Nothing Special   »   [go: up one dir, main page]

JPH0133258Y2 - - Google Patents

Info

Publication number
JPH0133258Y2
JPH0133258Y2 JP8738584U JP8738584U JPH0133258Y2 JP H0133258 Y2 JPH0133258 Y2 JP H0133258Y2 JP 8738584 U JP8738584 U JP 8738584U JP 8738584 U JP8738584 U JP 8738584U JP H0133258 Y2 JPH0133258 Y2 JP H0133258Y2
Authority
JP
Japan
Prior art keywords
molten steel
nozzle
inclusions
long nozzle
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8738584U
Other languages
Japanese (ja)
Other versions
JPS614853U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8738584U priority Critical patent/JPS614853U/en
Publication of JPS614853U publication Critical patent/JPS614853U/en
Application granted granted Critical
Publication of JPH0133258Y2 publication Critical patent/JPH0133258Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、連続鋳造用長尺ノズルの改良に関す
る。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to improvement of a long nozzle for continuous casting.

(従来技術) 薄板材のうち、ブリキや自動車用鋼板等の高級
薄板材は、内部品質要求レベルが高く、しばしば
内部品質劣化によるトラブルが発生しやすく、ま
た内部品質を悪化させる要因として、50〜400μ
の微小介在物が溶鋼中に混入することに起因して
いることは良く知られている。
(Prior art) Among thin sheet materials, high-grade thin sheet materials such as tinplate and steel sheets for automobiles have a high level of internal quality requirements and are often prone to problems due to internal quality deterioration. 400μ
It is well known that this is caused by the inclusion of microscopic inclusions in molten steel.

この50〜400μの微小介在物の溶鋼中への混入
を図るには、アルゴンガス、窒素等の不活性ガス
の吹込みにより微小気泡を発生させ、この小気泡
とその浮力により除去することが効果的であるこ
とも知られている。
In order to prevent these 50 to 400μ microscopic inclusions from entering molten steel, it is effective to generate microbubbles by blowing inert gas such as argon gas or nitrogen, and remove them using the buoyancy of these microbubbles. It is also known that

また、連続鋳造における不活性ガスの吹込装置
としてもポーラス耐火物、あるいは、単に、細孔
を設けたロングノズル等種々のノズルが用いられ
ている。この内、特に、溶鋼中の微小介在物の浮
上除去に際して効果的な長尺ノズルとして、例え
ば、特開昭58−9750号公報の如く、浸漬ノズル内
の溶鋼レベル以内に、スリツトを有した内筒状ガ
ス吹込み部を設けて、微小気泡を発生させると共
に、該浸漬ノズルの内壁面に付着するアルミナ系
介在物の折出をも抑止する浸漬ノズルが提案され
ている。
Furthermore, various nozzles such as porous refractories or simply long nozzles provided with pores are used as an inert gas blowing device in continuous casting. Among these, as a long nozzle that is particularly effective in floating and removing minute inclusions in molten steel, for example, as in Japanese Patent Application Laid-Open No. 58-9750, a submerged nozzle with a slit within the molten steel level is used. An immersion nozzle has been proposed that is provided with a cylindrical gas blowing part to generate microbubbles and also to suppress the precipitation of alumina-based inclusions adhering to the inner wall surface of the immersion nozzle.

しかしながら、前述した如き浸漬ノズルは、該
浸漬ノズル内面の溶鋼と常に直接々触する部分以
内にガス吹込み部を設ければ、該溶鋼内に常に安
定した微小気泡の吹込みが可能である。しかし、
該浸漬ノズル内の溶鋼接触レベルが50〜300mmと
大きく変動するために、この範囲内のアルミナ系
介在物の析出を抑止できない。また、このアルミ
ナ系介在物の析出を抑止するために、この範囲を
含めたガス吹込み部を設けると、内筒状ガス吹込
み部が溶鋼浸漬部と非浸漬部で大きく異なり、前
述したアルミナ系介在物の抑止効果が大巾に悪化
すると共に不均一のガス流と吹込ガス量増化によ
るモールド内溶鋼のボイルト等を招くことから、
溶鋼中の介在物増加による品質低下を招く等の事
態が発生する。
However, the above-mentioned immersion nozzle can always stably blow microbubbles into the molten steel by providing a gas injection part within the portion of the inner surface of the immersion nozzle that is always in direct contact with the molten steel. but,
Since the molten steel contact level within the immersion nozzle varies widely from 50 to 300 mm, precipitation of alumina-based inclusions within this range cannot be suppressed. In addition, if a gas injection part is provided that covers this range in order to suppress the precipitation of alumina-based inclusions, the inner cylindrical gas injection part will differ greatly between the molten steel immersed part and the non-immersed part, and the alumina inclusions mentioned above will The effect of suppressing system inclusions is greatly deteriorated, and the molten steel in the mold may boil due to non-uniform gas flow and an increased amount of blown gas.
Situations such as quality deterioration may occur due to an increase in inclusions in molten steel.

(考案が解決しようとする問題点) 本考案は、前述した如き従来の浸漬ノズルの欠
点である浸漬ノズル内に微小気泡を安定して、し
かも、溶鋼浸漬部と非浸漬部において供給するこ
とにより、浸漬ノズルの広域内面のアルミナ系介
在物の析出を十分に抑止するとともに、ガスの不
均一吹込み、あるいは、多量吹込みによるモール
ド内のボイルをも抑制することにより、該モール
ド内に浮遊した介在物の巻き込みを防止して高品
質の鋳片を得ることにある。
(Problems to be Solved by the Invention) The present invention solves the drawbacks of the conventional immersion nozzle as described above by stably supplying microbubbles into the immersion nozzle, and moreover, by supplying microbubbles to the molten steel immersion area and the non-immersion area. By sufficiently suppressing the precipitation of alumina-based inclusions on the wide inner surface of the immersion nozzle, and also suppressing boiling in the mold due to non-uniform gas injection or large amount injection, The objective is to obtain high quality slabs by preventing inclusions from being drawn in.

(問題点を解決するための手段) 本考案は筒状体の外壁部と通気性耐火物からな
る内壁間にガス供給管に連通したスリツト部を設
けた連続鋳造用長尺ノズルにおいて、ガス供給管
に連通したスリツト部を有する通気性耐火物の層
厚を非溶鋼浸漬部Luと溶鋼浸漬部LとがLu〉
Lとすることにより、該長尺ノズル内ガス流を
広範囲において均一化したことにある。
(Means for solving the problem) The present invention provides a long nozzle for continuous casting in which a slit portion communicating with a gas supply pipe is provided between the outer wall of a cylindrical body and the inner wall made of a breathable refractory. The layer thickness of the breathable refractory having a slit portion communicating with the pipe is Lu>
L, the gas flow within the long nozzle is made uniform over a wide range.

以下本考案による長尺ノズルについて述べる。
考案者等は、前述した如き従来の長尺ノズルを用
いた鋳造において、鋳造中に長尺ノズル内の湯面
が溶湯鋳造量の変化、吐出孔の閉塞状況等によ
り、大巾に変動することを知見し得た。また、こ
の溶湯の大巾な変動は、該長尺ノズルからAr,
N2等の不活性ガスを吹込む際に、溶鋼浸漬部と
非浸漬部とでは、ガスの吐出量が大きく変動し、
この変動がモールド内のボイル発生、介在物の巻
き込み等により鋼の品質低下を招いている事態を
知見し得た結果、本考案に致つたものである。以
下本考案による長尺ノズルについて図に示す一実
施例に基づいてさらに詳述する。
The long nozzle according to the present invention will be described below.
The inventors discovered that in casting using the conventional long nozzle as described above, the molten metal level in the long nozzle fluctuates widely during casting due to changes in the amount of molten metal cast, the state of blockage of the discharge hole, etc. I was able to find out. In addition, this wide fluctuation in the molten metal is caused by Ar,
When injecting an inert gas such as N2 , the amount of gas discharged varies greatly between the immersed part and the non-immersed part of the molten steel.
The present invention was developed as a result of discovering that this variation causes a deterioration in the quality of steel due to boiling in the mold, entrainment of inclusions, etc. Hereinafter, the elongated nozzle according to the present invention will be described in further detail based on an embodiment shown in the drawings.

第1図は、本考案による長尺ノズルとして浸漬
ノズルの場合の断面図を示し、第2図は、第1図
におけるA部の拡大断面図を示し、第4図は、本
考案による長尺ノズルとして取鍋のロングノズル
の一実施例の断面図を示す。
FIG. 1 shows a cross-sectional view of a submerged nozzle as a long nozzle according to the present invention, FIG. 2 shows an enlarged cross-sectional view of part A in FIG. 1, and FIG. 4 shows a long nozzle according to the present invention. A cross-sectional view of an embodiment of a ladle long nozzle as a nozzle is shown.

図において、アルミナグラフアイト系、もしく
は、ジルコン、シリカチユーブ等の耐火物からな
る、筒状体1には、取鍋、あるいは、タンデイツ
シユに設けた注湯ノズル(図示せず)に係合する
テーパー部2、および、先端部3には、溶鋼の吐
出孔4a,4bが穿設してある。この筒状体1の
内部の溶鋼浸漬部近傍5は、外壁6と該筒状体1
の溶鋼流入通路である内筒面に接した通気性耐火
物7とが設けてあり、また、外壁6と通気性耐火
物7との間には、工場内のアルゴン、あるいは、
窒素等の不活性ガス圧力源(図示せず)に連通し
たフレキシブルホース、鋼管等からなる配管8と
ねじ込み等の手段で一体固設したスリツト部9が
設けてある。
In the figure, a cylindrical body 1 made of a refractory material such as alumina graphite, zircon, or silica tube has a taper that engages with a pouring nozzle (not shown) provided in a ladle or tundish. The portion 2 and the tip portion 3 are provided with discharge holes 4a and 4b for molten steel. The vicinity 5 of the molten steel immersed part inside this cylindrical body 1 is located between the outer wall 6 and the molten steel immersed part 5.
A breathable refractory 7 is provided in contact with the inner cylinder surface, which is a molten steel inflow passage, and between the outer wall 6 and the breathable refractory 7, argon in the factory or
A slit portion 9 is provided which is integrally fixed by means such as screwing with a piping 8 made of a flexible hose, steel pipe, etc., which communicates with an inert gas pressure source (not shown) such as nitrogen.

次に、筒状体1内の溶鋼の湯面レベルは、通常
レベルFと作業の変動による最大レベルGとがあ
り、このために、前記の溶鋼浸漬部近傍5は、常
時浸漬部10と非常時浸漬部11となる。この常
時浸漬部10の通気性耐火物7の層厚みLと、
非常時浸漬部11の通気性耐火物7の層厚みLu
をLu〉Lとなるように設ける。
Next, the level of the molten steel in the cylindrical body 1 has a normal level F and a maximum level G due to fluctuations in work. It becomes the immersion part 11. The layer thickness L of the breathable refractory 7 of this constantly immersed part 10,
Layer thickness Lu of the breathable refractory 7 of the emergency immersion part 11
are set so that Lu>L.

而して、通気性耐火物7の層厚みLとLuを
決定するに際して、通常の耐火物の通気性は、通
気量をQ、耐火物厚(ここではスリツト部から溶
湯界面迄のキヨリ)Lの上部における耐火物厚み
LuにするとQは∝Lu-〓となり、一方下部での耐
火物厚みLとすればQ∝Ll-〓で表わされること
から、常時浸漬部(以下単に浸漬部と称する)1
0からの吐出流量Qdipと非浸漬部11からの吐出
流量QNpo dipの比であるパラメーターβは、β=
QNpo dip/Qdip≦0.2でないと、鋳型内ボイルが発
生する事が第5図に示す如く、実験的に求められ
ている。
Therefore, when determining the layer thicknesses L and Lu of the breathable refractory 7, the air permeability of a normal refractory is determined by the airflow amount being Q, the thickness of the refractory (here, the width from the slit part to the molten metal interface) L Refractory thickness at the top of
When expressed as Lu, Q becomes ∝Lu - 〓, and on the other hand, when the thickness of the refractory at the bottom is L, it is expressed as Q∝Ll - 〓. Therefore, the constantly immersed part (hereinafter simply referred to as immersed part) 1
The parameter β, which is the ratio of the discharge flow rate Q dip from 0 and the discharge flow rate Q Npo dip from the non-immersed part 11, is β=
As shown in FIG. 5, it has been experimentally determined that if Q Npo dip /Q dip ≦0.2, boiling will occur in the mold.

この結果に基づき、LuとLを計算により求
めると、 Qdip=a・L-〓 (1)
(但し、a:見掛け吐出流量) QNpo dip=a・Lu-〓 (2) β=QNpo dip/Qdip≦0.2 (3) a・Lu-〓/a・L-〓0.2 (4) となり、もつとも良好な値となる。
Based on this result, when Lu and L are calculated, Q dip = a・L - 〓 (1)
(However, a: apparent discharge flow rate) Q Npo dip = a・Lu - 〓 (2) β=Q Npo dip /Q dip ≦0.2 (3) a・Lu - 〓/a・L - 〓0.2 (4) , it is still a good value.

また、前述したガスの吐出量のパラメーターで
あるαは、耐火物材質により決まるものであり、
例えば、アルミナグラフアイト系の気孔率18〜22
%の場合でα=0.6〜1.0、さらにまた、通常の通
気性耐火物(ポーラスプラグ)で比較的低気孔率
のものでα=5.0、通常のものでα=10.0〜20.0と
なり、これ等のα値を用いて、前記の〜式で
求められるLuとLの値は第6図に示す値とな
り、構成する耐火物としてのα値は1.0〜10.0の
ものが好ましい。
In addition, α, which is the parameter of the gas discharge amount mentioned above, is determined by the refractory material.
For example, the porosity of alumina graphite is 18 to 22.
%, α=0.6 to 1.0, and furthermore, normal breathable refractories (porous plugs) with relatively low porosity have α=5.0, and normal ones have α=10.0 to 20.0. Using the α value, the values of Lu and L determined by the above formula are the values shown in FIG. 6, and the α value of the constituent refractory is preferably 1.0 to 10.0.

第2図に示す如く、浸漬部10の通気性耐火物
7の層厚みLと非浸漬部11の通気性耐火物7
の層厚みLuをLu〉Lにするとともに吹込みガ
スによる鋳型内のボイルを抑制できる。また、第
4図には、ロングノズルに設けた場合を示すが吐
出孔4aが先端開放である以外は全く前記に同じ
である。なお、非常時非浸漬部11と常時浸漬部
10の通気性耐火物7の層厚みをLu〉Lとす
る際の層厚みLuは、第3図に示す如く、段階的
に行なつてもよくさらには順次に曲線的、あるい
は、直線的に常時浸漬部10からLuを厚く形成
(図示せず)してもよい。
As shown in FIG.
It is possible to set the layer thickness Lu to Lu>L and to suppress boiling in the mold due to the blown gas. Further, FIG. 4 shows a case in which a long nozzle is provided, but it is completely the same as above except that the discharge hole 4a is open at the tip. In addition, when the layer thickness of the breathable refractory 7 in the emergency non-immersion part 11 and the normally immersed part 10 is Lu>L, the layer thickness Lu may be determined in stages as shown in FIG. Furthermore, Lu may be formed to become thicker from the constantly immersed portion 10 in a sequentially curved or linear manner (not shown).

前述の如く構成された筒状体1(浸漬ノズル)
は、注湯ノズル(図示せず)から溶鋼が該筒状体
1内に注湯され先端部に設けた吐出孔4a,4b
から鋳型(図示せず)内に鋳込まれる。この鋳込
の際に該筒状体1内の溶鋼との接触部において、
該筒状体1内に設けたスリツト部9と通気性耐火
物7を介して例えばアルゴンガス、窒素ガス等の
不活性ガスを溶鋼中に吹込み介在物の析出防止お
よび介在物の浮上促進を図る。この際筒状体1内
の溶鋼の湯面レベルがFからGへとかなり変動す
ることにより、浸漬部10と非浸漬部11の流量
が大巾に変動し、特に非浸漬部11からの吐出流
量が増加するために、通気性耐火物7の層厚みL
,LuとLu〉Lにすることによつて、該筒状
体1の長手方向の不活性ガスの吹込み量を均一化
し、筒状体1の広域において介在物の析出抑制と
鋳型内のボイルの発生を効果的に防止できる。
Cylindrical body 1 (immersion nozzle) configured as described above
Molten steel is poured into the cylindrical body 1 from a pouring nozzle (not shown) through discharge holes 4a and 4b provided at the tip.
The material is then cast into a mold (not shown). During this casting, at the contact part with the molten steel in the cylindrical body 1,
An inert gas such as argon gas or nitrogen gas is injected into the molten steel through the slit 9 provided in the cylindrical body 1 and the breathable refractory 7 to prevent the precipitation of inclusions and promote the floating of inclusions. Plan. At this time, as the level of the molten steel in the cylindrical body 1 fluctuates considerably from F to G, the flow rate of the immersed section 10 and the non-immersed section 11 fluctuates widely, and especially the discharge from the non-immersed section 11. In order to increase the flow rate, the layer thickness L of the breathable refractory 7
, Lu and Lu>L, the amount of inert gas blown in the longitudinal direction of the cylindrical body 1 is made uniform, and precipitation of inclusions is suppressed in a wide area of the cylindrical body 1, and boiling in the mold is prevented. can effectively prevent the occurrence of

(考案の効果) 以上述べた如く、本考案による長尺ノズルを用
いることにより、溶鋼の非浸漬部における介在物
の析出を抑制するとともに、従来発生していたガ
ス吹込量の大巾変動に伴う鋳型内のボイルの発生
をも防止して溶鋼を清浄化できる極めて優れた連
続鋳造用長尺ノズルである。
(Effects of the invention) As described above, by using the long nozzle of the invention, it is possible to suppress the precipitation of inclusions in the non-immersed part of molten steel, and also to suppress the precipitation of inclusions in the non-immersed part of molten steel. This is an extremely excellent long nozzle for continuous casting that can clean molten steel by preventing boiling within the mold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案による長尺ノズルとして浸漬
ノズルの場合の断面図を示し、第2図は、第1図
におけるA部の拡大断面図を示し、第3図は、第
2図における非浸漬部の通気性耐火物実施態様例
を示し、第4図は、本考案による長尺ノズルとし
て取鍋のロングノズルの一実施例の断面図を示
し、第5図は、非浸漬部の吐出量QNpo dip/浸漬
部のQdipと鋳型内ボイルの発生指数を示し、第6
図は、α値に対するボイル発生のないLuとL
の層厚みを示す。 1……筒状体、2……テーパー部、3……先端
部、4a,4b……吐出孔、6……外壁、7……
通気性耐火物、9……スリツト部。
FIG. 1 shows a sectional view of a submerged nozzle as a long nozzle according to the present invention, FIG. 2 shows an enlarged sectional view of section A in FIG. 1, and FIG. FIG. 4 shows a cross-sectional view of an embodiment of a ladle long nozzle as a long nozzle according to the present invention, and FIG. Quantity Q Npo dip / Indicates the Q dip of the immersion part and the occurrence index of boiling in the mold, and the 6th
The figure shows Lu and L without boiling for α values.
Indicates the layer thickness. DESCRIPTION OF SYMBOLS 1... Cylindrical body, 2... Taper part, 3... Tip part, 4a, 4b... Discharge hole, 6... Outer wall, 7...
Breathable refractory, 9...Slit portion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 筒状体の外壁部と通気性耐火物からなる内壁間
に、ガス供給管に連通したスリツト部を設けた連
続鋳造用長尺ノズルにおいて、該通気性耐火物の
層厚を非常時浸漬部の層厚みLuと常時浸漬部の
層厚みLとがLu〉Lであることを特徴とし
た連続鋳造用長尺ノズル。
In a long nozzle for continuous casting, in which a slit portion communicating with a gas supply pipe is provided between the outer wall of the cylindrical body and the inner wall made of breathable refractory, the layer thickness of the breathable refractory is A long nozzle for continuous casting, characterized in that the layer thickness Lu and the layer thickness L of the constantly immersed part are Lu>L.
JP8738584U 1984-06-14 1984-06-14 Long nozzle for continuous casting Granted JPS614853U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8738584U JPS614853U (en) 1984-06-14 1984-06-14 Long nozzle for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8738584U JPS614853U (en) 1984-06-14 1984-06-14 Long nozzle for continuous casting

Publications (2)

Publication Number Publication Date
JPS614853U JPS614853U (en) 1986-01-13
JPH0133258Y2 true JPH0133258Y2 (en) 1989-10-09

Family

ID=30639550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8738584U Granted JPS614853U (en) 1984-06-14 1984-06-14 Long nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JPS614853U (en)

Also Published As

Publication number Publication date
JPS614853U (en) 1986-01-13

Similar Documents

Publication Publication Date Title
US4640447A (en) Molten metal immersion pouring spout
US4423833A (en) Refractory immersion spout
JP2706201B2 (en) Nozzle bore for continuous casting
JPH0133258Y2 (en)
JP4079415B2 (en) Submerged nozzle for continuous casting of thin slabs
JPH09308950A (en) Long nozzle for continuous casting
JPS5924902B2 (en) Continuous casting nozzle
JPH03243258A (en) Nozzle for continuous casting
JPS59225862A (en) Immersion nozzle for continuous casting device
JP6630157B2 (en) Immersion nozzle
JPH0149581B2 (en)
JPH0230122Y2 (en)
JP2991881B2 (en) Immersion nozzle for continuous casting
JP3396180B2 (en) Immersion nozzle for continuous casting
JP2000084647A (en) Method for blowing gas into upper nozzle in tundish
JPH08155601A (en) Nozzle for continuous casting
JPH0890177A (en) Immersion nozzle for continuous casting
KR100436211B1 (en) Nozzle & Sliding Plate for cast of molten steel
JPS63104762A (en) Submerged nozzle for continuous casting
JPH02307654A (en) Tundish upper nozzle
JPS63303665A (en) Submerged nozzle for continuous casting
JP2601723B2 (en) Immersion nozzle for continuous casting of slabs
JPH052420B2 (en)
JPH09253807A (en) Method for continuously casting aluminum killed steel cast billet having small cross section
JPS62279059A (en) Submerged nozzle