JPH0133011B2 - - Google Patents
Info
- Publication number
- JPH0133011B2 JPH0133011B2 JP58043335A JP4333583A JPH0133011B2 JP H0133011 B2 JPH0133011 B2 JP H0133011B2 JP 58043335 A JP58043335 A JP 58043335A JP 4333583 A JP4333583 A JP 4333583A JP H0133011 B2 JPH0133011 B2 JP H0133011B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- amount
- contact material
- alloy
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010936 titanium Substances 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 23
- 239000011651 chromium Substances 0.000 claims description 21
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910000765 intermetallic Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 claims description 2
- 229910052716 thallium Inorganic materials 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims 1
- 239000011575 calcium Substances 0.000 claims 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims 1
- 239000011669 selenium Substances 0.000 claims 1
- 229910052711 selenium Inorganic materials 0.000 claims 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims 1
- 238000010008 shearing Methods 0.000 description 11
- 229910000599 Cr alloy Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005219 brazing Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910017813 Cu—Cr Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Description
【発明の詳細な説明】
この発明は、大電流しや断特性に優れ、かつ耐
電圧性能の高い真空しや断器用接点材料の製造方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a contact material for a vacuum shield breaker, which has excellent large current shearing characteristics and high withstand voltage performance.
真空しや断器は、その無保守、無公害性、優れ
たしや断性能等の利点を持つため、適用範囲が急
速に拡大して来ている。また、それに伴い、より
大きなしや断容量や高い耐電圧が要求されてい
る。一方、真空しや断器の性能は真空容器内の接
点材料によつて決定される要素がきわめて大であ
る。 Vacuum sheath breakers have advantages such as maintenance-free, non-polluting properties, and excellent sheath breaker performance, so the scope of their application is rapidly expanding. In addition, along with this, a larger shearing capacity and a higher withstand voltage are required. On the other hand, the performance of a vacuum shield breaker is determined to a large extent by the contact material inside the vacuum container.
従来、この種の接点材料として銅一クロム(以
下Cu−Crと表示する。他の元素および元素の組
み合せからなる合金についても同様に元素記号で
表示する。)などのように真空耐電圧に優れた金
属(Cr、Coなど)と電気伝導度の優れたCuとの
組み合せからなる材料がしや断性能や耐電圧性能
に優れているため、大電流や高電圧域ではよく使
用されている。 Conventionally, this type of contact material has excellent vacuum withstand voltage, such as copper-monochromium (hereinafter referred to as Cu-Cr. Alloys made of other elements and combinations of elements are also represented by element symbols). Materials made of a combination of metals (Cr, Co, etc.) and Cu, which has excellent electrical conductivity, have excellent insulation and withstand voltage performance, so they are often used in large current and high voltage ranges.
しかし、大電流化、高電圧化への要求はさらに
厳しく、従来の接点材料では要求性能を十分に満
足させることが困難となつている。又、真空しや
断器の小型化に対しても同様に従来の接点性能で
は十分でなく、より優れた性能を持つ接点材料が
求められていた。 However, the demands for larger currents and higher voltages are becoming more severe, and it is becoming difficult to fully satisfy the required performance with conventional contact materials. Furthermore, in order to reduce the size of vacuum shields and disconnectors, conventional contact performance is not sufficient, and there is a need for contact materials with even superior performance.
この発明は上記のような従来のものの欠点を除
去するためになされたもので、大電流しや断特性
に優れ、かつ高耐電圧性能を有する真空しや断器
用接点材料の製造方法を提供することを目的とし
ている。 This invention was made in order to eliminate the drawbacks of the conventional products as described above, and provides a method for manufacturing a contact material for vacuum shields and breakers that has excellent large current breaking characteristics and high withstand voltage performance. The purpose is to
我々はCuに種々の金属、合金、金属間化合物
を添加した接点材料を試作し、真空スイツチ管に
組み込んで種々の実験を行なつた。この結果、
Cu、Cr、及びTiが、各々単体金属、三者もしく
は二者の合金、三者もしくは二者の金属間化合
物、又はそれらの複合体として分布している接点
材料は非常にしや断性能が優れていることがわか
つた。この発明の真空しや断器用接点材料の製造
方法は、Cuを含有すると共に、他の成分として
Crが20〜30重量%及びTiが3重量%以下の範囲
含有する粉末を成形して焼結するものである。又
Cu、Cr及びTiが、各々単体金属、三者もしくは
二者の合金、三者もしくは二者の金属間化合物、
又それらの複合体として分布していてもよい。 We prototyped contact materials made by adding various metals, alloys, and intermetallic compounds to Cu, incorporated them into vacuum switch tubes, and conducted various experiments. As a result,
Contact materials in which Cu, Cr, and Ti are distributed as individual metals, tri- or di-metallic alloys, tri- or di-metallic compounds, or composites thereof have excellent shearing performance. I found out that The method for producing a contact material for a vacuum shield or disconnection according to the present invention includes Cu and other components.
A powder containing 20 to 30% by weight of Cr and 3% by weight or less of Ti is molded and sintered. or
Cu, Cr and Ti are each a single metal, a three-way or two-way alloy, a three-way or two-way intermetallic compound,
Alternatively, they may be distributed as a complex.
以下、この発明の一実施例による真空しや断器
用接点材料を図について説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a contact material for a vacuum shield or breaker according to an embodiment of the present invention will be described with reference to the drawings.
第1図は真空スイツチ管の構造図で、真空絶縁
容器1と、前記真空絶縁容器1の両端を閉塞する
端板2および3とにより形成された容器内部に電
極4および5が、それぞれ電極棒6および7の一
端に、お互いが対向するよう配置されている。前
記電極7は、ベローズ8を介して前記端板3に気
密を損うことなく軸方向の動作が可能なように接
合されている。シールド9および10がアークに
より発生する蒸気で汚染されることがないよう、
それぞれ前記真空絶縁容器1の内面および前記ベ
ローズ8を覆つている。電極4および5の構成を
第2図に示す。電極5はその背面で電極棒7にろ
う材51を介挿してろう付されている。前記電極
4,5はこの発明の一実施例によるCu−Cr−Ti
系接点材料から成つている。 FIG. 1 is a structural diagram of a vacuum switch tube, in which electrodes 4 and 5 are installed inside a container formed by a vacuum insulating container 1 and end plates 2 and 3 that close both ends of the vacuum insulating container 1, respectively. 6 and 7 are arranged so as to face each other. The electrode 7 is joined to the end plate 3 via a bellows 8 so as to be movable in the axial direction without compromising airtightness. To prevent shields 9 and 10 from being contaminated with vapor generated by the arc,
They cover the inner surface of the vacuum insulating container 1 and the bellows 8, respectively. The structure of electrodes 4 and 5 is shown in FIG. The electrode 5 is brazed to the electrode rod 7 on the back side thereof with a brazing material 51 inserted therein. The electrodes 4 and 5 are Cu-Cr-Ti according to an embodiment of the present invention.
It is made of contact material.
以下に種々の測定あるいは試験を行なつた結果
について説明する。 The results of various measurements or tests will be explained below.
第3図は合金中のCr量を25重量%に固定した
ものに添加したTi量としや断容量の関係を示し
たものであり、Ti量が3重量%以下の範囲で従
来品Cu−25重量%Cr合金)に比較してしや断性
能が著しく上昇していることがわかる。 Figure 3 shows the relationship between the sheath breaking capacity and the amount of Ti added when the amount of Cr in the alloy is fixed at 25% by weight. It can be seen that the shearing performance is significantly improved compared to the Cr alloy (wt%).
Tiの添加量としては1重量%以下の範囲でピ
ークを示し、それ以上添加量を増加すると逆にし
や断容量の減少が生じる。即ち、Cu中にCrとTi
が共存して、その相互作用により、しや断性能を
上昇させるが、ある程度以上Tiを増加させると
CrとTiが化合物などを多量に生じてCuマトリツ
クスの電気伝導度や熱伝導度が著しく低下し、ア
ークによる熱入力をすみやかに放散することが困
難になり、しや断性能を低下させるためである。 The amount of Ti added shows a peak in the range of 1% by weight or less, and when the amount added is increased beyond that, the shear shear capacity decreases. That is, Cr and Ti in Cu
coexist and their interaction increases the shearing performance, but if Ti is increased beyond a certain level,
This is because Cr and Ti generate a large amount of compounds, etc., which significantly reduces the electrical conductivity and thermal conductivity of the Cu matrix, making it difficult to quickly dissipate the heat input from the arc, and reducing the shearing performance. be.
大電流用に使用する場合、Ti添加量として、
しや断容量がCu−25%Cr合金の1.5倍を上回る1.5
重量%以下が最も望ましい。なお、この実験に使
用したCu−Cr−Ti合金はCu粉とCr粉及びTi粉を
各々必要量配合した混合粉を成形、焼結して得ら
れたものである。 When used for large current, the amount of Ti added is
1.5 whose shearing capacity is 1.5 times higher than that of Cu-25%Cr alloy
It is most desirable that it is less than % by weight. The Cu-Cr-Ti alloy used in this experiment was obtained by molding and sintering a mixed powder containing Cu powder, Cr powder, and Ti powder in the required amounts.
第3図の縦軸は従来品のCu−25重量%Cr合金
のしや断容量の値を1とした比率を示し、横軸は
Ti添加量を示す。 The vertical axis in Figure 3 shows the ratio with the value of the shearing capacity of the conventional Cu-25 wt% Cr alloy being 1, and the horizontal axis shows the ratio.
Indicates the amount of Ti added.
第4図は同様にTi添加量と電気伝導度の関係
を示すものである。図から明らかなようにTi量
が1重量%以下では従来品(Cu−25重量%Cr合
金)と差がわずかであるが、添加量が増加すれ
ば、Ti量と共に電気伝導度が低下し始め、3重
量%を越えるとかなり悪くなる。この電気伝導度
の低下と共に接触抵抗も増大し、Ti量が3重量
%を越えると負荷開閉中及びしや断後の通電に悪
影響を及ぼすこともあるため、しや断性能的には
Tiは5重量%以下まで有効であるが、接触抵抗
を重視する用途にはTi量3重量%以下の範囲が
望ましい。第4図の縦軸は従来品(Cu−25重量
%Cr合金)の電気伝導度の値を1とした比率を
示す。 FIG. 4 similarly shows the relationship between the amount of Ti added and the electrical conductivity. As is clear from the figure, when the amount of Ti is 1% by weight or less, there is only a slight difference from the conventional product (Cu-25% by weight Cr alloy), but as the amount added increases, the electrical conductivity begins to decrease with the amount of Ti. , it becomes considerably worse when it exceeds 3% by weight. Along with this decrease in electrical conductivity, contact resistance also increases, and if the amount of Ti exceeds 3% by weight, it may have a negative effect on current conduction during load switching and after a shear interruption, so in terms of shearing performance,
Ti is effective up to 5% by weight or less, but for applications where contact resistance is important, a Ti content of 3% by weight or less is desirable. The vertical axis in FIG. 4 shows the ratio with the electrical conductivity value of the conventional product (Cu-25% by weight Cr alloy) being 1.
第5図は同様にTi添加量と硬度A及び耐電圧
B性能との関係を示すものである。図から明らか
なようにTi量が1重量%以下では硬度の上昇は
ほとんどなく、1重量%以上でしだいに硬度が上
昇する。これはTi量1重量%以上でCuとTiが反
応し、金属間化合物を多量に形成して、Cuマト
リツクスの硬度を上昇させるものである。一方、
耐電圧はTi量が0.5重量%程度にピークがあり、
その後3重量%程度まで低下したのち、また上昇
する。Ti量3重量%以上での耐電圧性能の上昇
は硬度の上昇によるものと思われるが、3重量%
Ti以下においては硬度の上昇と直接関連性がな
いようである。このように耐電圧性と硬度の両方
からみて、材料の加工性などを考慮するとTi量
は3重量%以下がより望ましい。第5図の縦軸は
従来品(Cu−25重量%Cr合金)の硬度および耐
電圧の値を1とした比率を示す。 FIG. 5 similarly shows the relationship between the amount of Ti added and the hardness A and withstand voltage B performance. As is clear from the figure, when the amount of Ti is 1% by weight or less, there is almost no increase in hardness, and when the amount of Ti is 1% by weight or more, the hardness gradually increases. This is because when the amount of Ti is 1% by weight or more, Cu and Ti react, forming a large amount of intermetallic compounds and increasing the hardness of the Cu matrix. on the other hand,
The withstand voltage peaks at around 0.5% by weight of Ti,
After that, it decreases to about 3% by weight, and then increases again. The increase in voltage resistance performance when the Ti content is 3 wt% or more is probably due to the increase in hardness, but at 3 wt%
There seems to be no direct relationship with the increase in hardness below Ti. In this way, from the viewpoint of both voltage resistance and hardness, and considering the workability of the material, it is more desirable that the Ti amount be 3% by weight or less. The vertical axis in FIG. 5 shows the ratio with the hardness and withstand voltage values of the conventional product (Cu-25% by weight Cr alloy) set to 1.
発明者らは第3図に示したようなTi添加量と
しや断容量の関係をCr量を5〜40重量%まで
種々変化させた合金についても実験したが、どの
Cr量の場合にもTi量0.5重量%程度でしや断容量
のピークが存在することを見出した。そこでT1
量を0.5重量%に固定して、Cr量を変化させた実
験から次のことが明らかになつた。即ち、Cr量
が30重量%以下の範囲で従来品(Cu−25重量%
Cr)のしや断容量を上回る結果が得られたが、
一方Cr量が20重量%未満の場合には耐溶着性、
耐電圧が不十分でしや断器用接点として不適であ
つた。従つて、Cr量は20〜30重量%の範囲が望
ましい。 The inventors conducted experiments on alloys in which the amount of Cr was varied from 5 to 40% by weight to determine the relationship between the amount of Ti added and the shear shear capacity as shown in Figure 3.
It was also found that in the case of the Cr content, there is a peak in the shedding capacity at a Ti content of about 0.5% by weight. So T 1
The following was clarified from experiments in which the amount of Cr was fixed at 0.5% by weight and varied. In other words, if the Cr content is 30% by weight or less, the conventional product (Cu-25% by weight)
Although results exceeding the shear capacity of Cr) were obtained,
On the other hand, when the Cr content is less than 20% by weight, welding resistance
The withstand voltage was insufficient and it was unsuitable as a circuit breaker contact. Therefore, the Cr content is preferably in the range of 20 to 30% by weight.
また図示しないが、上記合金にBi、Te、Sb、
Tl、Pb、Se、Ce及びCaのうち少なくとも1つの
低融点金属、その合金、その金属間化合物、並び
にその酸化物のうち少なくとも1種以上を20重量
%以下添加した低さい断真空しや断器用接点にお
いても、前記実施例と同様にしや断性能や耐電圧
性能を上昇させる効果があることを確認してい
る。 Although not shown, the above alloy includes Bi, Te, Sb,
A low-shear vacuum shield containing at least 20% by weight or more of at least one low-melting point metal, its alloy, its intermetallic compound, and its oxide among Tl, Pb, Se, Ce, and Ca. It has been confirmed that the dexterous contact also has the effect of increasing the shearing performance and withstand voltage performance, similar to the above embodiment.
なお、低融点金属、その合金、その金属間化合
物、並びにその酸化物のうち少なくとも1種以上
を20重量%以上添加した場合には著しく、しや断
性能が低下した。又、低融点金属がCe、あるい
はCaの場合は、若干特性が落ちた。 Note that when 20% by weight or more of at least one of a low melting point metal, its alloy, its intermetallic compound, and its oxide was added, the shearing performance was significantly reduced. Furthermore, when the low melting point metal was Ce or Ca, the properties were slightly degraded.
以上のように、この発明は、銅を含有すると共
に、他の成分としてクロムが20〜30重量%及びチ
タンが3重量%以下の範囲含有する粉末を成形し
て焼結するものであるので、しや断性能に優れ、
かつ高耐電圧性能を有する真空しや断器用接点材
料の製造方法が得られる効果がある。 As described above, the present invention involves molding and sintering a powder that contains copper and other components such as chromium in a range of 20 to 30% by weight and titanium in a range of 3% by weight or less. Excellent cutting performance,
Moreover, there is an effect that a method for manufacturing a contact material for a vacuum shield or disconnector having high withstand voltage performance can be obtained.
第1図はこの発明の一実施例による真空しや断
器用接点材料を適用する真空スイツチ管の構造を
示す断面図、第2図はその第1図の電極部分の拡
大断面図である。第3図はこの発明の実施例によ
る接点材料におけるCr量を25重量%に固定した
合金に対してTi添加量を変化させた時のしや断
容量の変化を示す特性図、第4図はこの発明の実
施例による接点材料におけるCr量を25重量%に
固定した合金に対してTi添加量を変化させた時
の電気伝導度の変化を示す特性図、第5図はこの
発明の実施例による接点材料におけるCr量を25
重量%に固定した合金に対してTi添加量を変化
させた時の硬度Aと耐電圧B性能の変化を示す特
性図である。
1……真空絶縁容器、2,3……端板、4,5
……電極、6,7……電極棒、8……ベローズ、
9,10……シールド、51……ろう材。
FIG. 1 is a sectional view showing the structure of a vacuum switch tube to which a contact material for a vacuum shield or breaker according to an embodiment of the present invention is applied, and FIG. 2 is an enlarged sectional view of the electrode portion of FIG. 1. Figure 3 is a characteristic diagram showing the change in shear capacity when the amount of Ti added is changed for an alloy with a fixed Cr content of 25% by weight in a contact material according to an embodiment of the present invention. FIG. 5 is a characteristic diagram showing the change in electrical conductivity when the Ti addition amount is changed for an alloy with a fixed Cr content of 25% by weight in a contact material according to an embodiment of the present invention. The amount of Cr in the contact material is 25
FIG. 2 is a characteristic diagram showing changes in hardness A and withstand voltage B performance when the amount of Ti added is changed for an alloy fixed at a fixed weight %. 1... Vacuum insulation container, 2, 3... End plate, 4, 5
... Electrode, 6,7 ... Electrode rod, 8 ... Bellows,
9, 10...shield, 51...brazing metal.
Claims (1)
を20〜30重量%及びチタンを3重量%以下の範囲
含有する粉末を成形して焼結する真空しや断器用
接点材料の製造方法。 2 粉末がチタンを1.5重量%以下の範囲含有す
る特許請求の範囲第1項記載の真空しや断器用接
点材料の製造方法。 3 粉末に銅、クロム、及びチタンが、各々単体
金属、三者もしくは二者の合金、三者もしくは二
者の金属間化合物、又はそれらの複合体として分
布している特許請求の範囲第1項又は第2項記載
の真空しや断器用接点材料の製造方法。 4 粉末がビスマス、テルル、アンチモン、タリ
ウム、鉛、セレン、セリウム及びカルシウムのう
ちの少なくとも1つの低融点金属、その合金、そ
の金属間化合物、並びにその酸化物のうち少なく
とも1種以上を20重量%以下含有している特許請
求の範囲第1項ないし第3項のいずれかに記載の
真空しや断器用接点材料の製造方法。[Claims] 1. A contact material for a vacuum shield breaker, which is made by molding and sintering a powder that contains copper and also contains chromium in a range of 20 to 30% by weight and titanium in a range of 3% by weight or less. manufacturing method. 2. The method for producing a contact material for a vacuum shield or breaker according to claim 1, wherein the powder contains titanium in a range of 1.5% by weight or less. 3. Claim 1, in which copper, chromium, and titanium are each distributed in the powder as a single metal, an alloy of three or two metals, an intermetallic compound of three or two metals, or a composite thereof. Or the method for manufacturing a contact material for a vacuum shield or disconnector according to item 2. 4. The powder contains 20% by weight of at least one low melting point metal of bismuth, tellurium, antimony, thallium, lead, selenium, cerium, and calcium, an alloy thereof, an intermetallic compound thereof, and an oxide thereof. A method for manufacturing a contact material for a vacuum shield or disconnector according to any one of claims 1 to 3 included below.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4333583A JPS59167926A (en) | 1983-03-14 | 1983-03-14 | Contact material for vacuum breaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4333583A JPS59167926A (en) | 1983-03-14 | 1983-03-14 | Contact material for vacuum breaker |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59167926A JPS59167926A (en) | 1984-09-21 |
JPH0133011B2 true JPH0133011B2 (en) | 1989-07-11 |
Family
ID=12660961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4333583A Granted JPS59167926A (en) | 1983-03-14 | 1983-03-14 | Contact material for vacuum breaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59167926A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60172116A (en) * | 1984-02-16 | 1985-09-05 | 三菱電機株式会社 | Contact for vacuum breaker |
JP2640142B2 (en) * | 1989-06-05 | 1997-08-13 | 三菱電機株式会社 | Contact material for vacuum switch tube and its manufacturing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4953510A (en) * | 1972-08-17 | 1974-05-24 |
-
1983
- 1983-03-14 JP JP4333583A patent/JPS59167926A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4953510A (en) * | 1972-08-17 | 1974-05-24 |
Also Published As
Publication number | Publication date |
---|---|
JPS59167926A (en) | 1984-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3246979A (en) | Vacuum circuit interrupter contacts | |
EP0083245B1 (en) | A sintered contact material for a vacuum circuit breaker | |
EP0110176B1 (en) | Contact material for vacuum circuit breaker | |
EP0109088B1 (en) | Contact material for vacuum circuit breaker | |
JPH0156490B2 (en) | ||
JPH0133011B2 (en) | ||
EP0126347B1 (en) | Contact material for vacuum circuit interrupter, contact member of such material, a vacuum circuit interrupter and the use of such material | |
US4129760A (en) | Vacuum circuit breaker | |
JPS6336090B2 (en) | ||
JPS6336089B2 (en) | ||
JPH0449734B2 (en) | ||
JPH0449733B2 (en) | ||
JPS6336092B2 (en) | ||
JPS59201334A (en) | Contact material for vacuum breaker | |
JPS59201335A (en) | Contact material for vacuum breaker | |
JPS59186218A (en) | Contact material for vacuum breaker | |
JPS59201336A (en) | Contact material for vacuum breaker | |
JPS60170122A (en) | Contact material for vacuum breaker | |
JPH0133012B2 (en) | ||
JPS59214121A (en) | Contact material for vacuum breaker | |
JPS59167925A (en) | Contact material for vacuum breaker | |
JPS61179827A (en) | Contact for material for vacuum preaker | |
JPS60170123A (en) | Contact material for vacuum breaker | |
JPS59169012A (en) | Contact material for vacuum breaker | |
JPH0143971B2 (en) |