては、ナフタレン、アン
トラセン、ピレン、インデン、フルオレン等を有
するモノカルボン酸エステルが挙げられる。 好ましくはα―ナフトエ酸のメチル、エチル、
ブチル、アミル、オクチルエステル;β―ナフト
エ酸のメチル、エチル、ブチル、アミル、オクチ
ルエステル;アントラセン―1―カルボン酸のメ
チル、エチル、ブチル、アミル、オクチルエステ
ル;アントラセン―2―カルボン酸のメチル、エ
チル、ブチル、アミル、オクチルエステル;アン
トラセン―9―カルボン酸のメチル、エチル、ブ
チル、アミル、オクチルエステル等が挙げられ
る。更に上記した芳香族環の水素原子がアルキル
基で置換されているものも使用できる。触媒各成
分の使用割合は、通常、固体三塩化チタン中の三
塩化チタン:有機アルミニウム化合物:芳香族炭
化水素:モノカルボン酸エステルのモル比で 1:1〜100:1〜10000:0.01〜10, 好ましくは 1:2〜40:5〜5000:0.05〜2になるように
選ばれる。 重合を炭化水素溶媒中で行う場合は、上記芳香
族炭化水素の使用量は、溶媒に対して0.01〜20容
量%、好ましくは0.1〜10容量%となるように用
いるものである。この量は少なすぎると、フイル
ムの透明性や耐衝撃性の改良効果が充分ではな
く、また多すぎると、重合体あるいは重合溶媒か
らの芳香族炭化水素の回収の負担が増大するな
ど、好ましくない影響が現われる。 本発明方法では、上記固体三塩化チタン、有機
アルミニウム化合物及び芳香族炭化水素とモノカ
ルボン酸エステルからなる第3成分から触媒系を
調製するのであるがこの触媒系の調製には、いか
なる公知の方法も採用しうる。例えば予めヘキサ
ン、ヘプタン、ベンゼン、トルエン等の炭化水素
溶媒中で、上記4成分を単に混合する方法(ベン
ゼン、トルエン等の芳香族炭化水素を溶媒として
用いる場合は、それらの合計モル数が前述の使用
割合になるように選ばれる)、上記2成分例えば
有機アルミニウム化合物とモノカルボン酸エステ
ルを予め混合する方法等が挙げられる。混合する
温度、時間等に特に制限はないが、通常温度は室
温ないし重合温度が好ましく、時間もあまり長く
ない方が好ましく、通常数日以内である。また上
記触媒各成分を予め混合することなく別々に重合
器へ供給する方法もとりうる。さらに触媒として
用いられる固体三塩化チタンは、そのまま重合に
用いても良いが、有機アルミニウム化合物の存在
下、少量の前記オレフインで前処理してから使用
するのが好ましい。この前処理は例えば嵩密度な
ど重合体のスラリー物性の改良に効果がある。 前処理は重合温度より低い温度、一般に20℃〜
60℃で、前処理によつて生成した重合体/固体三
塩化チタン中の三塩化チタン=0.1〜50/1(重量
比)、通常1〜20/1になる様に行なわれる。こ
の前処理を行う溶媒はヘキサン、ヘプタンの如き
脂肪族炭化水素、シクロヘキサンの如き脂環式炭
化水素も使用しうるが、ベンゼン、トルエンの如
き第3成分として添加する芳香族炭化水素自身を
溶媒として使用するのが、最終重合体の立体規則
性はもちろんのこと、嵩密度も向上する点で、好
ましい。 しかして、本発明においては、固体三塩化チタ
ン、有機アルミニウム化合物、及び触媒第3成分
とからなる触媒系の存在下に、α―オレフインの
重合をおこなう。α―オレフインとしては、プロ
ピレン、ブテン―1,3―メチルブテン―1,4
―メチルペンテン―1、ペンテン―1、ヘキセン
―1等が挙げられ、これらのα―オレフインにつ
いての単独重合あるいは、これらとエチレンとの
混合物、又はこれら相互の混合物のランダム共重
合、あるいはこれらα―オレフイン同志の又はこ
れらα―オレフインとエチレンからなるブロツク
共重合がおこなわれる。とくに、プロピレン単独
重合体、プロピレン90重量%以上を含むランダム
共重合体又はプロピレン80重量%以上を含むブロ
ツク共重合体を製造する立体規則性重合に好適で
ある。 重合反応は気相重合でおこなつてもよいし、溶
媒の存在下、スラリー重合でおこなつてもよい。
溶媒としては、例えばペンタン、ヘプタン、ヘキ
サン、デカン等の脂肪族炭化水素;シクロヘキサ
ン、メチルシクロヘキサン等の脂環式炭化水素等
があげられるが、プロピレン等前記オレフイン自
体も好ましく使用される。 また、重合反応は回分式あるいは連続式のいず
れの方法によつて実施することも可能で、重合の
温度と圧力については特に限定はないが、通常、
50〜100℃、好ましくは60〜90℃、圧力は大気圧
〜100気圧程度である。 なお、重合の際、水素、ハロゲン化炭化水素等
の公知の分子量制御剤を用いて生成ポリマーの分
子量を制御できる。 以上のようにして、オレフインの重合をおこな
うが、本発明方法によりもたらされる高重合活性
及び高立体規則性の効果は、高触媒効率の重合例
えば固体三塩化チタン中の三塩化チタン
(TiCl3)1グラム当り5000グラム以上、好まし
くは10000グラム以上の重合体が生成するような
重合において特に顕著であり、重合体中に残存す
る触媒量が一段と減少し、得られた重合体の立体
規則性が向上するので、このような高触媒効率重
合がとくに好ましい。 以上詳記した本発明のポリオレフインの製造方
法によれば、重合活性と重合体の立体規則性とが
共に高い結果が得られるのみならずフイルムに成
形した場合透明性と耐衝撃性とが共に高い結果が
得られ、従来法ではみられないすぐれた効果が奏
される。従つて本発明は工業的に大きな価値を有
する。 次に本発明を実施例及び比較例により更に具体
的に説明する。なお、実施例及び比較例中、触媒
効率CEは、固体三塩化チタン中の三塩化チタン
1g当りの全プロピレン重合体生成量gであり、
重合活性Kは1時間当り、プロピレン圧1Kg/cm2
当り、三塩化チタン1g当りの全プロピレン重合
体生成量gである。ここで全プロピレン重合体生
成量とは非晶性重合体をも含めた量を言う。重合
体粉末の嵩密度ρBはJIS―K―6721により測定し
た。 II―XLNは重合体を安定剤と共に沸騰キシレ
ンに完全に溶解した後、室温まで徐冷放置を行
い、析出した重合体を過して取り出しキシレン
で洗浄を行つた後の残量の全重合体に対する割合
(重量%)であり、全重合体の立体規則性を表わ
す。 重合体のメルトフローインデツクス、MFIは
ASTM―D1238によつて測定した。FRは5.528Kg
荷重、230℃における溶融重合体の押出量と、
0.553Kg荷重、230℃における同押出量の比で表わ
し、分子量分布の広がりを示す簡便法である。 フイルムのヘイズ(透明性)はASTM―
D1003に従い日本電色製ヘイズメーターを用いて
測定した。これはフイルムの透明性を示すもので
ある。 また、フイルムのダート・ドロツプ・インパク
ト、DDIは、ASTM―D1709に従い東洋精機製
DDI測定機により半球1.5インチ高さ20インチで
測定した。これはフイルムの耐衝撃性を示すもの
である。また、第1図及び第2図は、本発明に含
まれる技術内容の理解を助けるためのフローチヤ
ート図であり、本発明はその要旨を逸脱しない限
り、フローチヤート図によつて何ら制約を受ける
ものではない。 触媒製造例 1 (A) 固体三塩化チタン系触媒錯体の製造 充分に窒素置換した容量10のオートクレーブ
に精製n―ヘキサン5.0を装入し、撹拌下、ジ
―n―オクチルエーテル2.7モル、四塩化チタン
3.0モルを装入した。内温を30℃に調節しついで
ジエチルアルミニウムモノクロライド1.0モルを
含有するn―ヘキサン溶液0.5を添加し、褐色
の均一溶液を得た。ついで昇温したところ50℃を
過ぎる頃より紫色の微粒状の固体析出が認められ
た。95℃で約1時間保持した後、粒状の紫色固体
を分離しn―ヘキサンで洗浄を繰返して345gの
三塩化チタン系固体触媒錯体を得た。 元素分析及びガス―クロ分析の結果、このもの
の組成はTiCl3・(AlCl30.004・〔(n−C8H172O〕
0.11であつた。 (B) プロピレンによる前処理 充分に窒素置換した容量20のオートクレーブ
に精製n―ヘキサン12.5を装入し、撹拌下、ジ
エチルアルミニウムモノクロライド1.6モル、上
記(A)で得た固体三塩化チタン系触媒錯体を、
TiCl3の量が250gとなるように装入した。つい
で内温を30℃に調節し、撹拌下、プロピレンガス
の吹き込みを開始し重合したプロピレンが1250g
になるまで同温度でプロピレンガスの吹き込みを
続けた。ついで固体を分離し、n―ヘキサンで洗
浄を繰返し、ポリプロピレン含有三塩化チタンを
得た。 実施例1〜4および比較例1〜5 充分に窒素置換した容量1.7m3の反応器に、70
℃で液化プロピレンおよび水素を連続的に供給
し、触媒製造例1(B)で得られたポリプロピレン含
有固体三塩化チタン(TiCl3)、ジ―n―プロピ
ルアルミニウムモノクロライド(DPA)、芳香族
炭化水素および種々のモノカルボン酸エステルを
それぞれ表1に記載の量となるように連続的に供
給した。DPA/TiCl3モル比は8であつた。プロ
ピレン分圧31Kg/cm2、気相中のプロピレンに対す
る水素のモル比を0.06〜0.065として、70℃で平
均滞留時間5.0時間で連続的にプロピレンの重合
を行つた。触媒供給速度と重合体生成速度から求
めた重合活性を表1に示す。重合体の液化プロピ
レンスラリーから未反応プロピレンをパージした
後、重合体粉末をプロピレンオキシドガスで120
℃で連続的に処理を行つた。 以上のようにして得た製品粉末に抗酸化剤とし
てBHTを0.2重量%及びシリカを0.3重量%添加し
内径40mmのペレタイザーで250℃でペレツト化し
た後、厚さ30μの水冷インフレーシヨンフイルム
に成形した。このフイルムについてヘイズ(透明
性)及びDDI(耐衝撃性)を測定した。一方ペレ
ツトについてFRを測定した。これらの結果につ
いて表1にまとめて示す。 実施例1〜3は芳香族炭化水素としてトルエン
を用い、種々のモノカルボン酸エステルを用いて
重合を行つたものである。比較例1〜3は芳香族
炭化水素を用いない従来公知の方法であり、モノ
カルボン酸エステルのみを添加して非晶性重合体
の生成率を減少させたり、立体規則性II―XLN
を増大させると、フイルムのヘイズが増大し即ち
透明性が悪化し、また衝撃強度、DDIが低下する
が、実施例1〜3の如く、トルエンを併用する
と、フイルムのヘイズが減少し、即ち透明性が良
化し、また衝撃強度DDIも向上することが明らか
である。また、分子量分布の指標であるFRも低
下していることがわかる。一方、比較例4は第3
成分を用いずに重合した場合であり、比較例5は
芳香族炭化水素のみを用いた場合であるが、フイ
ルムの透明性及び耐衝撃性は満足すべきものであ
るが、非晶性重合体の生成率が大きく、立体規則
性II―XLNが低いことを示す。そのためフイル
ムの剛性が低下した。 本発明方法で得られる別の効果として、モノカ
ルボン酸エステルのみを用いてII―XLNを増大
させようとすると重合活性Kの低下が比較的大き
いが、トルエンを併用するとKの低下が少くすむ
ことが実施例1〜3と比較例1〜3の比較から明
らかである。 実施例4は芳香族炭化水素としてベンゼンを用
いた例であるが、実施例1〜3と同様に非晶性重
合体生成率が低下し、立体規則性II―XLNが向
上する一方、フイルムの透明性と耐衝撃性も共に
改良されていることを示す。
The present invention relates to a method for producing polyolefin. More particularly, the present invention relates to a method for polymerizing olefins using a catalyst system consisting of solid titanium trichloride, an organoaluminium compound, and a specific combination of electron-donating compounds. Conventionally, when polymerizing olefins, especially stereospecific polymerization of α-olefins, using a catalyst system consisting of a solid titanium trichloride catalyst and an organoaluminum compound, it has not been possible to use an electron-donating compound as a third component. well known. In this case, the purpose of using an electron-donating compound as the third component of the catalyst system is to improve the stereoregularity of the resulting polymer even a little, thereby reducing the amount of by-product amorphous polymer. The purpose is to reduce the amount of crystalline polymer and improve the yield of crystalline polymer, or to improve the rigidity of molded articles obtained from the produced polymer, and one of them is to improve the bulk density and particle size distribution of the produced polymer powder. The purpose of this is to improve the properties of polymerized powders or slurries by improving their properties, such as to facilitate the handling and transport of polymerized powders or slurries, and to reduce the capacity of reactors. It is common knowledge that many studies have been conducted and considerable results have been obtained. For example, Tokuko Sho 44-21337 and Tokuko Sho 49-
In 4832, a third component is used in the polymerization of propylene using a catalyst system consisting of titanium trichloride obtained by reducing TiCl 4 with Al, followed by pulverization and activation, and an organoaluminium compound such as diethylaluminum monochloride. A method has been proposed for improving the stereoregularity of polypropylene by using carboxylic acid derivatives such as methacrylic esters or acrylic esters, or vinyl ethers such as ethyl vinyl ether. Furthermore, in the 1970-12140 special public service, the third
A similar method has been proposed for improving the stereoregularity of polypropylene by using a benzoic acid derivative such as ethyl benzoate as a component.
When the oxygen-containing compounds listed here are used as the third component, they improve the stereoregularity of the resulting polymer, but at the same time the polymerization rate decreases little, and in these respects they are industrially useful third components. It can be said that it is one of the In addition, in Japanese Patent Publication No. 39-19546, propylene is polymerized in an aliphatic or alicyclic saturated hydrocarbon solvent substantially free of oxygen compounds using a catalyst system consisting of titanium trichloride and an organoaluminum compound. In this regard, a method has been proposed in which the stereoregularity and bulk density of polymerized powder are improved by using an aromatic hydrocarbon such as toluene as a third component or part of the polymerization solvent, and the present inventors have proposed Part of this was previously reported in Japanese Patent Publication No. 55-9001 by polymerizing propylene using a catalyst system consisting of a highly active titanium trichloride-based catalyst complex produced by a specific method, an organoaluminum compound, and an aromatic hydrocarbon. sex,
We proposed a method to obtain polypropylene with high bulk density and high catalytic efficiency. On the other hand, in the case of packaging films, which are one of the major uses of polypropylene, transparency and impact resistance are major factors that determine commercial value, and it is preferable that both transparency and impact resistance are higher. However, according to studies conducted by the present inventors, when propylene is polymerized using a conventionally known electron-donating compound as the third component of the catalyst system, polypropylene with high stereoregularity and bulk density of the polymer powder is obtained. However, it has been found that when it is extruded into a water-cooled blown film or a T-die film, its transparency and impact resistance are reduced. Moreover, as the stereoregularity of the resulting polymer is improved, such as by increasing the amount of the third component, the so-called "stiffness" of the film will be improved, but on the other hand, the transparency and impact resistance mentioned above will be improved. The decline in The reason for this is of course not clear, but according to the studies of the present inventors, one of the factors that has a close correlation with the transparency and impact resistance of the film is the molecular weight distribution of the polymer, and this molecular weight distribution Furthermore, it was found that there is a close correlation with the type and amount of the third component during polymerization. That is, when conventionally known electron-donating compounds are used, the stereoregularity of the polymer is of course improved, but at the same time, the molecular weight distribution also increases, and the transparency and impact resistance of the film tend to decrease. It was done. Although it is currently unclear why there is a correlation between these two properties of the film and the molecular weight distribution, the present inventors have conducted extensive studies to solve this drawback by preventing an increase in the molecular weight distribution. As a result, when certain combinations of electron-donating compounds are used as the third component, the stereoregularity is improved, but the molecular weight distribution remains small, resulting in improved film transparency and impact strength. This is a totally surprising result that could not have been predicted from the prior art. According to the method of the present invention, a polymer with sufficiently large stereoregularity and large bulk density can be obtained by combining the catalyst and cocatalyst with high activity, that is, with high catalytic efficiency. This method is also advantageous from the viewpoint of the manufacturing process, as it makes it possible to omit the step of removing residual catalyst and to streamline the step of removing residual catalyst. Therefore, the gist of the present invention is to precipitate titanium tetrachloride from a liquid containing liquefied titanium trichloride in the presence of an ether or thioether at a temperature of 150°C or lower, or to precipitate titanium tetrachloride from an organoaluminum compound or metal aluminum. Solid titanium trichloride obtained by treating solid titanium trichloride obtained by reduction with a complexing agent and a halogen compound, an organoaluminum compound, an aromatic hydrocarbon, and an aromatic polycyclic condensed ring in the molecule. The present invention relates to a method for producing a polyolefin, which comprises polymerizing an α-olefin using a catalyst system comprising a monocarboxylic acid ester having the following properties. To explain the present invention in detail, solid titanium trichloride used as a catalyst includes pure titanium trichloride obtained by hydrogen reduction of titanium tetrachloride, and titanium trichloride obtained by aluminum reduction of titanium tetrachloride. Aluminum chloride eutectic (TiCl 3 - 1/3AlCl 3 ) and mechanically crushed products of titanium trichloride can also be used, but the amount of amorphous polymer that must be removed is small, simplifying the catalyst removal process. It is preferable to use the following solid titanium trichloride-based catalyst complex, which is a highly active catalyst, because it can be omitted or the powder properties of the resulting polymer are good. Such solid titanium trichloride catalyst complexes are disclosed in Japanese Patent Application Laid-open No. 47-34478, No. 48-64170, No. 50-
112289, 50-143790, 51-16297, 51-
16298, 51-76196, 51-123796, etc., but to explain, the aluminum content is 0.15 or less in the atomic ratio of aluminum to titanium, preferably 0.1 or less, more preferably 0.02 or less, and complex. It contains a curing agent. The content of the complexing agent is the molar ratio of the complexing agent to titanium trichloride in the solid titanium trichloride-based catalyst complex.
It is 0.001 or more, preferably 0.01 or more. Specifically, titanium trichloride, the formula AlR 1 p where the atomic ratio of aluminum to titanium in titanium trichloride is 0.15 or less
X 3-p (wherein, R 1 is a hydrocarbon group having 1 to 20 carbon atoms,
is a halogen atom, p is the number of 0≦p≦2), and contains a complexing agent in a molar ratio of 0.001 or more to aluminum halide and titanium trichloride, for example, compounds with the formula TiCl 3 (AlR 1 p X 3-p ) s・(C) t (wherein, R 1 is a hydrocarbon group having 1 to 20 carbon atoms, and
is a halogen atom, p is a number of 0≦p≦2, C is a complexing agent, s is a number of 0.15 or less, and t is a number of 0.001 or more). Of course, the three components of TiCl,
In addition to the AlR 1 p It may also contain inorganic solids, olefin polymer powders such as polyethylene, polypropylene, etc. Examples of the complexing agent C include ethers, thioethers, ketones, carboxylic acid esters, amines, carboxylic acid amides, and polysiloxanes, among which ethers and thioethers are particularly preferred. As the ether or thioether, the general formula R 2 -O-R 3 or
Examples include those represented by R2 -S- R3 (wherein R2 and R3 represent a hydrocarbon group having 15 or less carbon atoms). Examples of AlR 1 p X 3-p include AlCl 3 and AlR 1 Cl 2 . Further, it is particularly preferable that the solid titanium trichloride-based catalyst complex has an X-ray diffraction pattern having a halo of maximum intensity at a position corresponding to the strongest peak position of α-type titanium trichloride (near 2θ=32.9°). Furthermore, during the production of solid titanium trichloride-based catalyst complexes,
Those that have not been subjected to thermal history at temperatures exceeding 150°C are preferred. Furthermore, the cumulative pore volume with a pore radius between 20 Å and 500 Å measured using the mercury porosimeter method is
Those characterized by a pore volume with an extremely fine pore diameter of 0.02 cm 3 /g or more, especially 0.03 cm 3 /g to 0.15 cm 3 /g, are advantageous in that there is no need to remove the amorphous polymer. , particularly preferred. However, such a solid titanium trichloride-based catalyst complex can be prepared from a liquid containing titanium trichloride liquefied in the presence of (a) ether or thioether at 150°C;
Precipitate at the following temperatures (b) Solid titanium trichloride obtained by reducing titanium tetrachloride with an organoaluminum compound or metal aluminum is treated with a complexing agent and a halogen compound (a) or (b) Manufactured by a method. The following two methods can be used to obtain a liquid material containing liquefied titanium trichloride in method (a). (A) A method in which titanium tetrachloride is used as a starting material and reduced with an organoaluminum compound in the presence of an ether or thioether and, if necessary, a suitable hydrocarbon solvent. (B) Using solid titanium trichloride as a starting material, if necessary in the presence of a suitable hydrocarbon solvent,
Method of treatment with ether or thioether. There are no particular restrictions on the method for precipitating the fine particulate solid titanium trichloride catalyst complex, and the liquid may be deposited as it is or after adding a hydrocarbon diluent if necessary, at a temperature of 150°C or lower, preferably 40 to 120°C. , Particularly preferably, the temperature is raised to 60 to 100°C to precipitate. Note that when the total number of moles of titanium and aluminum in the titanium trichloride liquid is smaller than the number of moles of ether or thioether, a liberating agent may be added to promote precipitation. As liberating agents, titanium tetrachloride, aluminum halide,
For example, aluminum trihalide, alkyl aluminum dihalide, and the like are preferred. The amount of the liberating agent used is preferably 5 moles or less of titanium in the liquid. As the complexing agent in the method (b), those exemplified above as complexing agent C can be similarly mentioned.
Examples of the halogen compound include titanium tetrachloride and carbon tetrachloride. The complexing agent treatment and the halogen compound treatment may be performed simultaneously, or the complexing agent treatment may be performed first and then the halogen compound treatment may be performed. The complexing agent treatment is usually carried out by adding a complexing agent to solid titanium trichloride in a diluent in an amount of 0.2 to 3 moles relative to TiCl 3 at a temperature of -20 to 80°C. After the complexing agent treatment, it is preferable to separate and wash the obtained solid. Halogen compound treatment is usually carried out in a diluent at a temperature of -10 to 50°C. The amount of halogen compound used is usually 0.1 per TiCl 3
~10 times by mole, preferably 1 to 5 times by mole. After the halogen compound treatment, it is preferable to separate and wash the obtained solid. On the other hand, the organoaluminum compound of the cocatalyst has the general formula AlR 4 o Cl 3-o (wherein R 4 has a carbon number of 1 to 20
is a hydrocarbon group, n is a number from 1.95 to 2.10). Among them, diethylaluminum monochloride in which R 4 is an ethyl group and n is 2 can be used satisfactorily;
Particularly preferred are the cocatalysts described in No. 55-38833, in which R 4 is normal propyl group or normal hexyl group. When R 4 is normal propyl group or normal hexyl group, n is 1.95≦n≦
It is important that the ratio is 2.10, and within this range, high results can be obtained in both polymerization activity and stereoregularity by polymerizing in combination with the solid titanium trichloride catalyst complex described above. Among the two kinds of third components used, aromatic hydrocarbons are hydrocarbons having a single ring or polycycles, and hydrocarbon groups such as alkyl groups and alkenyl groups,
Alternatively, it may have a substituent such as a halogen. Specifically, benzene, toluene, ethylbenzene, xylene, styrene, n-propylbenzene, ethyltoluene, trimethylbenzene,
Monocyclic aromatic hydrocarbons such as tetramethylbenzene and chlorobenzene; polycyclic aromatic hydrocarbons such as diphenyl, diphenylmethane, triphenylmethane, naphthalene, methylnaphthalene, dimethylnaphthalene, vinylnaphthalene, phenanthrene, anthracene, vinylanthracene, etc. However, when using the solid titanium trichloride-based catalyst complex, it is advantageous to use the same type of solvent as the one used in its production or prepolymerization from the viewpoint of solvent recovery, as well as being inexpensive and easy to handle. Monocyclic aromatic hydrocarbons such as benzene, toluene, and xylene, which are liquid at room temperature and have a relatively low boiling point, can also be used as the above-mentioned solvents because they are easy to hydrate and easily volatilize when drying the polymer. preferable. Monocarboxylic acid esters having aromatic polycyclic condensed rings in the molecule (hereinafter simply referred to as monocarboxylic acid esters) include monocarboxylic acid esters having naphthalene, anthracene, pyrene, indene, fluorene, etc. . Preferably methyl, ethyl α-naphthoic acid,
Butyl, amyl, octyl ester; Methyl, ethyl, butyl, amyl, octyl ester of β-naphthoic acid; Methyl, ethyl, butyl, amyl, octyl ester of anthracene-1-carboxylic acid; Methyl of anthracene-2-carboxylic acid, Ethyl, butyl, amyl, octyl ester; methyl, ethyl, butyl, amyl, octyl ester of anthracene-9-carboxylic acid and the like. Furthermore, those in which the hydrogen atom of the above-mentioned aromatic ring is substituted with an alkyl group can also be used. The ratio of each catalyst component used is usually a molar ratio of titanium trichloride: organoaluminum compound: aromatic hydrocarbon: monocarboxylic acid ester in solid titanium trichloride: 1:1 to 100:1 to 10000:0.01 to 10. , preferably from 1:2 to 40:5 to 5000:0.05 to 2. When polymerization is carried out in a hydrocarbon solvent, the aromatic hydrocarbon is used in an amount of 0.01 to 20% by volume, preferably 0.1 to 10% by volume, based on the solvent. If this amount is too small, the effect of improving the transparency and impact resistance of the film will not be sufficient, and if it is too large, the burden of recovering aromatic hydrocarbons from the polymer or polymerization solvent will increase, which is undesirable. The impact appears. In the method of the present invention, a catalyst system is prepared from the solid titanium trichloride, an organoaluminum compound, and a third component consisting of an aromatic hydrocarbon and a monocarboxylic acid ester. can also be adopted. For example, a method of simply mixing the above four components in advance in a hydrocarbon solvent such as hexane, heptane, benzene, or toluene (if aromatic hydrocarbons such as benzene or toluene are used as a solvent, the total number of moles of them is (selected so that the ratio used), the above-mentioned two components, for example, an organoaluminum compound and a monocarboxylic acid ester, may be mixed in advance. Although there are no particular restrictions on the mixing temperature, time, etc., the temperature is usually room temperature to the polymerization temperature, and the time is preferably not too long, usually within several days. Alternatively, a method may be adopted in which each of the catalyst components is separately supplied to the polymerization vessel without being mixed in advance. Further, the solid titanium trichloride used as a catalyst may be used as it is in the polymerization, but it is preferably used after being pretreated with a small amount of the olefin in the presence of an organoaluminum compound. This pretreatment is effective in improving the physical properties of the polymer slurry, such as bulk density. Pretreatment is performed at a temperature lower than the polymerization temperature, generally from 20℃
The treatment is carried out at 60° C. so that the polymer produced by the pretreatment/titanium trichloride in the solid titanium trichloride ratio is 0.1 to 50/1 (weight ratio), usually 1 to 20/1. As the solvent for this pretreatment, aliphatic hydrocarbons such as hexane and heptane, and alicyclic hydrocarbons such as cyclohexane can be used, but aromatic hydrocarbons themselves, which are added as the third component such as benzene and toluene, can be used as solvents. It is preferable to use it because it improves not only the stereoregularity but also the bulk density of the final polymer. Therefore, in the present invention, α-olefin is polymerized in the presence of a catalyst system consisting of solid titanium trichloride, an organoaluminum compound, and a third catalyst component. As α-olefin, propylene, butene-1,3-methylbutene-1,4
Examples include methylpentene-1, pentene-1, hexene-1, etc., and homopolymerization of these α-olefins, mixtures of these with ethylene, random copolymerization of mixtures of these with each other, or α- Block copolymerization of olefins or of these α-olefins and ethylene is carried out. It is particularly suitable for stereoregular polymerization to produce a propylene homopolymer, a random copolymer containing 90% by weight or more of propylene, or a block copolymer containing 80% by weight or more of propylene. The polymerization reaction may be carried out by gas phase polymerization or by slurry polymerization in the presence of a solvent.
Examples of the solvent include aliphatic hydrocarbons such as pentane, heptane, hexane, and decane; alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; however, the above-mentioned olefins themselves such as propylene are also preferably used. In addition, the polymerization reaction can be carried out either batchwise or continuously, and there are no particular limitations on the polymerization temperature and pressure, but usually,
The temperature is 50 to 100°C, preferably 60 to 90°C, and the pressure is about atmospheric pressure to 100 atm. In addition, during polymerization, the molecular weight of the produced polymer can be controlled using a known molecular weight controlling agent such as hydrogen or halogenated hydrocarbon. Olefin polymerization is carried out as described above, and the effects of high polymerization activity and high stereoregularity brought about by the method of the present invention are due to the high catalytic efficiency of polymerization, such as titanium trichloride (TiCl 3 ) in solid titanium trichloride. This is particularly noticeable in polymerizations in which 5,000 grams or more, preferably 10,000 grams or more of polymer is produced per gram, and the amount of catalyst remaining in the polymer is further reduced, and the stereoregularity of the resulting polymer is improved. Such high catalytic efficiency polymerizations are particularly preferred because they improve the efficiency of polymerization. According to the method for producing polyolefin of the present invention described in detail above, not only high results are obtained in both polymerization activity and stereoregularity of the polymer, but also high transparency and impact resistance are obtained when formed into a film. Results are obtained and excellent effects not seen with conventional methods are achieved. Therefore, the present invention has great industrial value. Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In addition, in the examples and comparative examples, the catalyst efficiency CE is the total amount of propylene polymer produced per 1 g of titanium trichloride in solid titanium trichloride,
Polymerization activity K per hour, propylene pressure 1Kg/cm 2
This is the total amount of propylene polymer produced per gram of titanium trichloride. The total amount of propylene polymer produced herein refers to the amount including the amorphous polymer. The bulk density ρ B of the polymer powder was measured according to JIS-K-6721. II-XLN is the total amount of polymer remaining after completely dissolving the polymer together with a stabilizer in boiling xylene, leaving it to slowly cool to room temperature, filtering out the precipitated polymer, and washing with xylene. It represents the stereoregularity of the total polymer. Polymer melt flow index, MFI is
Measured according to ASTM-D1238. FR is 5.528Kg
Load, extrusion amount of molten polymer at 230℃,
This is a simple method to express the spread of molecular weight distribution by expressing it as the ratio of the same extrusion amount at 230°C under a load of 0.553 kg. Film haze (transparency) is determined by ASTM.
It was measured using a Nippon Denshoku haze meter according to D1003. This indicates the transparency of the film. In addition, the dirt, drop, impact, and DDI of the film are manufactured by Toyo Seiki in accordance with ASTM-D1709.
Measurements were made using a DDI measuring machine with a hemisphere of 1.5 inches and a height of 20 inches. This indicates the impact resistance of the film. Furthermore, FIGS. 1 and 2 are flowcharts to help understand the technical content included in the present invention, and the present invention is not subject to any restrictions by the flowcharts unless it deviates from the gist thereof. It's not a thing. Catalyst production example 1 (A) Production of solid titanium trichloride-based catalyst complex A 10 capacity autoclave that was sufficiently purged with nitrogen was charged with 5.0 g of purified n-hexane, and while stirring, 2.7 mol of di-n-octyl ether and tetrachloride were added. Titanium
3.0 mol was charged. The internal temperature was adjusted to 30°C, and 0.5% of an n-hexane solution containing 1.0 mol of diethylaluminum monochloride was added to obtain a brown homogeneous solution. When the temperature was then raised, purple fine particles of solid were observed to precipitate from around 50°C. After holding at 95°C for about 1 hour, granular purple solids were separated and washed repeatedly with n-hexane to obtain 345g of titanium trichloride solid catalyst complex. As a result of elemental analysis and gas-chromatography analysis, the composition of this substance is TiCl 3・(AlCl 3 ) 0.004・[(n-C 8 H 17 ) 2 O]
It was 0.11 . (B) Pretreatment with propylene 12.5 mol of purified n-hexane was charged into an autoclave with a capacity of 20 that was sufficiently purged with nitrogen, and while stirring, 1.6 mol of diethylaluminium monochloride was added to the solid titanium trichloride catalyst obtained in (A) above. complex,
TiCl 3 was charged in an amount of 250 g. Next, the internal temperature was adjusted to 30℃, and while stirring, propylene gas was started to be blown into the tank, resulting in 1250g of polymerized propylene.
Blowing of propylene gas was continued at the same temperature until the temperature reached . The solid was then separated and washed repeatedly with n-hexane to obtain polypropylene-containing titanium trichloride. Examples 1 to 4 and Comparative Examples 1 to 5 In a reactor with a capacity of 1.7 m 3 that was sufficiently purged with nitrogen,
By continuously supplying liquefied propylene and hydrogen at ℃, polypropylene-containing solid titanium trichloride (TiCl 3 ) obtained in Catalyst Production Example 1 (B), di-n-propylaluminium monochloride (DPA), and aromatic carbonization were produced. Hydrogen and various monocarboxylic acid esters were continuously fed in the amounts shown in Table 1. The DPA/TiCl 3 molar ratio was 8. Polymerization of propylene was carried out continuously at 70° C. with an average residence time of 5.0 hours at a propylene partial pressure of 31 Kg/cm 2 and a molar ratio of hydrogen to propylene in the gas phase of 0.06 to 0.065. Table 1 shows the polymerization activity determined from the catalyst supply rate and polymer production rate. After purging unreacted propylene from the liquefied propylene slurry of the polymer, the polymer powder was heated with propylene oxide gas at 120 °C.
The treatment was carried out continuously at ℃. To the product powder obtained as above, 0.2% by weight of BHT and 0.3% by weight of silica were added as antioxidants and pelletized at 250℃ using a pelletizer with an inner diameter of 40mm, and then formed into a water-cooled inflation film with a thickness of 30μ. Molded. The haze (transparency) and DDI (impact resistance) of this film were measured. On the other hand, the FR of the pellets was measured. These results are summarized in Table 1. In Examples 1 to 3, polymerization was carried out using toluene as the aromatic hydrocarbon and various monocarboxylic acid esters. Comparative Examples 1 to 3 are conventionally known methods that do not use aromatic hydrocarbons, such as adding only monocarboxylic acid ester to reduce the production rate of amorphous polymer, or adding stereoregular II-XLN.
Increasing the film haze increases, that is, the transparency deteriorates, and the impact strength and DDI decrease. However, when toluene is used in combination as in Examples 1 to 3, the film haze decreases, that is, the transparency deteriorates. It is clear that the impact strength and impact strength DDI are improved. Furthermore, it can be seen that FR, which is an index of molecular weight distribution, also decreased. On the other hand, Comparative Example 4
In Comparative Example 5, only an aromatic hydrocarbon was used, and the transparency and impact resistance of the film were satisfactory. It shows a high production rate and low stereoregularity II-XLN. As a result, the rigidity of the film decreased. Another effect obtained by the method of the present invention is that when attempting to increase II-XLN using only a monocarboxylic acid ester, the decrease in polymerization activity K is relatively large, but when toluene is used in combination, the decrease in K is small. is clear from the comparison between Examples 1 to 3 and Comparative Examples 1 to 3. Example 4 is an example in which benzene was used as the aromatic hydrocarbon, but as in Examples 1 to 3, the amorphous polymer production rate decreased and the stereoregularity II-XLN improved, but the film It shows that both transparency and impact resistance are improved.

【表】【table】

【表】 触媒製造例 2 (A) 固体三塩化チタン系触媒錯体の製造 充分に窒素置換した容量10のオートクレーブ
に精製トルエン5.0を装入し、撹拌下、ジ―n
―ブチルエーテル5.0モル、四塩化チタン5.0モル
を装入した。内温を30℃に調節しついでジエチル
アルミニウムモノクロライド2.5モルを含有する
トルエン溶液0.7を添加し、褐色の均一溶液を
得た。ついで昇温したときろ40℃を過ぎる頃より
紫色の微粒状の固体析出が認められた。95℃で約
1時間保持した後、粒状の紫色固体を分離しトル
エンで洗浄を繰返して778gの三塩化チタン系固
体触媒錯体を得た。 元素分析及びガス―クロ分析の結果、このもの
の組成はTiCl3・(AlCl30.003・〔(n−C4H92O〕0
.

07であつた。 (B) プロピレンによる前処理 充分に窒素置換した容量20のオートクレーブ
に精製トルエン12.5を装入し、撹拌下、ジ―プ
ロピルアルミニウムモノクロライド1.6モル、上
記(A)で得た固体三塩化チタン系触媒錯体を、
TiCl3の量が250gとなるように装入した。つい
で内温を20℃に調節し、撹拌下、プロピレンガス
の吹き込みを開始し重合したプロピレンが1250g
になるまで同温度でプロピレンガスの吹き込みを
続けた。ついで固体を分離し、トルエンで洗浄を
繰返し、ポリプロピレン含有三塩化チタンを得
た。なお後述する比較例6〜9においてはトルエ
ン洗浄後、トルエンをn―ヘキサンで置換したも
のを用いた。 実施例5〜8および比較例6〜10 実施例1において、固体触媒成分として触媒製
造例2(B)で得られたポリプロピレン含有固体三塩
化チタンを使用し、芳香族炭化水素およびモノカ
ルボン酸エステルの種類および使用量を表2のよ
うにし、TiCl3の供給速度を表2のようにしたほ
かは実施例1と同様にして、重合をおこない、つ
いで水冷インフレーシヨンフイルムに成形し各種
測定を行つた。これらの結果を表2にまとめて示
す。 実施例5〜7は種々のモノカルボン酸エステル
に、ポリプロピレン含有固体三塩化チタンスラリ
ーの溶媒であるトルエンを併用し、実施例8は更
にキシレンを添加して重合したものである。比較
例6〜8と比較すると、モノカルボン酸エステル
に芳香族炭化水素を併用することによつて、やは
り非晶性重合体生成率が減少し、立体規則性II―
XLNが向上すると共に、フイルムの透明性及び
耐衝撃性が改良されることが明らかである。また
重合活性の低下が小さいことも同様である。この
様な効果は、モノカルボン酸エステルあるいは芳
香族炭化水素各々単独では望みえず、両者相俟つ
て始めて得られるものである。
[Table] Catalyst production example 2 (A) Production of solid titanium trichloride-based catalyst complex 5.0 g of purified toluene was charged into an autoclave with a capacity of 10 that was sufficiently purged with nitrogen, and under stirring,
- 5.0 moles of butyl ether and 5.0 moles of titanium tetrachloride were charged. After adjusting the internal temperature to 30° C., 0.7 mol of a toluene solution containing 2.5 mol of diethylaluminum monochloride was added to obtain a brown homogeneous solution. Then, when the temperature was raised, fine particles of purple solid were precipitated from around 40°C. After being maintained at 95° C. for about 1 hour, granular purple solids were separated and washed repeatedly with toluene to obtain 778 g of titanium trichloride solid catalyst complex. As a result of elemental analysis and gas-chromatography analysis, the composition of this substance is TiCl 3・(AlCl 3 ) 0.003・[(n-C 4 H 9 ) 2 O] 0
.

It was 07 . (B) Pretreatment with propylene 12.5 mol of purified toluene was charged into an autoclave with a capacity of 20 that was sufficiently purged with nitrogen, and while stirring, 1.6 mol of di-propyl aluminum monochloride was added to the solid titanium trichloride catalyst obtained in (A) above. complex,
TiCl 3 was charged in an amount of 250 g. Then, the internal temperature was adjusted to 20℃, and while stirring, blowing propylene gas was started, and 1250g of polymerized propylene was produced.
Blowing of propylene gas was continued at the same temperature until the temperature reached . The solid was then separated and washed repeatedly with toluene to obtain polypropylene-containing titanium trichloride. In Comparative Examples 6 to 9, which will be described later, after washing with toluene, toluene was replaced with n-hexane. Examples 5 to 8 and Comparative Examples 6 to 10 In Example 1, polypropylene-containing solid titanium trichloride obtained in Catalyst Production Example 2 (B) was used as the solid catalyst component, and aromatic hydrocarbons and monocarboxylic acid esters were Polymerization was carried out in the same manner as in Example 1, except that the type and amount of TiCl 3 used were as shown in Table 2, and the supply rate of TiCl 3 was as shown in Table 2. Then, a water-cooled inflation film was formed and various measurements were carried out. I went. These results are summarized in Table 2. In Examples 5 to 7, various monocarboxylic acid esters were used in combination with toluene, which is a solvent for a solid titanium trichloride slurry containing polypropylene, and in Example 8, xylene was further added for polymerization. When compared with Comparative Examples 6 to 8, by using an aromatic hydrocarbon in combination with a monocarboxylic acid ester, the amorphous polymer production rate also decreased, and the stereoregularity II-
It is clear that as the XLN increases, the transparency and impact resistance of the film are improved. Similarly, the decrease in polymerization activity is small. Such an effect cannot be obtained by using either the monocarboxylic acid ester or the aromatic hydrocarbon alone, but can only be achieved by the combination of the two.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明の一態様を示すフ
ローチヤート図である。
1 and 2 are flowcharts showing one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 エーテル又はチオエーテルの存在下に液状化
した三塩化チタンを含有する液状物から150℃以
下の温度で析出させるか、又は、四塩化チタンを
有機アルミニウム化合物又は金属アルミニウムで
還元して得られた固体三塩化チタンを錯化剤処理
及びハロゲン化合物処理するかして得られる固体
三塩化チタン、有機アルミニウム化合物、芳香族
炭化水素および分子内に芳香族多環縮合環を有す
るモノカルボン酸エステルからなる触媒系を用い
てα―オレフインを重合することを特徴とするポ
リオレフインの製造方法 2 固体三塩化チタンとして、アルミニウム含有
量がチタンに対するアルミニウムの原子比で0.15
以下であつてかつ錯化剤を含有する固体三塩化チ
タン系触媒錯体を用いる特許請求の範囲第1項記
載の製造方法
[Claims] 1. Precipitation at a temperature of 150°C or lower from a liquid containing titanium trichloride liquefied in the presence of an ether or thioether, or reducing titanium tetrachloride with an organoaluminum compound or metallic aluminum. solid titanium trichloride obtained by treating the obtained solid titanium trichloride with a complexing agent and a halogen compound, an organoaluminum compound, an aromatic hydrocarbon, and a monomer having an aromatic polycyclic fused ring in the molecule. Method 2 for producing polyolefin, characterized by polymerizing α-olefin using a catalyst system consisting of a carboxylic acid ester Solid titanium trichloride has an aluminum content of 0.15 as an atomic ratio of aluminum to titanium.
The manufacturing method according to claim 1, which uses a solid titanium trichloride catalyst complex which is as follows and contains a complexing agent.
JP1619481A 1981-02-05 1981-02-05 Production of polyolefin Granted JPS57131204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1619481A JPS57131204A (en) 1981-02-05 1981-02-05 Production of polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1619481A JPS57131204A (en) 1981-02-05 1981-02-05 Production of polyolefin

Publications (2)

Publication Number Publication Date
JPS57131204A JPS57131204A (en) 1982-08-14
JPH0138122B2 true JPH0138122B2 (en) 1989-08-11

Family

ID=11909695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1619481A Granted JPS57131204A (en) 1981-02-05 1981-02-05 Production of polyolefin

Country Status (1)

Country Link
JP (1) JPS57131204A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110509A (en) * 1987-10-26 1989-04-27 Mitsui Toatsu Chem Inc Pretreatment of transition metal catalyst
JPH01110510A (en) * 1987-10-26 1989-04-27 Mitsui Toatsu Chem Inc Pretreatment of transition metal catalyst

Also Published As

Publication number Publication date
JPS57131204A (en) 1982-08-14

Similar Documents

Publication Publication Date Title
CA1299807C (en) Process for producing olefin polymers and catalyst used therein
FI106308B (en) A process for polymerizing olefins in a gas phase
CA1265646A (en) PROCESS FOR THE START UP OF POLYMERISATION OR COPOLYMERISATION IN THE GAS PHASE OF .alpha.-OLEFINS IN THE PRESENCE OF A ZIEGLER-NATTA CATALYST SYSTEM
JPH02163104A (en) Production of highly stereoregular alpha-olefin polymer
JP2625126B2 (en) Solid catalysts usable for stereospecific polymerization of alpha olefins
US4199476A (en) Olefin polymerization catalyst
TW298594B (en)
JPH08512339A (en) Process for producing alk-1-ene homopolymer and copolymer
JPH0364306A (en) Production of polyoflefin
CN111019023B (en) Catalyst for olefin polymerization, preparation method thereof, catalyst composition for olefin polymerization and application thereof
US4381383A (en) Process for producing polyolefins
JPH0138122B2 (en)
JPS6351167B2 (en)
FI61500B (en) FOERFARANDE FOER STEREOSPECIFIK POLYMERISATION AV ALFA-OLEFINER MED 2-6 KOLATOMER I NAERVARO AV ETT KATALYTISKT SYSTEM INNEHAOLLANDE TITANTRICHLORIDPARTIKLAR OCH DE VID FOERFARANDET ANVAENDA TITANTRIKLORPART
US4211671A (en) Olefin polymerization catalyst
JPH0155283B2 (en)
JP3391583B2 (en) Olefin polymerization catalyst
JP3253749B2 (en) Method for producing olefin polymerization catalyst
JPS6337826B2 (en)
JP3217466B2 (en) Method for producing propylene polymer
JPH055842B2 (en)
JPH0425522A (en) Production of propylene copolymer
JPS63225613A (en) Manufacture of propylene block copolymer
JPH0317846B2 (en)
JPH0347644B2 (en)