JPH01303745A - Package for solid-state image sensing element - Google Patents
Package for solid-state image sensing elementInfo
- Publication number
- JPH01303745A JPH01303745A JP63132712A JP13271288A JPH01303745A JP H01303745 A JPH01303745 A JP H01303745A JP 63132712 A JP63132712 A JP 63132712A JP 13271288 A JP13271288 A JP 13271288A JP H01303745 A JPH01303745 A JP H01303745A
- Authority
- JP
- Japan
- Prior art keywords
- package
- solid
- heat
- thermal
- sensor chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002470 thermal conductor Substances 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 18
- 238000003384 imaging method Methods 0.000 claims description 9
- 239000011810 insulating material Substances 0.000 claims description 4
- 230000017525 heat dissipation Effects 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 9
- 239000004020 conductor Substances 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 101100327165 Arabidopsis thaliana CCD8 gene Proteins 0.000 description 1
- 101000857682 Homo sapiens Runt-related transcription factor 2 Proteins 0.000 description 1
- 102100025368 Runt-related transcription factor 2 Human genes 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野〕
本発明は固体撮像素子のパッケージに係り、センサチッ
プの温度上昇が抑制可能な固体撮像素子パッケージに関
する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solid-state image sensor package, and more particularly, to a solid-state image sensor package that can suppress a rise in temperature of a sensor chip.
小形、軽量、低消費電力、高信頼性などの多くの特徴を
有する固体撮像素子は、近年プロセス技術の発展に伴い
急速な発展を遂げている。とりわけ電荷結合素子(以後
、CODと記す)を使った固体撮像素子は解像度向上の
ため多画素化が急速に進行しつつある。このため、水平
CODの転送段数は増加し、電極容量はいままで以上に
多くなる。また、これを駆動する水平駆動周波数は高く
なる。Solid-state imaging devices, which have many features such as small size, light weight, low power consumption, and high reliability, have been rapidly developing in recent years with the development of process technology. In particular, solid-state imaging devices using charge-coupled devices (hereinafter referred to as COD) are rapidly increasing the number of pixels in order to improve resolution. Therefore, the number of horizontal COD transfer stages increases, and the electrode capacitance increases more than ever. Moreover, the horizontal drive frequency for driving this becomes high.
水平CODの駆動において、その消費電力は例えばrC
CDの基礎」塚本哲男著;オーム社に記載されているよ
うに、電極容量C1駆動電圧V、駆動周波数をJとする
と次式で与えられる。In driving a horizontal COD, the power consumption is, for example, rC
As described in "Fundamentals of CD" by Tetsuo Tsukamoto; published by Ohmsha, when the electrode capacitance C1 is the drive voltage V and the drive frequency is J, it is given by the following equation.
消費電力P=f−C−V2 ・・・(1)高
品位テレビカメラを2相、2チヤンネル駆動のCCD1
像素子で構成する際は、f=37.1M Hz、−相当
りの容量C=250PF、V=7v程度の駆動条件にな
ると予想され、水平駆動に関する消費電力は一相当り4
50mW、二相では900mWにも及ぶ。Power consumption P = f - C - V2 ... (1) High-quality television camera driven by two-phase, two-channel CCD1
When configured with an image element, it is expected that the driving conditions will be f = 37.1 MHz, capacitance per equivalent C = 250 PF, and V = 7 V, and the power consumption for horizontal drive is approximately 4 per equivalent.
50mW, reaching as much as 900mW in two-phase.
この電力は水平COD電極の配線抵抗により消費され、
熱となってセンサチップの温度上昇を引き起こす。CC
D撮像素子において温度上昇は熱雑音、暗電流の増加を
もたらし、画質劣化の原因となる。しかしながら、従来
技術の撮像素子のパッケージにおいて温度上昇を抑制す
る方策はなんら採られていなかった。This power is consumed by the wiring resistance of the horizontal COD electrode,
This generates heat and causes the temperature of the sensor chip to rise. C.C.
In the D image sensor, a rise in temperature brings about an increase in thermal noise and dark current, which causes deterioration in image quality. However, no measures have been taken to suppress the temperature rise in the conventional image sensor packages.
第2図は従来のパッケージの断面図である。このパッケ
ージはセラミックからなる母材1を撮像素子の駆動信号
等を伝達する金属製の端子(以後、ピンと記す)2から
構成されている。センサチップ3は直接セラミックでで
きたパッケージ母材1に貼付けられており、発生した熱
は水平CCD→センサチップ→パッケージと伝わり放熱
されている。そのため、チップ温度はパッケージ温度よ
り高くなる。この放熱経路はセンサチップの温度上昇と
いう点から必ずしもよい放熱経路とはいい難い。実際に
実用化されているCCD撮像素子をカメラの基板に装着
して動作させたところ、センサチップがパッケージより
も高温になった6駆動周波数が高くなる高品位テレビカ
メラ用COD素子ではさらに高温になると考えられる。FIG. 2 is a sectional view of a conventional package. This package includes a base material 1 made of ceramic and metal terminals (hereinafter referred to as pins) 2 that transmit drive signals and the like for an image sensor. The sensor chip 3 is directly attached to the package base material 1 made of ceramic, and the generated heat is transmitted from the horizontal CCD to the sensor chip to the package and is radiated. Therefore, the chip temperature becomes higher than the package temperature. This heat dissipation route is not necessarily a good heat dissipation route in terms of the temperature rise of the sensor chip. When a CCD image sensor, which is actually in practical use, was mounted on a camera board and operated, the sensor chip became hotter than the package.6 COD devices for high-quality television cameras, which have a higher drive frequency, reach even higher temperatures. It is considered to be.
本発明の目的は、放熱効果を高めセンサチップの温度上
昇を抑制することが可能な撮像素子のパッケージを提供
することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an image sensor package that can enhance the heat dissipation effect and suppress a rise in temperature of a sensor chip.
上述の目的を達成するため、本発明では発熱量の多い水
平CODの下部、もしくはセンサチップの下部にパッケ
ージ母材よりも熱伝導度の良い材質(以後、熱導体と記
す)を埋め込む。この熱導体の一端はセンサチップの裏
面に接触させ、また他の一端はパッケージ外部に引き出
す。この端にヒートシンクなどの放熱機構を設は放熱効
率を高める。In order to achieve the above object, the present invention embeds a material (hereinafter referred to as a thermal conductor) with better thermal conductivity than the package base material under the horizontal COD, which generates a large amount of heat, or under the sensor chip. One end of this thermal conductor is brought into contact with the back surface of the sensor chip, and the other end is drawn out to the outside of the package. Installing a heat sink or other heat dissipation mechanism at this end increases heat dissipation efficiency.
上記熱導体により構成される経路は熱抵抗が低く、外部
に速やかに熱を拡散することができる。The path formed by the thermal conductor has low thermal resistance and can quickly diffuse heat to the outside.
すなわち水平CODで発生した熱はチップ外部のヒート
シンクに速やかに伝導し、このヒートシンクにより放熱
される。したがってセンサチップに伝導する熱は減少し
チップ温度を低く保つことができる。これにより暗電流
、熱雑音の発生が抑制可能となる。That is, the heat generated by the horizontal COD is quickly conducted to a heat sink outside the chip, and is radiated by this heat sink. Therefore, the heat conducted to the sensor chip is reduced and the chip temperature can be kept low. This makes it possible to suppress the generation of dark current and thermal noise.
以下、本発明の実施例を図面を参照して説明する。第1
図は本発明による撮像素子のパッケージの断面を示す図
である。このパッケージはセラミックからなる母材1と
、駆動信号等の入出力のための金属性のピン2、さらに
熱伝導度が母材のセラミックより優れた金属などの熱導
体4から構成する。なお5はパッケージのピンとセンサ
チップを接続するボンディングワイヤ、12はポンディ
ングパッドである。Embodiments of the present invention will be described below with reference to the drawings. 1st
The figure is a diagram showing a cross section of a package of an image sensor according to the present invention. This package is composed of a base material 1 made of ceramic, metallic pins 2 for inputting and outputting drive signals, etc., and a thermal conductor 4 made of metal or the like whose thermal conductivity is superior to that of the ceramic base material. Note that 5 is a bonding wire that connects the pins of the package and the sensor chip, and 12 is a bonding pad.
本パッケージでは上面から光学像を入射するため、熱導
体はセンサチップ3を貼付ける面の下部にその表面を露
出させ、センサチップ3と接触させる。熱導体4はパッ
ケージ本体を貫通し裏面からパッケージ外部に熱を伝え
る構造とする。In this package, since the optical image is incident from the top surface, the surface of the thermal conductor is exposed below the surface to which the sensor chip 3 is attached, and is brought into contact with the sensor chip 3. The thermal conductor 4 has a structure that penetrates the package body and transmits heat to the outside of the package from the back surface.
第3図は固体撮像素子における水平CCD8゜出力アン
プ7の位置を示す図である。ccDma素子は受光部6
.水平CCD8.出力アンプ7が第3図に示されるよう
に配置しである。前述したようにCCDセンサにおいて
発熱量が多いのは、水平CCD部8である。またこれと
は別に電流が多く流れる出力アンプ部7での発熱も多い
。第4図は第1図のパッケージを上部から見た図であり
、センサチップ3とパッケージの位置関係を示す図であ
る。ハツチ部分は熱導体4を埋め込む位置である。すな
わち熱導体4はセンサチップ3の水平CCD8.出力ア
ンプ7の下部に配置する。上記構成にすると水平CCD
8、および出力アンプ部7→熱導体4→パッケージ外部
と熱抵抗の少ない部分を伝わって放熱がなされる。これ
により水平CCD8からセンサチップ3(特に受光部6
)へ伝わる熱が少なくなり、センサチップ3の温度上昇
が抑制できる。FIG. 3 is a diagram showing the position of the horizontal CCD 8° output amplifier 7 in the solid-state image sensor. The ccDma element is the light receiving part 6
.. Horizontal CCD8. The output amplifier 7 is arranged as shown in FIG. As described above, in the CCD sensor, the horizontal CCD section 8 generates a large amount of heat. In addition to this, there is also a lot of heat generated in the output amplifier section 7 through which a large amount of current flows. FIG. 4 is a top view of the package shown in FIG. 1, and is a diagram showing the positional relationship between the sensor chip 3 and the package. The hatched portion is the position where the thermal conductor 4 is embedded. That is, the thermal conductor 4 connects the horizontal CCD 8 . It is placed below the output amplifier 7. With the above configuration, horizontal CCD
8, and the output amplifier section 7 -> thermal conductor 4 -> outside of the package, and heat is radiated through a portion with low thermal resistance. As a result, from the horizontal CCD 8 to the sensor chip 3 (especially the light receiving section 6),
), and the temperature rise of the sensor chip 3 can be suppressed.
第5図は第1図の変形を示す実施例である。第1図の実
施例と異なる点は放熱路を形成する熱導体の大きさおよ
びその位置にある。第1図では水平CCD、出力アンプ
の下部にだけ熱導体を設けていたが、第5図の実施例で
はセンサチップの下部全面に熱導体を設ける。FIG. 5 is an embodiment showing a modification of FIG. 1. The difference from the embodiment shown in FIG. 1 lies in the size and position of the heat conductor forming the heat radiation path. In FIG. 1, the thermal conductor is provided only under the horizontal CCD and the output amplifier, but in the embodiment shown in FIG. 5, the thermal conductor is provided over the entire lower part of the sensor chip.
第6図は第5図に示したパッケージを裏面から見た図で
あるが、図示したようにセンサチップ下部全面を覆うよ
うに熱導体を設ける。上記の構造にすると水平COD、
出力アンプで発生した熱はもちろん、受光部で発生した
熱も外部に放熱する経路が構成できる。また水平CCD
、出力アンプで発生した熱のうちチップを伝導してきた
熱も速やかに放熱できるという効果がある。FIG. 6 is a view of the package shown in FIG. 5 viewed from the back side, and as shown, a thermal conductor is provided so as to cover the entire lower part of the sensor chip. With the above structure, horizontal COD,
A path can be configured to radiate not only the heat generated by the output amplifier but also the heat generated by the light receiving section to the outside. Also horizontal CCD
This has the effect of quickly dissipating the heat generated by the output amplifier that has been conducted through the chip.
第7図は第5図と同様に第1図の実施例の変形を表わす
図である。第7図と第5図の実施例の異なる点は、さら
に熱導体が大きく構成されている点にある。放熱の点か
ら言えばパッケージ全体をすべて熱伝導度のよい金属か
ら構成すれば良いが。FIG. 7, like FIG. 5, is a diagram showing a modification of the embodiment of FIG. 1. The difference between the embodiments of FIG. 7 and FIG. 5 is that the thermal conductor is larger. From the standpoint of heat dissipation, it would be better if the entire package was made entirely of metal with good thermal conductivity.
固体撮像素子には信号の入出力のためのピン端子が20
本はどあり、これらは絶縁体により支持しなければなら
ない。またパッケージとセンサチップ3の接続に用いる
ポンディングパッド12も絶縁体の上に構成しなければ
ならない。そこで第7図のようにパッケージの大部分は
熱伝導度の良い金属で構成し、ピンを支持する部分とポ
ンディングパッドを設ける部分だけを絶縁物質で構成す
る。The solid-state image sensor has 20 pin terminals for inputting and outputting signals.
Where are the books? These must be supported by insulators. Furthermore, the bonding pad 12 used for connecting the package and the sensor chip 3 must also be constructed on an insulator. Therefore, as shown in FIG. 7, most of the package is made of metal with good thermal conductivity, and only the parts that support the pins and the parts where the bonding pads are provided are made of insulating material.
第8図に第7図のパッケージを裏面から見た図を示す。FIG. 8 shows a view of the package shown in FIG. 7 from the back side.
パッケージ全体を金属で構成し、ピンの支持部分だけを
絶縁体で構成しである。このようにするとさらに放熱効
果を高めることができる。なお金属と同程度の熱伝導率
を持つ絶縁物質であるならパッケージ全体をすべてその
物質で構成してよいこbは上記の説明から容易に類推で
きる。The entire package is made of metal, with only the pin support portion made of insulator. In this way, the heat dissipation effect can be further enhanced. It can be easily inferred from the above explanation that if an insulating material has a thermal conductivity comparable to that of metal, the entire package may be made of that material.
第9図は熱導体4にヒートシンク9を装着した一実施例
である。このヒートシンク9により熱導体4が伝導した
熱が放熱される。これにより熱導体4で外部に伝達した
熱を効果的に放熱できる。FIG. 9 shows an embodiment in which a heat sink 9 is attached to the thermal conductor 4. The heat conducted by the thermal conductor 4 is radiated by the heat sink 9. Thereby, the heat transferred to the outside by the thermal conductor 4 can be effectively radiated.
放熱効果を高めるために1強制空冷を施せばなお良い。It is even better if forced air cooling is applied to increase the heat dissipation effect.
またヒートシンク9の代わりにペルチェ素子など電気的
な冷却装置を用いても良いことはi。Also, instead of the heat sink 9, an electric cooling device such as a Peltier device may be used.
うまでもない。It's no good.
第10図はペルチェ素子を設けた実施例である。FIG. 10 shows an embodiment in which a Peltier element is provided.
ペルチェ素子は電流を通じると低温になる側面と、高温
になる側面がある。図示した様に熱伝導体4にペルチェ
素子13の低温になる側面を接触させ、熱伝導体4が電
黒してきたセンサチップ3の熱を吸収し外部に放熱する
。When a current is passed through a Peltier element, one side becomes colder and the other side becomes hotter. As shown in the figure, the low-temperature side surface of the Peltier element 13 is brought into contact with the thermal conductor 4, and the thermal conductor 4 absorbs the heat of the sensor chip 3 that has become black and radiates the heat to the outside.
なお、固体撮像素子のパッケージでは光学像は透過する
が、湿気、塵等からセンサを保護する保護ガラスがある
。上述の説明ではこの保護ガラスの説明を省略しである
が、これは第11図の断面図の様に保護ガラス10をパ
ッケージに装着すればよい。Note that although the optical image passes through the package of the solid-state image sensor, there is a protective glass that protects the sensor from moisture, dust, and the like. Although the description of this protective glass is omitted in the above description, it is sufficient to attach the protective glass 10 to the package as shown in the cross-sectional view of FIG. 11.
本発明の主旨はセンサチップの下部に熱伝導度の優れた
材料の放熱経路を設けることにある。現在用いられてい
るアルミナ系セラミックのパッケージ材料の熱伝導度は
0.04〜0.1(cal−cffi/ 、cJ−
see・℃)であるが、例えば金属では、銀:1.0.
銅:0.94、金:0.74.タングステン:0.39
(cal−aIl/d−9ec・℃)である。したがっ
て熱導体として上記に示した熱伝導度の優れた金属を用
いれば良いことは容易に理解できる。The gist of the present invention is to provide a heat dissipation path made of a material with excellent thermal conductivity below the sensor chip. The thermal conductivity of currently used alumina ceramic packaging materials is 0.04 to 0.1 (cal-cffi/, cJ-
see・℃), but for example, in metals, silver: 1.0.
Copper: 0.94, Gold: 0.74. Tungsten: 0.39
(cal-aIl/d-9ec·°C). Therefore, it is easy to understand that the metals with excellent thermal conductivity shown above can be used as the thermal conductor.
中でも熱伝導度、コスト、加工性の点からいって銅が優
れている。しかし熱伝導体としては必ずしも金属でなく
とも上記金属と同程度の熱伝導度を有する、あるいはセ
ラミックより熱伝導度の優れた材質であれば何であって
も構わない。またその形状も問わない。例えば経路は長
くなるものの、パッケージを基板に取り付けるためのネ
ジに熱塩体を接触させることで、基板に対して放熱させ
ることも可能となる。さらにカメラの筐体に熱伝導体を
接触させ、筐体に放熱してもよい。Among them, copper is superior in terms of thermal conductivity, cost, and workability. However, the thermal conductor is not necessarily a metal, but may be any material as long as it has a thermal conductivity comparable to that of the above-mentioned metals or a thermal conductivity superior to ceramics. Also, its shape does not matter. For example, although the path becomes longer, it is also possible to radiate heat to the board by bringing the thermochloride into contact with the screws used to attach the package to the board. Furthermore, a heat conductor may be brought into contact with the casing of the camera to radiate heat to the casing.
また本発明によれば、必ずしもパッケージ母材1に熱伝
導度の優れた材質を用いることはなく、発熱量の多い部
分だけに熱伝導度の優れた材質を用いることができる。Further, according to the present invention, it is not necessary to use a material with excellent thermal conductivity for the package base material 1, and it is possible to use a material with excellent thermal conductivity only in the portion that generates a large amount of heat.
例えばパッケージ母材に安価ではあるが熱伝導度のあま
りよくない樹脂を用いたとしても、放熱経路が熱導体に
より確保される。したがってパッケージのコストを下げ
られるという効果もある。For example, even if an inexpensive resin with poor thermal conductivity is used for the package base material, a heat dissipation path is ensured by the thermal conductor. Therefore, there is also the effect of reducing the cost of the package.
以上、本発明によればセンサチップで発熱した熱が熱海
体→ヒートシンクと熱抵抗の低い部分を伝わってパッケ
ージ外部に効率よく取り出せる。As described above, according to the present invention, the heat generated by the sensor chip can be efficiently extracted to the outside of the package by being transmitted through the thermal ocean body → the heat sink and the low thermal resistance portion.
この熱はヒートシンクや、電子冷却装置により強制的に
放熱させることができる。これによりセンサチップの温
度上昇が抑制でき、熱雑音、暗電流の少ない固体撮像素
子の信号が得られる。またパッケージ母材に樹脂などの
安価な材質を用いることができ、パッケージコストが下
げられるといった優れた効果がある。This heat can be forcibly radiated using a heat sink or electronic cooling device. As a result, the temperature rise of the sensor chip can be suppressed, and a signal from the solid-state image sensor with less thermal noise and dark current can be obtained. Furthermore, an inexpensive material such as resin can be used for the package base material, which has an excellent effect of lowering the package cost.
第1図は本発明による固体撮像素子のパッケージの断面
図、第2図は従来の撮像素子のパッケージの断面図、第
3図はセンサチップにおける水平CODと出力アンプの
位置を示す図、第4図はセンサチップとパッケージの位
置関係を示す図、第5図及び第7図はそれぞれ固体撮像
素子のパッケージの他の実施例、第6図は第5図に示し
たパッケージを裏面からみた図、第8図は第7図のパッ
ケージを裏面からみた図、第9図は第1図のパッケージ
にヒートシンクを装着した実施例、第10図はパッケー
ジにペルチェ素子を装着した実施例、第11図はパッケ
ージの断面を表わす図である。
1・・・セラミックでできたパッケージ、2・・・セン
サチップ、3・・・端子(ビン)、4・・・熱導体、5
・・・ボンディングワイヤ、6・・・受光部、7・・・
出力アンプ部、8・・・水平COD (H−CCD)
、9・・・ヒートシンク、10・・・保護ガラス、12
・・・ポンディングパッド、13・・・ペルチェ素子。
第 l 記
v、2 胆
喝 3 配
V、4 記
2と0ン
第 5 呂
鴇 7 口
第 3 国
3 亡シブヂrす1
5 ホ“ン丁イン’l”7AヤFIG. 1 is a sectional view of a solid-state image sensor package according to the present invention, FIG. 2 is a sectional view of a conventional image sensor package, FIG. 3 is a diagram showing the horizontal COD and the position of an output amplifier in a sensor chip, and FIG. The figure shows the positional relationship between the sensor chip and the package, FIGS. 5 and 7 are other examples of packages for solid-state image sensors, and FIG. 6 is a view of the package shown in FIG. 5 from the back side. Figure 8 is a view of the package in Figure 7 seen from the back, Figure 9 is an example in which a heat sink is attached to the package in Figure 1, Figure 10 is an example in which a Peltier element is attached to the package, and Figure 11 is an example in which a Peltier element is attached to the package. FIG. 3 is a diagram showing a cross section of the package. 1... Package made of ceramic, 2... Sensor chip, 3... Terminal (bottle), 4... Heat conductor, 5
... bonding wire, 6... light receiving section, 7...
Output amplifier section, 8...Horizontal COD (H-CCD)
, 9... Heat sink, 10... Protective glass, 12
...Pounding pad, 13...Peltier element. Chapter l, v, 2, extortion, 3, V, 4, 2 and 0, 5, ro, 7, 3rd country, 3, the deceased, 1, 5, 7,
Claims (1)
号入出力端子を支持する絶縁物質と、上記絶縁質よりも
熱伝導度の優れた熱導体とをもつて構成したことを特徴
とする固体撮像素子のパッケージ。 2、前記熱導体は固体撮像素子の下部に設けられること
を特徴とする請求項1記載の固体撮像素子のパッケージ
。 3、前記熱導体は固体撮像素子に熱的に接触させたこと
を特徴とする固体撮像素子のパッケージ。 4、熱導体の接触する位置は固体撮像素子の高温部にな
るようにしたことを特徴とする請求項3記載の固体撮像
素子のパッケージ。 5、少なくとも受光部と水平電荷転送路と出力アンプと
を備えた固体撮像素子のパッケージであつて、上記水平
電荷転送路と出力アンプの下部にパッケージを構成する
母材よりも熱伝導度が優れた熱導体を設けたことを特徴
とする固体撮像素子のパッケージ。[Scope of Claims] 1. A package for a solid-state image sensor, comprising an insulating material that supports at least a signal input/output terminal, and a thermal conductor having higher thermal conductivity than the insulating material. A distinctive solid-state image sensor package. 2. The solid-state imaging device package according to claim 1, wherein the thermal conductor is provided below the solid-state imaging device. 3. A solid-state imaging device package, wherein the thermal conductor is in thermal contact with the solid-state imaging device. 4. The package for a solid-state imaging device according to claim 3, wherein the position where the thermal conductor comes into contact is a high-temperature part of the solid-state imaging device. 5. A solid-state imaging device package comprising at least a light receiving section, a horizontal charge transfer path, and an output amplifier, the lower part of the horizontal charge transfer path and output amplifier having better thermal conductivity than the base material forming the package. A package for a solid-state image sensor characterized by being provided with a thermal conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63132712A JPH01303745A (en) | 1988-06-01 | 1988-06-01 | Package for solid-state image sensing element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63132712A JPH01303745A (en) | 1988-06-01 | 1988-06-01 | Package for solid-state image sensing element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01303745A true JPH01303745A (en) | 1989-12-07 |
Family
ID=15087810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63132712A Pending JPH01303745A (en) | 1988-06-01 | 1988-06-01 | Package for solid-state image sensing element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01303745A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0329366A (en) * | 1989-06-26 | 1991-02-07 | Matsushita Electron Corp | Solid-state image-pickup device |
US5506755A (en) * | 1992-03-11 | 1996-04-09 | Kabushiki Kaisha Toshiba | Multi-layer substrate |
US5563773A (en) * | 1991-11-15 | 1996-10-08 | Kabushiki Kaisha Toshiba | Semiconductor module having multiple insulation and wiring layers |
JP2002182652A (en) * | 2000-09-11 | 2002-06-26 | Agilent Technol Inc | Acoustic resonator and method of manufacturing for the same |
JP2006332841A (en) * | 2005-05-24 | 2006-12-07 | Shimadzu Corp | Image pickup device assembly |
JP2006339214A (en) * | 2005-05-31 | 2006-12-14 | Fujifilm Holdings Corp | Solid-state image pickup device |
JP2008300899A (en) * | 2007-05-29 | 2008-12-11 | Olympus Corp | Imaging apparatus |
US7663200B2 (en) | 2002-04-18 | 2010-02-16 | Panasonic Corporation | Integrated circuit device packaging structure and packaging method |
JP2012227270A (en) * | 2011-04-18 | 2012-11-15 | Kyocera Corp | Imaging element mounting member and imaging device |
JP2013232781A (en) * | 2012-04-27 | 2013-11-14 | Canon Inc | Solid state imaging apparatus and camera |
JP2019519087A (en) * | 2016-03-12 | 2019-07-04 | ニンボー サニー オプテック カンパニー,リミテッド | Array imaging module and molded photosensitive assembly, and method of manufacturing the same for electronic devices |
WO2020158130A1 (en) * | 2019-01-30 | 2020-08-06 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor device |
-
1988
- 1988-06-01 JP JP63132712A patent/JPH01303745A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0329366A (en) * | 1989-06-26 | 1991-02-07 | Matsushita Electron Corp | Solid-state image-pickup device |
US5563773A (en) * | 1991-11-15 | 1996-10-08 | Kabushiki Kaisha Toshiba | Semiconductor module having multiple insulation and wiring layers |
US5506755A (en) * | 1992-03-11 | 1996-04-09 | Kabushiki Kaisha Toshiba | Multi-layer substrate |
JP2002182652A (en) * | 2000-09-11 | 2002-06-26 | Agilent Technol Inc | Acoustic resonator and method of manufacturing for the same |
US7663200B2 (en) | 2002-04-18 | 2010-02-16 | Panasonic Corporation | Integrated circuit device packaging structure and packaging method |
JP2006332841A (en) * | 2005-05-24 | 2006-12-07 | Shimadzu Corp | Image pickup device assembly |
JP2006339214A (en) * | 2005-05-31 | 2006-12-14 | Fujifilm Holdings Corp | Solid-state image pickup device |
JP2008300899A (en) * | 2007-05-29 | 2008-12-11 | Olympus Corp | Imaging apparatus |
JP2012227270A (en) * | 2011-04-18 | 2012-11-15 | Kyocera Corp | Imaging element mounting member and imaging device |
JP2013232781A (en) * | 2012-04-27 | 2013-11-14 | Canon Inc | Solid state imaging apparatus and camera |
US9143665B2 (en) | 2012-04-27 | 2015-09-22 | Canon Kabushiki Kaisha | Solid-state image sensor and camera |
JP2019519087A (en) * | 2016-03-12 | 2019-07-04 | ニンボー サニー オプテック カンパニー,リミテッド | Array imaging module and molded photosensitive assembly, and method of manufacturing the same for electronic devices |
WO2020158130A1 (en) * | 2019-01-30 | 2020-08-06 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor device |
JPWO2020158130A1 (en) * | 2019-01-30 | 2021-12-02 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor device |
US12034093B2 (en) | 2019-01-30 | 2024-07-09 | Sony Semiconductor Solutions Corporation | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4379295B2 (en) | Semiconductor image sensor module and manufacturing method thereof | |
KR101711007B1 (en) | Image sensor module having image sensor package | |
JPH01303745A (en) | Package for solid-state image sensing element | |
TW201110676A (en) | Electronic assembly for an image sensing device, wafer level lens set | |
JP2008219704A (en) | Semiconductor device | |
US20060219862A1 (en) | Compact camera module with reduced thickness | |
JP2008130738A (en) | Solid-state imaging element | |
JP2000258541A (en) | Radiation-detecting device | |
US6495836B1 (en) | Two-dimensional image pickup apparatus | |
JPH01295449A (en) | Cooling type solid-state image sensing device | |
JP2011043390A (en) | Radiation detection device | |
US20140078386A1 (en) | Lens Module | |
JP2010263004A (en) | Solid-state image pickup device | |
JP2006191465A (en) | Electronic apparatus | |
JP2006032561A (en) | Semiconductor image sensor module | |
JP6335636B2 (en) | Imaging module and endoscope | |
JP4911312B2 (en) | Imaging device | |
US9263492B2 (en) | Image sensor package | |
JP2010205780A (en) | Imaging unit | |
JP2006339291A (en) | Hollow package, semiconductor device using the same and solid-state image pickup device | |
JP2674563B2 (en) | Solid-state imaging device | |
JP2013201568A (en) | Imaging module | |
JP2001177023A (en) | Mounting structure of chip device | |
US8044341B2 (en) | Electronic component, illuminating device, contact-type image sensor, and image reading device having no short circuit condition achieved by allowing only one electrode of an LED chip in direct contact with a metallic substrate | |
JPH0435373A (en) | Solid-state image pickup element |