Nothing Special   »   [go: up one dir, main page]

JPH01315340A - Production of catalyst for purifying exhaust gas - Google Patents

Production of catalyst for purifying exhaust gas

Info

Publication number
JPH01315340A
JPH01315340A JP63145608A JP14560888A JPH01315340A JP H01315340 A JPH01315340 A JP H01315340A JP 63145608 A JP63145608 A JP 63145608A JP 14560888 A JP14560888 A JP 14560888A JP H01315340 A JPH01315340 A JP H01315340A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
supported
tin
refractory inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63145608A
Other languages
Japanese (ja)
Other versions
JP2635689B2 (en
Inventor
Eiichi Shiraishi
英市 白石
Kazuo Tsuchiya
一雄 土谷
Tomohisa Ohata
知久 大幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP63145608A priority Critical patent/JP2635689B2/en
Publication of JPH01315340A publication Critical patent/JPH01315340A/en
Application granted granted Critical
Publication of JP2635689B2 publication Critical patent/JP2635689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To increase ability to purify exhaust gas contg. hydrocarbon, CO and NOx by supporting a catalytically active material contg. Pt and/or Pd, Rh, CeO2 and a fireproof inorg. oxide on a honeycomb carrier and by further supporting SnO2. CONSTITUTION:A catalytically active material contg. Pt and/or Pd, Rh, CeO2 and a fireproof inorg. oxide is supported on a honeycomb carrier having a monolithic structure by coating. The carrier is then dipped in an aq. soln. of a water soluble tin compd. and dried and/or calcined to further support SnO2 and a catalyst for purifying exhaust gas is produced. The pref. total amt. of Pt and/or Pd and Rh supported is 0.1-10g per 1l catalyst and 1-150g CeO2, 0.01-50g SnO2 and 20-200g fireproof inorg. oxide are preferably supported.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排気ガス浄化用触媒に関するものである。詳し
く述べると本発明は、自動車等の内燃機関からの排気ガ
ス中に含まれる有害成分である炭化水素(HC)、−酸
化伏素(Co)および窒素酸化物(NOx)を同時に、
低温で効率的に除去する排気ガス浄化用触媒に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalyst for purifying exhaust gas. To be more specific, the present invention simultaneously removes hydrocarbons (HC), oxidized aphrodisiacs (Co), and nitrogen oxides (NOx), which are harmful components contained in exhaust gas from internal combustion engines such as automobiles.
The present invention relates to a catalyst for purifying exhaust gas that efficiently removes exhaust gas at low temperatures.

〔従来の技術と問題点〕[Conventional technology and problems]

従来自動車等の内燃機関から排出される排気ガスの浄化
用触媒は、多数提案されており、自動車用として現在で
は、炭化水素(以下HCとする)、−酸化炭素(以下C
Oとする)および窒素酸化物(以下NOxとする)を同
時に除去する三元触媒が主流となってきτいる。そして
、近年の自動車の省燃費化等により、排気ガス温度が低
下する状況下において、低温におけるHC,COおよび
NOXの浄化性能にすぐれた三元触媒が強く求められて
いる。
Conventionally, many catalysts for purifying exhaust gas emitted from internal combustion engines such as automobiles have been proposed.
Three-way catalysts that simultaneously remove nitrogen oxides (hereinafter referred to as NOx) and nitrogen oxides (hereinafter referred to as NOx) have become mainstream. In addition, in a situation where exhaust gas temperature is decreasing due to fuel efficiency improvements in automobiles in recent years, there is a strong demand for three-way catalysts that have excellent purification performance for HC, CO, and NOX at low temperatures.

従来の三元触媒には、触媒活性種として、白金(Pt)
、パラジウム(Pd)、ロジウム(Rh)などの貴金属
が主に使用され、さらに、これら貴金属の触媒作用を促
進させるために希土類金属、とりわけセリウム(Ce)
が併用された触媒が一般的であった。しかしながら、こ
うした従来の三元触媒では耐久走行後の低温におけるH
ClC0およびNOXの浄化性能の点で、必ずしも満足
できるものではなかった。
Conventional three-way catalysts contain platinum (Pt) as a catalytically active species.
, palladium (Pd), rhodium (Rh), etc. are mainly used, and rare earth metals, especially cerium (Ce), are also used to promote the catalytic action of these precious metals.
Catalysts were commonly used in combination with However, with these conventional three-way catalysts, H
The purification performance of ClC0 and NOX was not necessarily satisfactory.

また、貴金属と酸化スズを使用した排気ガス浄化用触媒
としては、特開昭56−141838号公報、負金属と
酸化スズ、酸化タングステン、酸化チタンあるいはモリ
ブデン酸ニッケルを使用する酸化触媒が開示されている
が、鉛等の被毒に対して耐久性のある触媒の提案であり
、酸化スズに本発明のように低温における浄化性能向上
があることは全く知見していない。
Furthermore, as an exhaust gas purifying catalyst using a noble metal and tin oxide, Japanese Patent Application Laid-Open No. 141838/1983 discloses an oxidation catalyst using a negative metal and tin oxide, tungsten oxide, titanium oxide, or nickel molybdate. However, this proposal is for a catalyst that is resistant to poisoning by lead, etc., and there is no knowledge that tin oxide has improved purification performance at low temperatures as in the present invention.

また、特開昭60−175546号公報には、600℃
以上で焼成した酸化スズにptを担持した耐熱性酸化触
媒が開示されているが、ptのみを活性成分とする耐熱
性にすぐれた酸化触媒の提案であり、NOX浄化性能に
ついては全くふれられておらず、本発明が開示するNO
X浄化性能にもすぐれた三元触媒とは範ちゅうが異なる
In addition, in Japanese Patent Application Laid-open No. 60-175546, 600°C
Although a heat-resistant oxidation catalyst in which PT is supported on calcined tin oxide is disclosed above, this is a proposal for an oxidation catalyst with excellent heat resistance that uses only PT as an active ingredient, and NOx purification performance is not mentioned at all. No, the present invention discloses NO.
This is different from a three-way catalyst, which also has excellent X purification performance.

更に、特開昭62−234547号公報には貴金属、酸
化スズ、無機耐火性酸化物および酸化セリウムからなる
触媒活性物質と一体構造を有するハニカム担体に担持し
たHC,GoおよびNOxを低温で同時に浄化低減させ
る排気ガス浄化触媒の調製方法の提案がある。この方法
は、酸化スズを出発原料として、これと貴金属を担持し
た耐火性無機物および酸化セリウムを混合してハニカム
担体に担持することを特徴とする触媒調製方法であるが
、この方法においても、耐久走行後の低温におけるHC
lGoおよびNOxの浄化性能を要求される三元触媒と
しては、必ずしも満足できるものではなかった。
Furthermore, JP-A No. 62-234547 discloses a method for simultaneously purifying HC, Go, and NOx supported on a honeycomb carrier having an integral structure with a catalytically active material consisting of a noble metal, tin oxide, an inorganic refractory oxide, and cerium oxide at a low temperature. There is a proposal for a method of preparing an exhaust gas purification catalyst that reduces the amount of exhaust gas. This method is a catalyst preparation method that uses tin oxide as a starting material, mixes it with a refractory inorganic material supporting a precious metal, and cerium oxide, and supports the mixture on a honeycomb carrier. HC at low temperature after running
As a three-way catalyst required to purify lGo and NOx, it was not necessarily satisfactory.

そこで、本発明の目的は従来の酸化スズを含有する三元
触媒の欠点を改良することにある。
Therefore, an object of the present invention is to improve the drawbacks of conventional three-way catalysts containing tin oxide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記目的を達成すべく鋭意研究の結果、
Pt、Pdからなる群から選ばれた少なくとも一種の金
属、並びにRh、セリウム酸化物および酸化スズを活性
成分とする三元触媒を製造するに際して、上記の貴金属
およびセリウム酸化物をハニカム担体に被膜担持した後
、水可溶性のスズ化合物の水溶液に浸漬し、乾燥および
/または焼成してえられる触媒が低温における三元特性
に優れることを見いだした。
As a result of intensive research to achieve the above object, the inventors of the present invention found that
When producing a three-way catalyst containing at least one metal selected from the group consisting of Pt and Pd, Rh, cerium oxide and tin oxide as active ingredients, the above noble metal and cerium oxide are supported in a film on a honeycomb carrier. The inventors have found that the catalyst obtained by immersing the catalyst in an aqueous solution of a water-soluble tin compound, drying and/or calcining the catalyst has excellent ternary properties at low temperatures.

すなわち、本発明では、水可溶性のスズ化合物を使用す
るため酸化スズを出発原料としたものより、触媒相持層
内で酸化スズが高分散な状態で存在する。このため貴金
属と酸化スズとの相互作用が促進され、なおかつスズの
使用が少量である場合でも、従来の三元触媒に比べより
一層低温浄化性能が向上するものである。
That is, in the present invention, since a water-soluble tin compound is used, tin oxide exists in a more highly dispersed state in the catalyst supporting layer than in a case where tin oxide is used as a starting material. Therefore, the interaction between the noble metal and tin oxide is promoted, and even when a small amount of tin is used, the low-temperature purification performance is further improved compared to the conventional three-way catalyst.

更に、本発明者らは、水可溶性スズ化合物とともに、水
可溶性のクロム(Cr)、マンガン(Mn)、鉄(Fe
)、コバルト(CO)およびニッケル(Ni)からなる
群から選ばれる遷移金属化合物を混合した溶液を用いる
ことで、より良好な低温におけるHC,CoおよびNO
xの浄化性能にすぐれた三元触媒を見い出し、本発明を
完成するに至ったものである。
Furthermore, the present inventors have discovered that water-soluble tin compounds as well as water-soluble chromium (Cr), manganese (Mn), and iron (Fe
), cobalt (CO), and nickel (Ni).
They discovered a three-way catalyst with excellent purification performance for x, and completed the present invention.

かくして、本発明は以下の如く特定される。The invention is thus specified as follows.

(1)白金およびパラジウムからなる群から少なくとも
一種の貴金属、並びにロジウム、酸化セリウムおよび耐
火性無機酸化物を含有してなる触媒活性物質を一体構造
を有するへ二カム担体に担持しついで水可溶性のスズ化
合物の水溶性に浸漬させ焼成し酸化スズを該被覆物上に
担持したことを特徴とする排気ガス浄化用触媒の製造方
法。
(1) A catalytically active material containing at least one noble metal from the group consisting of platinum and palladium, rhodium, cerium oxide, and a refractory inorganic oxide is supported on a henicum carrier having an integral structure, and a water-soluble A method for producing an exhaust gas purifying catalyst, characterized in that tin oxide is supported on the coating by immersing it in a water-soluble tin compound and firing it.

(2)触媒1l当り白金およびパラジウムの少なくとも
一種の金属とロジウムとの合計が0.1〜1och、a
t化セリウムはCeO2として1〜150g、酸化スズ
はSnO2として0.01〜50g、耐火性無機酸化物
は20〜200qの範囲担持されてなることを特徴とす
る(1)記載の方法。
(2) The total amount of at least one metal of platinum and palladium and rhodium per liter of catalyst is 0.1 to 1och, a
The method according to (1), wherein the cerium t oxide is supported in an amount of 1 to 150 g as CeO2, the tin oxide is supported in an amount of 0.01 to 50 g as SnO2, and the refractory inorganic oxide is supported in an amount of 20 to 200 q.

(3)耐火性無機酸化物が活性アルミナであることを特
徴とする(1)または(2)記載の方法。
(3) The method according to (1) or (2), wherein the refractory inorganic oxide is activated alumina.

(4)白金およびパラジウムの少なくとも一種の貴金属
、並びにロジウム、酸化セリウムおよび耐火性無機酸化
物とよりなる触媒活性物質を一体構造を有するハニカム
担体に担持した侵水可溶性の遷移金属化合物からなる群
から選ばれる少なくとも一種の元素の化合物および水可
溶性のスズ化合物の水溶液に浸漬させた後焼成し、酸化
スズ及び遷移金jII!l化物を該被覆物上に担持した
ことを特徴とする排気ガス浄化用触媒の製造方法。
(4) From the group consisting of water-soluble transition metal compounds in which a catalytically active substance consisting of at least one noble metal of platinum and palladium, and rhodium, cerium oxide, and a refractory inorganic oxide is supported on a honeycomb carrier having an integral structure. It is immersed in an aqueous solution of a compound of at least one selected element and a water-soluble tin compound and then calcined to form tin oxide and transition gold jII! 1. A method for producing an exhaust gas purifying catalyst, characterized in that a chloride compound is supported on the coating.

(5)触媒1l当り白金およびパラジウムの少なくとも
一種の金属とロジウムとの合計が0.1〜IOQ、酸化
セリウムはCeO2として1〜150q1遷移金属を酸
化物として酸化スズに対し0.1〜10重量%、酸化ス
ズは3n02として0.01〜50a、そして耐火性無
機酸化物は20〜2009の範囲担持されることを特徴
とする(4)記載の方法。
(5) The total amount of at least one metal of platinum and palladium and rhodium per liter of catalyst is 0.1 to IOQ, and cerium oxide is 1 to 150q1 as CeO2, and 0.1 to 10% by weight of transition metal as oxide relative to tin oxide. %, the tin oxide is supported in the range of 0.01 to 50a as 3n02, and the refractory inorganic oxide is supported in the range of 20 to 2009.

(6)耐火性無機酸化物が活性アルミナであることを特
徴とする(4)または(5)記載の方法。
(6) The method according to (4) or (5), wherein the refractory inorganic oxide is activated alumina.

(1)スズ化合物とともに用いる遷移金属がクロム、マ
ンガン、鉄、コバルトおよびニッケルからなる群から選
ばれる少なくとも一種であることを特徴とする(4)ま
たは(5)記載の方法。
(1) The method according to (4) or (5), wherein the transition metal used together with the tin compound is at least one selected from the group consisting of chromium, manganese, iron, cobalt, and nickel.

本発明に使用される耐火性無機酸化物粉体としては、ア
ルミ、す、シリカ、チタニア、ジルコニア、アルミナ−
シリカ、アルミナ−チタニア、アルミナ−ジルコニア、
シリカ−チタニア、シリカ−ジルコニア、チタニア−ジ
ルコニア及びアルミナ−マグネシア粉体などが挙げられ
るが、その中でもアルミナ粉体、特に活性活性アルミナ
粉体の使用が好ましい。活性アルミナとしては、比表面
積50〜180m2/aの活性アルミナが好ましく、そ
の結晶形としては、ガンマ、デルタ、シータ、カイ、カ
ッパ、イータの形をとるものが使用可能である。またラ
ンタン、セリウム、ネオジム等の希土類元素またはカル
シウム、バリウム等のアルカリ土類元素の少なくとも1
種を0.1〜30重量%担持された活性アルミナも使用
可能である。
The refractory inorganic oxide powder used in the present invention includes aluminum, steel, silica, titania, zirconia, and alumina.
Silica, alumina-titania, alumina-zirconia,
Examples include silica-titania, silica-zirconia, titania-zirconia, and alumina-magnesia powder, among which it is preferable to use alumina powder, particularly active alumina powder. As the activated alumina, activated alumina having a specific surface area of 50 to 180 m2/a is preferable, and its crystal form can be gamma, delta, theta, chi, kappa, or eta. In addition, at least one of rare earth elements such as lanthanum, cerium, neodymium, or alkaline earth elements such as calcium, barium, etc.
Activated alumina loaded with 0.1 to 30% by weight of seeds can also be used.

本発明に使用されるPtm及びPd源としては、塩化白
金酸、ジニトロジアンミン白金、白金スルフィト錯塩、
白金テトラミンクロライド、硝酸パラジウム、塩化パラ
ジウム、パラジウムスルフィト錯塩、及びパラジウムテ
トラミンクロライドなどが好ましい。また、Rh源とし
ては、硝酸ロジウム、塩化ロジウム、硫酸ロジウム、ロ
ジウムスルフィト錯塩、及びOジウムアンミン錯塩など
が好ましい。これら、貴金属の担持量は、触媒1J!当
りPt、Pd、Rhの合計で、0.1〜10gの範囲が
好ましい。
The Ptm and Pd sources used in the present invention include chloroplatinic acid, dinitrodiammine platinum, platinum sulfite complex salt,
Preferred examples include platinum tetramine chloride, palladium nitrate, palladium chloride, palladium sulfite complex salt, and palladium tetramine chloride. Further, as the Rh source, rhodium nitrate, rhodium chloride, rhodium sulfate, rhodium sulfite complex salt, Odium ammine complex salt, etc. are preferable. The amount of these precious metals supported is 1J of catalyst! The total amount of Pt, Pd, and Rh is preferably in the range of 0.1 to 10 g.

本発明に使用されるCeWAとしては、触媒中でCeO
2として存在しうるちのであれば、出発物質は特に限定
されない。例えば、市販のCeO2、炭酸セリウム、水
酸化セリウム、シ1つ酸セリウム等が使用可能である。
CeWA used in the present invention includes CeO in the catalyst.
The starting material is not particularly limited as long as it can exist as 2. For example, commercially available CeO2, cerium carbonate, cerium hydroxide, cerium silicate, etc. can be used.

また、セリウム塩の溶液の場合、例えば硝酸セリウム溶
液を上記した耐火性無機酸化物に含浸担持して使用して
も良い。酸化セリウムの担持量は、触媒1J!当りCe
O2として1〜150g、好ましくは10〜100gの
範囲で使用される。
In the case of a cerium salt solution, for example, a cerium nitrate solution may be impregnated and supported on the above-mentioned refractory inorganic oxide. The amount of cerium oxide supported is 1J of catalyst! Hit Ce
O2 is used in an amount of 1 to 150 g, preferably 10 to 100 g.

本発明に使用されるスズ化合物は水可溶性であれば特に
限定はなく、スズの塩例えば市販の3nC+2 、Sn
C+4.5nOC+3 、SnSO4,3n (SO4
)2などを用いてもよい。スズ化合物の担持量はSnO
2として触媒1l当り0.01〜50gの範囲で使用さ
れる。スズ化合物は焼成後SnO2の形で触媒中に存在
しており、主たる活性種である貴金属への反応雰囲気下
での電子の授受を促進し低温における触媒性能を向上さ
せる。
The tin compound used in the present invention is not particularly limited as long as it is water-soluble, and tin salts such as commercially available 3nC+2, Sn
C+4.5nOC+3, SnSO4,3n (SO4
)2 etc. may be used. The amount of tin compound supported is SnO
2 is used in a range of 0.01 to 50 g per liter of catalyst. The tin compound exists in the catalyst in the form of SnO2 after calcination, and promotes the transfer of electrons to the noble metal, which is the main active species, in the reaction atmosphere, thereby improving the catalyst performance at low temperatures.

更に水可溶性のスズ化合物と水可溶性の遷移金属化合物
を含む水溶液を用い、焼成後の酸化スズの電子の授受の
速度を制御することによって、本発明による触媒は一層
良好な性能を示す。該遷移金属としては、クロム、マン
ガン、鉄、コバルトおよびニッケルが好ましく、該遷移
金属は各々の水可溶性塩を使用し、該遷移金属の担持量
は該遷移金属酸化物として、酸化スズの0.1〜10重
量%の範囲である場合に、上記の効果が顕著である。
Further, by using an aqueous solution containing a water-soluble tin compound and a water-soluble transition metal compound and controlling the rate of electron transfer in tin oxide after calcination, the catalyst according to the present invention exhibits even better performance. The transition metals are preferably chromium, manganese, iron, cobalt, and nickel. Water-soluble salts of each of the transition metals are used, and the supported amount of the transition metals is 0.5% of tin oxide as the transition metal oxide. The above effects are significant when the content is in the range of 1 to 10% by weight.

本発明に使用される一体構造を有するハニカム担体は、
通常セラミックハニカム担体と称されるものであれば良
く、特にコージェライト、ムライト、α−アルミナ、ジ
ルコニア、チタニア、リン酸チタン、アルミニウムチタ
ネート、ペタライト、スボジュメン、アルミノ・シリケ
ート、珪酸マグネシウムなどを材料とするハニカム担体
が好ましく、中でもコージェライト質のものが内燃機関
用として好ましい。その他、セラミックス以外のもの、
例えばステンレスまたはFe−0r−Aj!合金などの
如き酸化抵抗性を持つ耐熱性金属を用いて一体構造体と
したものも使用される。そのガス流通口(セル型状)の
形は、6角形、4角形、3角形、またはコルゲーション
型のいずれであっても良く、セル密度(セル数/単位断
面積)は、150〜600セル/平方インチであれば十
分に使用可能で好結果を与える。
The honeycomb carrier having an integral structure used in the present invention is
Any material that is usually called a ceramic honeycomb carrier may be used, especially cordierite, mullite, α-alumina, zirconia, titania, titanium phosphate, aluminum titanate, petalite, subodumene, alumino-silicate, magnesium silicate, etc. Honeycomb carriers are preferred, and cordierite carriers are particularly preferred for use in internal combustion engines. Other items other than ceramics,
For example, stainless steel or Fe-0r-Aj! A unitary structure made of a heat-resistant metal with oxidation resistance, such as an alloy, is also used. The shape of the gas flow port (cell shape) may be hexagonal, square, triangular, or corrugated, and the cell density (number of cells/unit cross-sectional area) may be 150 to 600 cells/unit. Square inches are sufficient and give good results.

本発明による触媒は、以上に述べた耐火性無機酸化物P
t1Pdからなる群から選ばれた少なくとも一種の金属
、Rh、Ceおよび3n、さらに必要に応じて遷移金属
を使用し、例えば次の方法によって製造される。
The catalyst according to the present invention comprises the above-mentioned refractory inorganic oxide P.
It is produced, for example, by the following method using at least one metal selected from the group consisting of t1Pd, Rh, Ce, and 3n, and a transition metal if necessary.

Pt、Pdからなる群から選ばれた少なくとも一種の金
属の水溶性塩の水溶液とRhの水溶性塩の水溶液を混合
し、活性アルミナに含浸後、乾燥および/または焼成し
、担持する。この得られた貴金属担持アルミナとCeO
2を所定量混合し希硝酸水を添加してボールミルで湿式
粉砕することにより、スラリーを調製する。該スラリー
に一体構造を有するハニカム担体を浸し、余分のスラリ
ーを吹きはらい、これを乾燥および/または焼成した後
、水可溶性のスズ化合物、さらに必要に応じて水可溶性
の遷移金属化合物の水溶液に該スラリーを担持した担体
を浸漬させ、乾燥および/または焼成し酸化スズを該被
覆物上に担持することにより完成触媒とする。
An aqueous solution of a water-soluble salt of at least one metal selected from the group consisting of Pt and Pd and an aqueous solution of a water-soluble salt of Rh are mixed, impregnated into activated alumina, dried and/or fired, and supported. The obtained precious metal-supported alumina and CeO
A slurry is prepared by mixing a predetermined amount of 2, adding dilute nitric acid water, and wet-pulverizing the mixture in a ball mill. A honeycomb carrier having an integral structure is immersed in the slurry, the excess slurry is blown off, and after drying and/or firing, it is soaked in an aqueous solution of a water-soluble tin compound and, if necessary, a water-soluble transition metal compound. The carrier carrying the slurry is immersed, dried and/or calcined, and tin oxide is supported on the coating to form a finished catalyst.

しかし、本発明による触媒の製造方法は、上記製造方法
に限定されないことは言うまでもない。
However, it goes without saying that the method for producing a catalyst according to the present invention is not limited to the above production method.

〔実 施 例〕〔Example〕

以下、実施例にて本発明を更に詳細に説明するが、本発
明はこれら実施例のみに限定されるものではないことは
言うまでもない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but it goes without saying that the present invention is not limited only to these Examples.

実施例 1 市販コージェライト質モノリス担体(日本碍子株式会社
製)を用いて触媒を調製した。用いたモノリス担体は、
横断面が1インチ平方当り約400個のガス流通セルを
有する外径331lIIIIφ、長さ76WILの円柱
状のもので約65dの体積を有した。
Example 1 A catalyst was prepared using a commercially available cordierite monolith carrier (manufactured by Nippon Insulators Co., Ltd.). The monolithic carrier used was
The cross section had a cylindrical shape with an outer diameter of 331lIIIφ and a length of 76WIL, having about 400 gas flow cells per square inch, and a volume of about 65d.

ジニトロ・ジアンミン白金の硝酸水溶液(Pt含吊:1
0C1/jり12.5Idと硝酸ロジウム水溶液(Rh
含量: 50Q/Jl) 51+1l7を純水150d
で希釈した水溶液と、表面積12077L2/(7の活
性アルミナ粉体135gを30分間充分に混合し、15
0℃で3時間乾燥した後、空気中400℃で2時間焼成
して、PtおよびRh含有アルミナ粉体を調製した。該
ptおよびRh含有アルミナ粉体と酸化セリウム粉末7
5gを希硝酸水と共にボールミルで20時時間式粉砕し
、コーティング用スラリーを調製した。このコーティン
グ用スラリーに前記モノリス担体を一分間浸漬し、その
後スラリーより取り出しセル内の過剰スラリーを圧縮空
気で吹き飛ばして全てのセルの目詰りを除去した。次い
で150℃で3時間乾燥した後空気中400℃で2時間
焼成し、触媒物質と被覆された一体化物を得た。次に塩
化第2スズ(SnCI4:和光純薬工業株式会社)の水
溶液(SnC14:175a/jりに前記一体化物を一
分間浸漬し、その後水溶液より取り出しセル内の過剰水
溶液を圧縮空気で吹き飛ばして、全てのセルの目詰りを
除去した。次いで150℃で3時間乾燥後空気中400
℃で2時間焼成して完成触媒を得た。
Nitric acid aqueous solution of dinitro diammine platinum (Pt content: 1
0C1/jri12.5Id and rhodium nitrate aqueous solution (Rh
Content: 50Q/Jl) 51+1l7 with 150d of pure water
The aqueous solution diluted with
After drying at 0° C. for 3 hours, it was calcined in air at 400° C. for 2 hours to prepare a Pt- and Rh-containing alumina powder. The pt and Rh containing alumina powder and cerium oxide powder 7
5 g was milled with dilute nitric acid water in a ball mill for 20 hours to prepare a coating slurry. The monolithic carrier was immersed in this coating slurry for one minute, and then taken out from the slurry and the excess slurry in the cells was blown away with compressed air to remove clogging from all cells. The mixture was then dried at 150°C for 3 hours and then calcined in air at 400°C for 2 hours to obtain an integrated product coated with the catalyst material. Next, the integrated product was immersed in an aqueous solution (SnC14:175a/j) of stannic chloride (SnCI4: Wako Pure Chemical Industries, Ltd.) for one minute, and then removed from the aqueous solution and the excess aqueous solution in the cell was blown off with compressed air. Then, after drying at 150°C for 3 hours, it was dried at 400°C in air.
A completed catalyst was obtained by calcining at ℃ for 2 hours.

この触媒には、該容積1l当りアルミナ90Q、酸化セ
リウム(CeO2として) 50o、 1l2化スズ(
SnO2として>IC1、PtO,83Q、Rh0.1
70が担持されていた。
This catalyst contains 90Q alumina, 50oC cerium oxide (as CeO2), and 1L tin dioxide (1L).
As SnO2>IC1, PtO, 83Q, Rh0.1
70 was carried.

実施例 2 硝酸パラジウム水溶液(Pd含ffi:100a/1 
) 12.5ml硝1[]シウム水IM (Rh含ll
 :50C1#り5dを純水150dで希釈した水溶液
と、実施例1で用いたと同じ活性アルミナ粉末135g
を30分間充分に混合し、150℃で3時間乾燥した後
空気中400℃で2時間焼成してpdおよびRh含有ア
ルミナ粉体を調製した。このPdおよびRh含有アルミ
ナ粉体を用い、以下実施例1と同様な方法で完成触媒を
得た。
Example 2 Palladium nitrate aqueous solution (Pd containing ffi: 100a/1
) 12.5ml Nitrogen 1[]ium water IM (contains Rh)
: An aqueous solution of 50C1 #5d diluted with 150d of pure water and 135g of the same activated alumina powder used in Example 1.
were thoroughly mixed for 30 minutes, dried at 150°C for 3 hours, and then calcined in air at 400°C for 2 hours to prepare PD and Rh-containing alumina powder. Using this alumina powder containing Pd and Rh, a completed catalyst was obtained in the same manner as in Example 1.

この触媒には、該容1lj!当りアルミナ90o、IQ
化セリウム(CeO2として)50(J1酸化スズ(S
nO2として)10g、PdO,83G、Rh0.17
0が担持されていた。
This catalyst has a volume of 1 lj! Hit alumina 90o, IQ
Cerium oxide (as CeO2) 50 (J1 tin oxide (S)
(as nO2) 10g, PdO, 83G, Rh0.17
0 was carried.

実施例 3 ジニトロジアンミン白金の硝酸水溶液(Pt含母:10
0q/jり8.9m、硝酸パラジウム水溶液(Pd含聞
:100a/jり3.6dと硝酸ロジウム水溶液(Rh
含量:50Q/Jり!Mを純水150−で希釈した水溶
液と実施例1で用いたと同じ活性アルミナ粉末135g
を30分間充分に混合し、150℃で3時間乾燥した後
、空気中400℃で2時間焼成してPt、PdおよびR
h含有アルミナ粉体を調製した。このPt、Pdおよび
Rh含有アルミナを用い、以下実施例1と同様な方法で
完成触媒を得た。
Example 3 Nitric acid aqueous solution of dinitrodiammine platinum (Pt matrix: 10
0q/j 8.9m, palladium nitrate aqueous solution (Pd content: 100a/j 3.6d and rhodium nitrate aqueous solution (Rh
Content: 50Q/Jri! An aqueous solution of M diluted with 150% pure water and 135 g of the same activated alumina powder used in Example 1.
were thoroughly mixed for 30 minutes, dried at 150°C for 3 hours, and fired in air at 400°C for 2 hours to form Pt, Pd and R.
An h-containing alumina powder was prepared. Using this alumina containing Pt, Pd, and Rh, a finished catalyst was obtained in the same manner as in Example 1.

この触媒には、該容1A1J!当りアルミナ90g、酸
化セリウム(CeO2として)50a1酸化スズ(Sn
O2として)10(IJlPtO,59Q1PdO,2
4(J、Rh0.17qが担持されていた。
This catalyst has a capacity of 1A1J! 90g of alumina, cerium oxide (as CeO2), 50a1 tin oxide (Sn
as O2) 10(IJlPtO,59Q1PdO,2
4(J, Rh0.17q was supported.

実施例 4 実施例1において、塩化第二スズの水溶液(SncI、
a :87.5Q/jりを使用する以外は実施例1と同
様な方法で完成触媒を得た。
Example 4 In Example 1, an aqueous solution of stannic chloride (SncI,
A: A finished catalyst was obtained in the same manner as in Example 1 except that 87.5Q/j was used.

この触媒には、該容積1l当りアルミナ90Q、酸化セ
リウム(CeO2として) 5oa、ifl化スズ(S
nO2として)5C1,pto、a3a、Rh0.17
qが担持されていた。
This catalyst contains 90Q alumina, 5 oa of cerium oxide (as CeO2), and tin oxide (S) per liter of volume.
(as nO2) 5C1, pto, a3a, Rh0.17
q was supported.

実施例 5 実施例1において、塩化第二スズの水溶液(SncIa
 :1.76Q/J)を使用する以外は実施例1と同様
な方法で完成触媒を得た。
Example 5 In Example 1, an aqueous solution of stannic chloride (SncIa
A finished catalyst was obtained in the same manner as in Example 1 except that 1.76Q/J) was used.

この触媒には、該容積1j!当りアルミナ90q1酸化
セリウム(CeO2として)50g、酸化スズ(SnO
2として)0.I Q、Pt0.83Q。
This catalyst has a volume of 1j! per alumina 90q1 cerium oxide (as CeO2) 50g, tin oxide (SnO
2)0. IQ, Pt0.83Q.

Rh0.17Qが担持されていた。Rh0.17Q was supported.

実施例 6 実施例1において、塩化第二スズに替えて硫酸第一スズ
(SnSOa :和光純薬工業株式会社)の水溶液(S
nSOa : 72.3Q/1)を使用する以外は実施
例1と同様な方法で完成触媒を得た。
Example 6 In Example 1, an aqueous solution of stannous sulfate (SnSOa: Wako Pure Chemical Industries, Ltd.) was used instead of stannic chloride.
A finished catalyst was obtained in the same manner as in Example 1 except that nSOa: 72.3Q/1) was used.

この触媒には、該容積1l当りアルミナ90q1酸化セ
リウム(CeO2として)50q1’PI化スズ(Sn
O+とじて>50.PtO,83Q、Rh0.17Gが
担持されていた。
This catalyst contains 90q1 alumina/cerium oxide (as CeO2) and 50q1' tin PI (Sn
O+>50. PtO, 83Q, and Rh0.17G were supported.

実施例 7 実施例1において、塩化第二スズに替えて塩化第二スズ
と硝酸クロム(Cr (NO3>3 ・9H20;和光
純薬工業株式会社)の混合水溶液(SnC+4 : 1
75(7/J!、Cr(NO3)3:15.9g/J)
を使用する以外は実施例1と同様な方法で完成、触媒を
得た。
Example 7 In Example 1, a mixed aqueous solution (SnC+4: 1) of stannic chloride and chromium nitrate (Cr (NO3>3 ・9H20; Wako Pure Chemical Industries, Ltd.)) was used instead of stannic chloride.
75 (7/J!, Cr(NO3)3:15.9g/J)
A catalyst was obtained in the same manner as in Example 1 except that .

この触媒には、該容積1l当りアルミナ900、酸化セ
リウム(CeO2として>50q、酸化スズ(SnO2
として)1C1、Mlf化クロム(Cr203として)
0.5q、PtO,83q、Rh0.17gが担持され
ていた。
This catalyst contains 900 g of alumina, cerium oxide (>50q as CeO2, and tin oxide (SnO2) per liter of volume.
) 1C1, Mlf chromium (as Cr203)
0.5q, PtO, 83q, and Rh0.17g were supported.

実施例 8 実施例1において、塩化第二スズに替えて塩化第二スズ
と硝酸マンガン(Mn (NO3)2 ・6H20:和
光純薬工業株式会社)の混合水溶液(SnCla : 
175g/l Mn (NO3)2 :10.4g/、
e)を使用する以外は実施例1と同様な方法で完成触媒
を得た。
Example 8 In Example 1, a mixed aqueous solution (SnCl:
175g/l Mn (NO3)2: 10.4g/,
A finished catalyst was obtained in the same manner as in Example 1 except that e) was used.

この触媒には、該容積1l当りアルミナ90a、!!化
セリウム(CeO2としT)50(J、酸化スズ(Sn
O2として)10a、II(t、マンガン(M n 0
2として)0.5a、Pt0.83g、Rh0.17a
が担持されていた。
This catalyst contains 90a of alumina per liter of volume! ! Cerium oxide (CeO2 and T) 50 (J, tin oxide (Sn)
as O2) 10a, II(t, manganese (M n 0
2) 0.5a, Pt0.83g, Rh0.17a
was carried.

実施例 9 実施例1において、塩化第二スズに替えて塩化第二スス
と硝酸鉄(Fe (NO3) s ・9H20:和光純
薬工業株式会社)の混合水溶液(SnC1a : 17
5g/j!、Fe (NO3)3 : 15.4Q/j
りを使用する以外は実施例1と同様な方法で完成触媒を
得た。
Example 9 In Example 1, a mixed aqueous solution of stannic chloride and iron nitrate (Fe (NO3) s 9H20: Wako Pure Chemical Industries, Ltd.) (SnC1a: 17) was used in place of stannic chloride in Example 1.
5g/j! , Fe (NO3)3: 15.4Q/j
A finished catalyst was obtained in the same manner as in Example 1, except that the catalyst was used.

この触媒には、該容81i17当りアルミナ90q、酸
化セリウム(CeO2として)50(7,酸化スズ(S
nO2として)10g、酸化鉄(Fe203として) 
0.5 Q、PtO,83G、Rh0.17Gが担持さ
れていた。
This catalyst contains 90q of alumina, 50 (7) cerium oxide (as CeO2), and 70 (7) tin oxide (S) per 81i17 of the volume.
(as nO2) 10g, iron oxide (as Fe203)
0.5 Q, PtO, 83G, and Rh0.17G were supported.

実施例 10 実施例1において、塩化第二スズに替えて塩化第二スズ
と硝酸コバルト(Co (NO3)2 ・6H20:和
光純薬工業株式会社)の混合水溶液(SnCla : 
175Q/1、(Co (NO3) 2 :12.4g
/jりを使用する以外は実施例1と同様な方法で完成触
媒を得た。
Example 10 In Example 1, a mixed aqueous solution (SnCl:
175Q/1, (Co(NO3)2: 12.4g
A finished catalyst was obtained in the same manner as in Example 1 except that /j was used.

この触媒には、該容積1l当りアルミナ90q、酸化セ
リウム(CeO2として’)50g、酸化スズ(SnO
2として)10g、酸化コバルト(Cooとして)0.
5o1Pt0.83Q、Rho。
This catalyst contains 90q of alumina, 50g of cerium oxide (as CeO2), and tin oxide (SnO2) per liter of volume.
2) 10g, cobalt oxide (as Coo) 0.
5o1Pt0.83Q, Rho.

17qが担持されていた。17q was carried.

実施例 1l 実施例1において、塩化第二スズに替えて塩化第二スズ
と硝酸ニッケル(Ni(NO3)2 ・6H20:和光
純薬工業株式会社)の混合水溶液(SnC14: 17
5Q/fl、  (N i (NO3) 2 :12.
4q/J)を使用する以外は実施例1と同様な方法で完
成触媒を得た。
Example 1l In Example 1, a mixed aqueous solution (SnC14: 17
5Q/fl, (N i (NO3) 2 :12.
A finished catalyst was obtained in the same manner as in Example 1 except that 4q/J) was used.

この触媒には、該容1a1j!当りアルミナ90q、酸
化セリウム(CeO2として)50(1,酸化スズ(S
nO2として)IOg、酸化ニッケル(NiOとして)
0.5g、Pt0.83g、Rh0゜170が担持され
ていた。
This catalyst has a volume of 1a1j! per alumina 90q, cerium oxide (as CeO2) 50 (1, tin oxide (S)
IOg (as nO2), nickel oxide (as NiO)
0.5 g, Pt 0.83 g, and Rh 0°170 were supported.

比較例 1 実施例1において、塩化第二スズを用いない以外は実施
例1と同様な方法で完成触媒を得た。
Comparative Example 1 A finished catalyst was obtained in the same manner as in Example 1 except that stannic chloride was not used.

この触媒には、該容積1l当りアルミナ90g、酸化セ
リウム(CeO2として)50g、PtO,83Q、R
h0.170が担持されていた。
This catalyst contains 90 g of alumina, 50 g of cerium oxide (as CeO2), PtO, 83Q, R
h0.170 was supported.

比較例 2 実施例2において、塩化第二スズを用いない以外は実施
例2と同様な方法で完成触媒を得た。
Comparative Example 2 A finished catalyst was obtained in the same manner as in Example 2, except that stannic chloride was not used.

この触媒には、該容積1j!当りアルミナ90Q。This catalyst has a volume of 1j! Hit alumina 90Q.

酸化セリウム(CeO2として)50g、PdO,83
q、Rh0.17Qが担持されていた。
Cerium oxide (as CeO2) 50g, PdO, 83
q, Rh0.17Q was supported.

比較例 3 実施例3において、塩化第二スズを用いない以外は実施
例3と同様な方法で完成触媒を得た。
Comparative Example 3 A finished catalyst was obtained in the same manner as in Example 3, except that stannic chloride was not used.

この触媒には、該容積1Jl当りアルミナ90g、酸化
セリウム(CeO2として)50Q、PtO,59a、
P d 0.24 g、Rh0.170が担持されてい
た。
This catalyst contains 90 g of alumina per 1 Jl of volume, 50 Q of cerium oxide (as CeO2), PtO, 59a,
Pd 0.24 g and Rh 0.170 were supported.

比較例 4 ジニトロ・ジアンミン白金の硝酸水溶液(Pt含m :
 100a/1 ) 12.5aeと硝酸ロジウム水溶
液(Rh含量: 50Q/j! >5mを純水150d
で希釈した水溶液と実施例1で用いたと同じ活性アルミ
ナ粉体135gを30分間充分に混合し、150℃で3
時間乾燥した後、空気中400℃で2時間焼成してpt
およびRh含有アルミナ粉体を調製した。
Comparative Example 4 Nitric acid aqueous solution of dinitro diammine platinum (containing Pt:
100a/1) 12.5ae and rhodium nitrate aqueous solution (Rh content: 50Q/j! >5m in pure water 150d
The aqueous solution diluted with
After drying for an hour, it was baked in the air at 400℃ for 2 hours and
and Rh-containing alumina powder were prepared.

該PtおよびRh含有アルミナ粉体と市販の酸化スズ(
SnO+ :関東化学株式会社製)15gと、酸化セリ
ウム75gを希硝酸水と共にボールミルで20時時間式
粉砕しコーティング用スラリーを調製した。このコーテ
ィング用スラリーにモノリス担体を一分間浸漬し、その
後スラリーより取り出しセル内の過剰スラリーを圧縮空
気で吹き飛ばして全てのセルの目詰りを除去した。次い
で150℃で3時間乾燥後、空気中400℃で2時間焼
成して完成触媒を得た。
The Pt and Rh containing alumina powder and commercially available tin oxide (
15 g of SnO+ (manufactured by Kanto Kagaku Co., Ltd.) and 75 g of cerium oxide were milled together with dilute nitric acid water in a ball mill for 20 hours to prepare a coating slurry. The monolithic carrier was immersed in this coating slurry for one minute, and then taken out from the slurry and the excess slurry in the cells was blown out with compressed air to remove clogging from all cells. The catalyst was then dried at 150°C for 3 hours and then calcined in air at 400°C for 2 hours to obtain a finished catalyst.

この触媒には、該容1lj!当りアルミナ90g、酸化
セリウム(CeO2として)50g、酸化スズ(SnO
2として)109、Pt0.83g、Rh0.17Gが
担持されていた。
This catalyst has a volume of 1 lj! Each contains 90g of alumina, 50g of cerium oxide (as CeO2), and tin oxide (SnO2).
2) 109, Pt0.83g, and Rh0.17G were supported.

比較例 5 比較例4において用いた市販の酸化スズ(SnO2 ;
関東化学株式会社製)を0.150用いる以外は比較例
4と同様な方法で触媒を得た。
Comparative Example 5 Commercially available tin oxide (SnO2; used in Comparative Example 4)
A catalyst was obtained in the same manner as in Comparative Example 4, except that 0.150 (manufactured by Kanto Kagaku Co., Ltd.) was used.

この触媒には、該容積1l当りアルミナ90g、酸化セ
リウム(CeO2として)50g、酸化スズ(SnO2
として)0.1q、Pt0.83g、Rh0.17qが
担持されていた。
This catalyst contains 90 g of alumina, 50 g of cerium oxide (as CeO2), and tin oxide (SnO2) per liter of volume.
0.1q), 0.83g of Pt, and 0.17q of Rh were supported.

〔発明の効果〕〔Effect of the invention〕

実施例1から実施例1lまでの触媒と、比較例1から比
較例5までの触媒の、エンジン耐久走行後の低温におけ
る触媒性能を調べた。
The catalyst performance of the catalysts from Example 1 to Example 1l and the catalysts from Comparative Example 1 to Comparative Example 5 at low temperatures after engine endurance running was investigated.

耐久走行は、市販の電子制御方式のエンジン(8気筒4
400cr)を使用し、各触媒をマルチコンバーターに
充填してエンジンの排気系に連設して行なった。エンジ
ンの運転条件は、定常運転(280Or、p、m、、−
220#l1lIHO)60秒間と、減速(燃料カット
)運転6秒間を組合わせたモード運転で、定常運転時の
コンバーター人口温度750℃、耐久時間100時間の
耐久走行を行なった。
Endurance running was conducted using a commercially available electronically controlled engine (8 cylinders 4
A multi-converter was filled with each catalyst and connected to the exhaust system of the engine. The operating conditions of the engine were steady operation (280 Or, p, m, -
220 #l1lIHO) for 60 seconds and deceleration (fuel cut) operation for 6 seconds, the converter temperature during steady operation was 750° C., and the durability was 100 hours.

低温における触媒性能は、上記耐久走行後の触媒を充填
したマルチコンバーターを、市販の電子制御方式のエン
ジン(4気筒1800a:)の排気系に連設し、以下に
示す条件で評価した。
The catalyst performance at low temperatures was evaluated under the conditions shown below by connecting a multi-converter filled with the catalyst after the above endurance running to the exhaust system of a commercially available electronically controlled engine (4-cylinder 1800a).

エンジンを平均空燃比14.6の一定条件(2200r
、p、m、、−35041H(1)で運転し、この際外
部発振器よりIH2のサイン波型シグナルを工ンジンの
コントロールユニットに導入して空燃比を±0.5A/
F、1Hzで振動させた。この一定運転条件下で、排気
系の触媒コンバーターの前に取り付けた熱交換器によっ
て、触媒入口排気ガス温度を200℃から450℃まで
連続的に変化させ、その時の触媒入口ガス組成と、出口
ガス組成を、各々の触媒について分析してHC,Goお
よびNOXの浄化率を求めた。得られたHClC0およ
びNOxの浄化率対触媒入口温度をグラフにプロットし
、浄化率が50%および80%を示す触媒入口湯度(各
々T50’ ”80)を求めて、触媒の低温における浄
化性能の評価の基準とした。
The engine was operated under constant conditions with an average air-fuel ratio of 14.6 (2200r
, p, m, , -35041H (1), and at this time, the IH2 sine wave signal was introduced from an external oscillator to the engine control unit to adjust the air-fuel ratio by ±0.5 A/
F, vibrated at 1 Hz. Under these constant operating conditions, the catalyst inlet exhaust gas temperature is continuously changed from 200°C to 450°C by a heat exchanger installed before the catalytic converter in the exhaust system, and the catalyst inlet gas composition and outlet gas The composition of each catalyst was analyzed to determine the purification rate of HC, Go, and NOX. The obtained purification rate of HClC0 and NOx versus catalyst inlet temperature is plotted on a graph, and the catalyst inlet water temperature (T50' ``80, respectively) at which the purification rate is 50% and 80% is determined to determine the purification performance of the catalyst at low temperature. was used as the evaluation standard.

次に、以上の評価方法により得られた結果を第1表に示
す。
Next, Table 1 shows the results obtained by the above evaluation method.

第  1  表   耐久走行後の触媒活性第1表より
明らかなように、本発明による実施例1から6の触媒は
、反応する比較例1から5に比べて、HC,Goおよび
NOxの50%、80%、滴下率温度において約45℃
低温から活性を示すことがわかる。また、本発明による
触媒は、スズ使用量が著しく少なくとも高性能を有する
こともわかる。さらに、酸化スズと遷移金属を含有する
実施例7から1lの触媒は、低温におけるHClGoお
よびNOxの浄化性能がさらにすぐれていた。これらの
結果より、本発明による触媒が耐久走行後の低温におけ
る触媒性能が飛躍的に向上することは明らかである。
Table 1 Catalytic activity after endurance running As is clear from Table 1, the catalysts of Examples 1 to 6 according to the present invention contained 50% of HC, Go, and NOx, compared to the reacting Comparative Examples 1 to 5. 80%, dropping rate temperature about 45℃
It can be seen that it shows activity at low temperatures. It can also be seen that the catalyst according to the invention has a significantly lower tin content and at least a high performance. Furthermore, the 1 liter catalyst from Example 7 containing tin oxide and transition metal had even better HClGo and NOx purification performance at low temperatures. From these results, it is clear that the catalytic performance of the catalyst according to the present invention at low temperatures after endurance running is dramatically improved.

Claims (7)

【特許請求の範囲】[Claims] (1)白金およびパラジウムからなる群から選ばれる少
なくとも一種の金属、並びにロジウム、酸化セリウムお
よび耐火性無機酸化物を含有してなる触媒活性物質を一
体構造を有するハニカム担体に被覆担持し、ついで水可
溶性のスズ化合物の水溶液に浸漬し、乾燥および/また
は焼成し、酸化スズを該被覆物上に担持したことを特徴
とする排気ガス浄化用触媒の製造方法。
(1) A catalytically active material containing at least one metal selected from the group consisting of platinum and palladium, as well as rhodium, cerium oxide, and a refractory inorganic oxide is coated and supported on a honeycomb carrier having an integral structure, and then water 1. A method for producing a catalyst for exhaust gas purification, characterized in that the catalyst is immersed in an aqueous solution of a soluble tin compound, dried and/or calcined, and tin oxide is supported on the coating.
(2)触媒1l当り白金およびパラジウムからなる群か
ら選ばれる少なくとも一種の金属とロジウムとの合計が
0.1〜10g、酸化セリウムはCeO_2として1〜
150g、酸化スズはSnO_2として0.01〜50
gおよび耐火性無機酸化物は20〜200gの範囲で担
持されてなることを特徴とする請求項(1)記載の方法
(2) The total amount of at least one metal selected from the group consisting of platinum and palladium and rhodium per liter of catalyst is 0.1 to 10 g, and cerium oxide is 1 to 10 g as CeO_2.
150g, tin oxide is 0.01-50 as SnO_2
2. The method according to claim 1, wherein the amount of the refractory inorganic oxide and the refractory inorganic oxide is supported in a range of 20 to 200 g.
(3)耐火性無機酸化物が活性アルミナであることを特
徴とする請求項(1)または(2)記載の方法。
(3) The method according to claim (1) or (2), wherein the refractory inorganic oxide is activated alumina.
(4)白金およびパラジウムからなる群から選ばれる少
なくとも一種の金属、並びにロジウム、酸化セリウムお
よび耐火性無機酸化物を含有してなる触媒活性物質を一
体構造を有するハニカム担体に被覆担持し、ついで水可
溶性の遷移金属化合物からなる群から選ばれる少なくと
も一種の元素の化合物および水可溶性のスズ化合物の水
溶液に浸漬し、乾燥および/または焼成し、酸化スズお
よび遷移金属酸化物を該被覆物上に担持したことを特徴
とする排気ガス浄化用触媒の製造方法。
(4) A catalytically active material containing at least one metal selected from the group consisting of platinum and palladium, as well as rhodium, cerium oxide, and a refractory inorganic oxide is coated and supported on a honeycomb carrier having an integral structure, and then water It is immersed in an aqueous solution of a compound of at least one element selected from the group consisting of soluble transition metal compounds and a water-soluble tin compound, dried and/or fired, and the tin oxide and transition metal oxide are supported on the coating. A method for producing an exhaust gas purifying catalyst, characterized in that:
(5)触媒1l当り、白金およびパラジウムからなる群
から選ばれる少なくとも一種の金属とロジウムとの合計
が0.1〜10g、酸化セリウムはCeO_2として1
〜150g、遷移金属を酸化物として酸化スズに対し0
.1〜10重量%、酸化スズはSnO_2として0.0
1〜〜50gおよび耐火性無機酸化物は20〜200g
の範囲で担持されてなることを特徴とする請求項(4)
記載の方法。
(5) Per 1 liter of catalyst, the total amount of at least one metal selected from the group consisting of platinum and palladium and rhodium is 0.1 to 10 g, and the amount of cerium oxide is 1 as CeO_2.
~150g, 0 for tin oxide as transition metal oxide
.. 1 to 10% by weight, tin oxide is 0.0 as SnO_2
1 to 50g and 20 to 200g of refractory inorganic oxide
Claim (4) characterized in that:
Method described.
(6)耐火性無機酸化物が活性アルミナであることを特
徴とする請求項(4)または(5)記載の方法。
(6) The method according to claim (4) or (5), wherein the refractory inorganic oxide is activated alumina.
(7)スズ化合物とともに用いる遷移金属がクロム、マ
ンガン、鉄、コバルトおよびニッケルからなる群から選
ばれる少なくとも一種であることを特徴とする請求項(
4)または(5)記載の方法。
(7) A claim characterized in that the transition metal used together with the tin compound is at least one selected from the group consisting of chromium, manganese, iron, cobalt and nickel (
4) or the method described in (5).
JP63145608A 1988-06-15 1988-06-15 Method for producing exhaust gas purifying catalyst Expired - Lifetime JP2635689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63145608A JP2635689B2 (en) 1988-06-15 1988-06-15 Method for producing exhaust gas purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63145608A JP2635689B2 (en) 1988-06-15 1988-06-15 Method for producing exhaust gas purifying catalyst

Publications (2)

Publication Number Publication Date
JPH01315340A true JPH01315340A (en) 1989-12-20
JP2635689B2 JP2635689B2 (en) 1997-07-30

Family

ID=15388974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63145608A Expired - Lifetime JP2635689B2 (en) 1988-06-15 1988-06-15 Method for producing exhaust gas purifying catalyst

Country Status (1)

Country Link
JP (1) JP2635689B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342040A (en) * 1989-07-11 1991-02-22 Tanaka Kikinzoku Kogyo Kk Harmful gas oxidation catalyst
US6399035B1 (en) * 1995-12-26 2002-06-04 Cosmo Research Institute Reduction purification method of nitrogen oxide-containing exhaust gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342040A (en) * 1989-07-11 1991-02-22 Tanaka Kikinzoku Kogyo Kk Harmful gas oxidation catalyst
US6399035B1 (en) * 1995-12-26 2002-06-04 Cosmo Research Institute Reduction purification method of nitrogen oxide-containing exhaust gas
EP0781592B1 (en) * 1995-12-26 2003-11-05 Cosmo Research Institute Exhaust gas purification method by reduction of nitrogen oxides

Also Published As

Publication number Publication date
JP2635689B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US5147842A (en) Exhaust gas-purifying catalyst and process for preparation thereof
AU614986B2 (en) Catalyst having excellent heat resistance for use in purifying exhaust gases from internal combustion engines, and process for production thereof
KR101051418B1 (en) Catalyst for purification of exhaust gas, method for producing same and method for purification of exhaust gas using such catalyst
US5071816A (en) Catalyst for purification of exhaust gas from diesel engine
EP0152052B1 (en) Process for producing monolithic catalyst for purifying exhaust gases
JPH09500570A (en) Layered catalyst composite
JPH09141098A (en) Catalyst for purification of exhaust gas and its production
JPH0653229B2 (en) Exhaust gas purification catalyst
JPH10151353A (en) Exhaust gas purifying catalyst
US5286699A (en) Exhaust gas purifying catalyst suppressing the generation of hydrogen sulfide and method of making the catalyst
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH0547263B2 (en)
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH05220395A (en) Production of ternary catalyst excellent in low-temperature activity
JP3264697B2 (en) Exhaust gas purification catalyst and purification system using the same
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH0578378B2 (en)
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH11217220A (en) Compound oxide, its production and exhaust gas-cleaning catalyst using the same
JPH0582258B2 (en)
JPH01315340A (en) Production of catalyst for purifying exhaust gas
JPH06154606A (en) Catalyst for purification of exhaust gas
JPS6214337B2 (en)
JPH0573463B2 (en)
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12