JPH01306787A - Production of ice containing ozone - Google Patents
Production of ice containing ozoneInfo
- Publication number
- JPH01306787A JPH01306787A JP13874488A JP13874488A JPH01306787A JP H01306787 A JPH01306787 A JP H01306787A JP 13874488 A JP13874488 A JP 13874488A JP 13874488 A JP13874488 A JP 13874488A JP H01306787 A JPH01306787 A JP H01306787A
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- ice
- water
- cold water
- cooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 69
- 238000007710 freezing Methods 0.000 claims abstract description 18
- 230000008014 freezing Effects 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 7
- 230000035939 shock Effects 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 abstract description 27
- 238000004781 supercooling Methods 0.000 abstract description 18
- 239000000463 material Substances 0.000 abstract description 3
- 238000004090 dissolution Methods 0.000 abstract description 2
- 238000003860 storage Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 101100493711 Caenorhabditis elegans bath-41 gene Proteins 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003116 impacting effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Landscapes
- Freezing, Cooling And Drying Of Foods (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はオゾンを含有した氷の製造方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing ice containing ozone.
(従来の技術)
滅菌及び脱臭効果に優れるオゾン(03)を水中に含有
させることで、食料の冷却保存や飲料水の冷却等に有効
な氷を生成するオゾン含有氷の製造方法に関して種々の
提案がなされている。(Prior Art) Various proposals have been made regarding methods for producing ozone-containing ice, which generates ice that is effective for cooling food storage, drinking water, etc. by incorporating ozone (03), which has excellent sterilization and deodorizing effects, into water. is being done.
例えば、特公昭42−23758号公報には、原料水を
脱気して窒素分を除去した後、該原料水を冷却してオゾ
ンを溶解し、次いでこの冷水を製氷工程に送るようにし
たオゾン含有氷の製造方法が開示されており、また特開
昭60−29569号公報には、オゾンを含有した冷水
を冷却回路の蒸発器に散布して氷を製造するオゾン氷の
製造方法が開示されている。For example, Japanese Patent Publication No. 42-23758 discloses an ozone system that deaerates raw water to remove nitrogen, cools the raw water to dissolve ozone, and then sends this cold water to an ice-making process. A method for producing ice containing ice is disclosed, and JP-A-60-29569 discloses a method for producing ozone ice in which ice is produced by spraying cold water containing ozone into an evaporator of a cooling circuit. ing.
(発明が解決しようとする課題)
しかしながら、従来の製造方法ではいずれも原料水を氷
点(0℃)程度に冷却し該冷水にオゾンを溶解している
だけなので、オゾンの溶解度が低く、また製氷工程に至
るまでに冷水の温度が上昇してオゾンが放出しその溶解
度が低減するという問題点がある。また、後者の場合で
はオゾンを含んだ冷水を蒸発器に散布する際に冷水中の
オゾンが放出されるとともに、製氷に時間を要するため
に冷水中のオゾンが放出されてその溶解度が著しく低減
するという問題点があった。(Problem to be solved by the invention) However, in all conventional manufacturing methods, the raw water is simply cooled to around the freezing point (0°C) and ozone is dissolved in the cold water, so the solubility of ozone is low, and There is a problem in that the temperature of the cold water rises until the process reaches the stage, releasing ozone and reducing its solubility. In the latter case, ozone in the cold water is released when ozone-containing cold water is sprayed into the evaporator, and since it takes time to make ice, ozone in the cold water is released and its solubility is significantly reduced. There was a problem.
本発明は前記問題点に鑑みてなされたものであり、原料
水に対するオゾンの溶解度を増加させることができ、し
かも製氷時におけるオゾンの放出を防止することができ
るオゾン含有氷の製造方法を提供することを目的とする
。The present invention has been made in view of the above problems, and provides a method for producing ozone-containing ice that can increase the solubility of ozone in raw water and prevent the release of ozone during ice making. The purpose is to
(課題を解決するための手段)
本発明は前記目的を達成するために、原料水を氷点直前
に冷却し該冷水にオゾンを溶解した後、該冷水を氷点以
下に冷却し該過冷水にオゾンを溶解し、該過冷水に衝撃
を加えて結氷させるようにしたことを特徴としている。(Means for Solving the Problems) In order to achieve the above object, the present invention cools raw water just before the freezing point, dissolves ozone in the cold water, cools the cold water below the freezing point, and adds ozone to the supercooled water. The feature is that the supercooled water is melted, and the supercooled water is subjected to impact to freeze.
(作 用)
本発明によれば、原料水を氷点直前と氷点以下に段階的
に冷却し、各冷却段階でオゾンを溶解しているので、冷
却と同時に多量のオゾンが原料水に溶解されることにな
る。また、過冷水に衝撃を加えることにより結氷させて
いるので、製氷が瞬時に行なわれることから製氷時にお
いてオゾンが放出されることがない。(Function) According to the present invention, the raw water is cooled stepwise to just before the freezing point and below the freezing point, and ozone is dissolved at each cooling stage, so that a large amount of ozone is dissolved into the raw water at the same time as cooling. It turns out. Furthermore, since ice is formed by applying shock to the supercooled water, ice is made instantaneously, so no ozone is released during ice making.
(実施例) 以下、図に従って本発明の一実施例を説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.
第1図はオゾン含有氷の製造装置を示すもので、図にお
いて1は冷却タンク、10は過冷却部、20は冷却回路
、30はオゾン発生器、40は氷生成部、50は貯水部
である。Figure 1 shows an ozone-containing ice manufacturing apparatus. In the figure, 1 is a cooling tank, 10 is a supercooling section, 20 is a cooling circuit, 30 is an ozone generator, 40 is an ice generation section, and 50 is a water storage section. be.
前記冷却タンク1は耐オゾン性が高いステンレス等の材
料から形成され、冷水を貯留可能な内部空間を有してい
る。この冷却タンク1の上部には、フィルタ2aを備え
た浄化器2と脱窒素装置3とを順に介在する原料水給送
用の給送バイブ4が接続されている。前記給送バイブ4
の冷却タンク1内に突出する一端には噴霧用のノズル5
が取付けられており、また他端は水道の蛇口等に接続さ
れている。また、前記冷却タンク1には循環ポンプ6を
介在した循環バイブ7がその上下位置に接続されている
。The cooling tank 1 is made of a material with high ozone resistance, such as stainless steel, and has an internal space capable of storing cold water. A feeding vibrator 4 for feeding raw water is connected to the upper part of the cooling tank 1, which sequentially interposes a purifier 2 equipped with a filter 2a and a denitrification device 3. The feeding vibe 4
A spray nozzle 5 is installed at one end protruding into the cooling tank 1.
is attached, and the other end is connected to a water faucet, etc. Furthermore, circulation vibrators 7 with circulation pumps 6 interposed therebetween are connected to the cooling tank 1 at upper and lower positions thereof.
前記過冷却部10は耐オゾン性が高いステンレス等の材
料から中空筒状に形成され、一端に設けられた流入口1
1を前記冷却タンク1の底部に接続し、他端に流出口1
2を備えている。The supercooling section 10 is formed into a hollow cylindrical shape from a material such as stainless steel with high ozone resistance, and has an inlet 1 provided at one end.
1 to the bottom of the cooling tank 1, and an outlet 1 to the other end.
It is equipped with 2.
前記冷却回路20は、圧縮機21と、凝縮器22と、膨
張弁23と、前記冷却タンク1内に配置されたバイブ状
の第1冷却器24aと、前記過冷却部10の外周に巻回
配置されたパイプ状の第2冷却器24bとから構成され
ており、回路内を循環する冷媒によって前記第1・第2
冷却器24a、24bにおいて吸熱作用を生じさせ、前
記冷却タンク1内及び過冷却部10内の水を冷却できる
ようになっている。The cooling circuit 20 includes a compressor 21 , a condenser 22 , an expansion valve 23 , a vib-shaped first cooler 24 a disposed within the cooling tank 1 , and a circuit wound around the outer circumference of the supercooling section 10 . A pipe-shaped second cooler 24b is arranged, and the refrigerant circulating in the circuit cools the first and second coolers.
The coolers 24a and 24b generate heat absorption to cool the water in the cooling tank 1 and the supercooling section 10.
前記オゾン発生器30は、内部で生成したオゾンを2本
の供給管31.32から供給できるようになっており、
一方の供給管31は前記冷却タンク1の底部に、また他
方の供給管32は前記過冷却部10の流出口12寄りの
底部に夫々接続されている。前記オゾン発生器30とし
ては周知の種々製法の採用が可能であるが、不純物の発
生が少ない酸素ガス放電方式が好ましい。The ozone generator 30 is capable of supplying internally generated ozone from two supply pipes 31 and 32,
One supply pipe 31 is connected to the bottom of the cooling tank 1, and the other supply pipe 32 is connected to the bottom of the supercooling section 10 near the outlet 12. The ozone generator 30 can be manufactured using various well-known manufacturing methods, but an oxygen gas discharge method is preferred because it generates fewer impurities.
前記氷生成部40は、前記過冷却部10の流出口12の
下方に所定間隔をおいて配置された有底状の氷生成I!
41と、該氷生成槽41内の底部に沿って摺動自在に配
置された成形杆42とから構成されており、前記氷生成
槽41の一側下部には氷排出用の通孔41aが設けられ
、また該通孔41aには開閉自在な扉43が設けられて
いる。The ice generating section 40 is a bottomed ice generating section I! arranged below the outlet 12 of the supercooling section 10 at a predetermined interval.
41, and a molded rod 42 that is slidably disposed along the bottom of the ice generation tank 41, and a through hole 41a for ice discharge is provided at the bottom of one side of the ice generation tank 41. A door 43 that can be opened and closed is provided in the through hole 41a.
前記成形杆42は図示省略の駆動装置によって往復摺動
する。The forming rod 42 is reciprocated by a drive device (not shown).
前記貯水部50は、上部開口51aを前記通孔41aの
下方に位置した箱型の貯留槽51と、該′貯留槽51内
の上部に配置された冷却器52とから構成されており、
前記貯留槽51の一側には氷取出口51bが設けられ、
また該氷取出口51bには開閉自在な扉53が設けられ
ている。また、前記冷却器52には図示省略の冷却回路
が接続されており、貯留槽51内は該冷却器52により
一5℃〜−20℃に冷却されている。The water storage section 50 is composed of a box-shaped storage tank 51 with an upper opening 51a located below the through hole 41a, and a cooler 52 disposed at the upper part of the storage tank 51.
An ice outlet 51b is provided on one side of the storage tank 51,
Further, the ice outlet 51b is provided with a door 53 that can be opened and closed. Further, a cooling circuit (not shown) is connected to the cooler 52, and the inside of the storage tank 51 is cooled to -5°C to -20°C by the cooler 52.
次に、前記製造装置の動作を説明する。Next, the operation of the manufacturing apparatus will be explained.
原料水となる水道水は水分中の不純物をフィルタ2で除
去され、また水分中の窒素を脱窒素装置3で除去された
後、ノズル5によって冷却タンク1内に噴霧される。こ
の冷却タンク1内に貯留された原料水は第1冷却器24
aで氷点(0℃)直前に冷却されるとともに、供給管3
1を通じて供給されたオゾンが溶解される。この時、循
環ポンプロを作動させて冷却タンク1内の冷水を循環バ
イブ7を通じて循環させ、第1冷却器24aにおける熱
交換及び冷水へのオゾンの溶解を促進させる。After impurities in the water are removed by a filter 2 and nitrogen in the water is removed by a denitrification device 3 from the tap water used as raw material water, the water is sprayed into the cooling tank 1 by a nozzle 5. The raw water stored in this cooling tank 1 is supplied to the first cooler 24.
The supply pipe 3 is cooled just before the freezing point (0°C) at
Ozone supplied through 1 is dissolved. At this time, the circulation pump is operated to circulate the cold water in the cooling tank 1 through the circulation vibrator 7, thereby promoting heat exchange in the first cooler 24a and dissolution of ozone into the cold water.
過冷却部10には流入口11を通じて前述のオゾン含有
の冷水が供給され、該冷水は第1冷却器24aで氷点以
下、例えば−3℃に冷却されるとともに、供給管32を
通じて供給されたオゾンが溶解される。この過冷却部1
0内の冷水の流れは静水とし、過冷却部10内へのオゾ
ンの吐出量も前記過冷却に支障が及ばぬ程度にすること
が望ましい。The above-mentioned ozone-containing cold water is supplied to the supercooling section 10 through the inlet 11, and the cold water is cooled to below the freezing point, for example, -3° C., in the first cooler 24a, and the ozone-containing water supplied through the supply pipe 32 is is dissolved. This supercooling section 1
It is desirable that the flow of cold water in the cooling section 10 be static water, and that the amount of ozone discharged into the supercooling section 10 be set to such an extent that it does not interfere with the supercooling.
前記過冷却部10の流出口12から氷生成槽41の底部
に落下したオゾン含有の過冷水は、該底部に当った際の
衝撃で瞬時に結氷する。ここで生成される氷は低密度の
ものであるので、次いで成形杆42を摺動させてその先
端で前記低体密度の氷を集めて例えば正方形に圧縮成形
し、高密度の氷に変換する。そして、この高密度の氷を
氷生成槽41の通孔41aを通じて貯水槽51内に落下
させる。この氷は氷生成槽41内において冷却保存され
るので、必要に応じて扉53を解放して内部の氷を取出
して利用する。The ozone-containing supercooled water that falls from the outlet 12 of the supercooling section 10 to the bottom of the ice generation tank 41 instantly freezes due to the impact when it hits the bottom. Since the ice generated here is of low density, the ice of low body density is then slid at the tip of the molding rod 42 and compressed into a square shape, for example, to convert it into high density ice. . Then, this high-density ice is dropped into the water storage tank 51 through the through hole 41a of the ice generation tank 41. This ice is cooled and stored in the ice generation tank 41, so if necessary, the door 53 is opened and the ice inside is taken out and used.
このように本実施例によれば、原料水を冷却タンク1内
において氷点直前に冷却して該冷水にオゾンを溶解させ
た後、該冷水を過冷却部10内で氷点以下(−3℃)に
過冷却して更にオゾンを溶解しているので、冷却と同時
に多量のオゾンを原料水に溶解することができる。また
、オゾン含有の過冷水を過冷却部10の流出口12から
氷生成槽41の底部に落下させ、該過冷水に衝撃を加え
ることにより結氷させているので、製氷が瞬時に行なわ
れることから製氷時においてオゾンが放出されることが
なく、高濃度のオゾン含有氷を製造することができる。According to this embodiment, the raw water is cooled just before the freezing point in the cooling tank 1 to dissolve ozone in the cold water, and then the cold water is cooled to below the freezing point (-3°C) in the supercooling section 10. Since ozone is further dissolved by supercooling, a large amount of ozone can be dissolved into the raw water at the same time as cooling. In addition, since ozone-containing supercooled water is dropped from the outlet 12 of the supercooling section 10 to the bottom of the ice generation tank 41 and is frozen by applying a shock to the supercooled water, ice is made instantaneously. Ozone is not released during ice making, and ice containing high concentration of ozone can be produced.
第2図は氷生成部の他の実施例を示すもので、前記実施
例とは、過冷却部10の流出口12に弁13を介して、
過冷水を衝撃を与えぬようにして氷生成浴槽41の底部
に導く導水路14を設けた点と、氷生成槽41の一部に
図示省略の駆動装置により駆動されるハンマ44を回動
自在に設けた点で異なる。FIG. 2 shows another embodiment of the ice generating section, which is different from the embodiment described above, in which a valve 13 is connected to the outlet 12 of the supercooling section 10.
A water conduit 14 is provided to guide the supercooled water to the bottom of the ice generation bath 41 without impacting it, and a hammer 44 driven by a drive device (not shown) is provided in a part of the ice generation bath 41 and is rotatable. It differs in that it is set in
本実施例では、氷生成時には弁13を一定時間開いて過
冷却部10の導水路14から過冷水を静かに流出して氷
生成槽41内に所定量溜めた後、その水面をハンマ44
で衝打してその衝撃で過冷水を瞬時に結氷させるように
しており、前記実施例とは過冷水に衝撃を与える方法が
異なるが、前記同様の効果を発揮することができる。In this embodiment, when ice is generated, the valve 13 is opened for a certain period of time, supercooled water is gently flowed out from the conduit 14 of the supercooling section 10, and a predetermined amount is stored in the ice generation tank 41.
The supercooled water is instantly frozen by the impact, and although the method of impacting the supercooled water is different from that of the above embodiment, it is possible to achieve the same effect as described above.
(発明の効果)
以上説明したように本発明によれば、原料水を氷点直前
と氷点以下に段階的に冷却し、各冷却段階でオゾンを溶
解しているので、冷却と同時に多量のオゾンを原料水に
溶解して、オゾンの溶解度を増加させることができる。(Effects of the Invention) As explained above, according to the present invention, raw water is cooled stepwise to just before the freezing point and below the freezing point, and ozone is dissolved at each cooling stage, so a large amount of ozone is released at the same time as cooling. It can be dissolved in raw water to increase the solubility of ozone.
また、オゾン含有の過冷水に衝撃を加えることにより結
氷させているので、製氷が瞬時に行なわれることから製
氷時においてオゾンが放出されることがなく、高濃度の
オゾン含有氷を製造することができる。In addition, since ice is formed by applying shock to supercooled water containing ozone, ice is made instantaneously, so no ozone is released during ice making, making it possible to produce ice containing high concentrations of ozone. can.
第1図は本発明に係るオゾン含有氷の製造装置の構成図
、第2図は氷生成部の他の実施例、を示す要部側面図で
ある。
1・・・冷却タンク、10・・・過冷却部、20・・・
冷却。
回路、30・・・オゾン発生器、40・・・氷生成部、
50・・・貯水部。
特 許 出 願 人 サンデン株式会社代理人
弁理士 吉1)精孝FIG. 1 is a configuration diagram of an ozone-containing ice production apparatus according to the present invention, and FIG. 2 is a side view of essential parts showing another embodiment of the ice generation section. 1... Cooling tank, 10... Supercooling section, 20...
cooling. Circuit, 30... Ozone generator, 40... Ice generation section,
50... Water storage section. Patent applicant Sanden Co., Ltd. agent
Patent Attorney Yoshi 1) Yoshitaka
Claims (1)
、該冷水を氷点以下に冷却し該過冷水にオゾンを溶解し
、該過冷水に衝撃を加えて結氷させるようにしたことを
特徴とするオゾン含有氷の製造方法。The method is characterized in that the raw water is cooled just before the freezing point, ozone is dissolved in the cold water, the cold water is cooled below the freezing point, the ozone is dissolved in the supercooled water, and the supercooled water is subjected to a shock to freeze. A method for producing ozone-containing ice.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13874488A JPH01306787A (en) | 1988-06-06 | 1988-06-06 | Production of ice containing ozone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13874488A JPH01306787A (en) | 1988-06-06 | 1988-06-06 | Production of ice containing ozone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01306787A true JPH01306787A (en) | 1989-12-11 |
JPH0563711B2 JPH0563711B2 (en) | 1993-09-13 |
Family
ID=15229164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13874488A Granted JPH01306787A (en) | 1988-06-06 | 1988-06-06 | Production of ice containing ozone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01306787A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5971368A (en) * | 1997-10-29 | 1999-10-26 | Fsi International, Inc. | System to increase the quantity of dissolved gas in a liquid and to maintain the increased quantity of dissolved gas in the liquid until utilized |
US6235641B1 (en) | 1998-10-30 | 2001-05-22 | Fsi International Inc. | Method and system to control the concentration of dissolved gas in a liquid |
US6274506B1 (en) | 1999-05-14 | 2001-08-14 | Fsi International, Inc. | Apparatus and method for dispensing processing fluid toward a substrate surface |
US6406551B1 (en) | 1999-05-14 | 2002-06-18 | Fsi International, Inc. | Method for treating a substrate with heat sensitive agents |
JP2007210881A (en) * | 2006-01-10 | 2007-08-23 | Kurita Water Ind Ltd | Storing method of ozone, method of producing solid material incorporating ozone, food preservation material and food preserving method |
-
1988
- 1988-06-06 JP JP13874488A patent/JPH01306787A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5971368A (en) * | 1997-10-29 | 1999-10-26 | Fsi International, Inc. | System to increase the quantity of dissolved gas in a liquid and to maintain the increased quantity of dissolved gas in the liquid until utilized |
US6488271B1 (en) * | 1997-10-29 | 2002-12-03 | Fsi International, Inc. | Method to increase the quantity of dissolved gas in a liquid and to maintain the increased quantity of dissolved gas in the liquid until utilized |
US6648307B2 (en) | 1997-10-29 | 2003-11-18 | Fsi International, Inc. | Method to increase the quantity of dissolved gas in a liquid and to maintain the increased quantity of dissolved gas in the liquid until utilized |
US6235641B1 (en) | 1998-10-30 | 2001-05-22 | Fsi International Inc. | Method and system to control the concentration of dissolved gas in a liquid |
US6274506B1 (en) | 1999-05-14 | 2001-08-14 | Fsi International, Inc. | Apparatus and method for dispensing processing fluid toward a substrate surface |
US6406551B1 (en) | 1999-05-14 | 2002-06-18 | Fsi International, Inc. | Method for treating a substrate with heat sensitive agents |
JP2007210881A (en) * | 2006-01-10 | 2007-08-23 | Kurita Water Ind Ltd | Storing method of ozone, method of producing solid material incorporating ozone, food preservation material and food preserving method |
Also Published As
Publication number | Publication date |
---|---|
JPH0563711B2 (en) | 1993-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007225127A (en) | Method and device of making gas-containing ice, and gas-containing ice | |
CN106152630A (en) | Fountain refrigerating plant and control method | |
JPH01306787A (en) | Production of ice containing ozone | |
JPS63267870A (en) | Method of operating refrigerator | |
JP2006162096A (en) | Freezing preservation method and freezing preservation system of fish body in fish hold | |
JP6368413B1 (en) | Carbonated ice production apparatus and production method | |
JP3510604B2 (en) | Cooling water supply system | |
JP2008212900A (en) | Device carrying out concentration, cooling, and degassing, and cogeneration system using the same | |
RU191503U1 (en) | HEAT EXCHANGE DEVICE FOR WATER TREATMENT SYSTEM BY RECRYSTALLIZATION METHOD | |
JP6636120B1 (en) | Equipment for producing fine ice containing salt | |
KR101470958B1 (en) | An ice machine with an integrated water-air cooling system | |
JP3654523B2 (en) | Ice making machine and ice making method | |
JPS646389B2 (en) | ||
JP2589157B2 (en) | Frozen dessert production equipment | |
JPH11294911A (en) | Ice-making method | |
JP2006207953A (en) | Ozone ice manufacturing machine | |
JP3160338B2 (en) | Super cooling water production equipment | |
JP3193441U (en) | Fish carp system with nitrogen water converter | |
KR20110113299A (en) | Water intake apparatus for water purifier with ice maker | |
JPH05256547A (en) | Method and device for manufacturing sea water ice | |
US553681A (en) | Charles a | |
JPH09105568A (en) | Ozone ice making apparatus | |
JP2006098000A (en) | Method of eliminating ice nucleus for ice making device by supercooling of brine, and ice making device using the method | |
JPH07113562A (en) | Icemaker | |
KR910002369Y1 (en) | The cooling device for draft beer |