Nothing Special   »   [go: up one dir, main page]

JPH01292274A - Synthetic tester for small leading current breaking test - Google Patents

Synthetic tester for small leading current breaking test

Info

Publication number
JPH01292274A
JPH01292274A JP63121857A JP12185788A JPH01292274A JP H01292274 A JPH01292274 A JP H01292274A JP 63121857 A JP63121857 A JP 63121857A JP 12185788 A JP12185788 A JP 12185788A JP H01292274 A JPH01292274 A JP H01292274A
Authority
JP
Japan
Prior art keywords
voltage
current
test
circuit
breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63121857A
Other languages
Japanese (ja)
Inventor
Kietsu Kudo
喜悦 工藤
Nobuyuki Miyake
信之 三宅
Hisatoshi Ikeda
久利 池田
Shoji Yamashita
正二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63121857A priority Critical patent/JPH01292274A/en
Publication of JPH01292274A publication Critical patent/JPH01292274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To inspect the cut-off capacity of a small leading current in a state near to a use state, by a method wherein AC voltage is applied to the terminal on a power supply side of a breaker tested after a current is cut off and, at the same time, voltage on a load side is applied to the other terminal from a DC voltage source condenser. CONSTITUTION:A delay current is supplied to a breaker 5 tested from a current source circuit 14 through an auxiliary breaker 6b and, further, a delay current is supplied from the voltage source circuit 13 on a power supply side connected to the current source circuit 14 in parallel. The breaker 5 tested and auxiliary breakers 6a, 6b are opened and a current is cut off while the current source circuit 14 is separated to apply high voltage to the single pole of the breaker 5 tested from the voltage source circuit 13 on the power supply side. DC voltage is applied to the junction point of the breaker 5 tested and the auxiliary breaker 6a from the preliminarily charged condenser 10 of the voltage supply circuit 15 on the load side. By this method, the voltage equal to the voltage applied when a small leading current is cut off is applied between the electrodes of the breaker 5 being tested.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は遮断器の進み小電流遮断試験の合成試験装置に
係り、特に遮断器の系統における実使用状態に沿った方
法で進み小電流遮断性能の検証が可能な遮断器の進み小
電流遮断試験の合成試験装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a synthetic test device for advanced small current interruption testing of circuit breakers, and particularly to a method that is suitable for actual usage conditions in circuit breaker systems. The present invention relates to a synthetic test device for advanced small current interrupting tests of circuit breakers capable of verifying advanced small current interrupting performance.

(従来の技術) 一般に遮断器は無負荷送電線や電カケープル等の開閉を
する場合対地静電容量の充電電流すなわち進み電流を遮
断することになる。このような遮断器の責務に対して試
験場で性能を検証する場合、送電線や電カケープル等の
対地静電容量のかわりにコンデンサバンクを負荷として
進み小電流遮断試験が行われている。試験回路を第3図
に、遮断時の現象を第4図に示し説明する。供試遮断器
5の片端には試験電源の短絡発電機1が接続され他端に
は負荷コンデンサlObが接続されている。時刻t1で
供試遮断器5を開極すると遮断電流工ρの零点t2で電
流が遮断され負荷側電圧v1は電源側電圧Vsの波高値
EIIとなる。供試遮断器5の極間電圧VPは電源側電
圧Vsの変化と共にE■(1−cosωt)で変化する
。この値は、電源周波数の1/2サイクル後に電源電圧
波高値の2倍まで上昇する。このようにして進み小電流
遮断試験の直接試験が行われる。
(Prior Art) Generally, when opening/closing an unloaded power transmission line, power cable, etc., a circuit breaker interrupts the charging current of the ground capacitance, that is, the leading current. When verifying the performance of such a circuit breaker at a test site, a small current interruption test is performed using a capacitor bank as a load instead of the ground capacitance of a power transmission line or power cable. The test circuit is shown in FIG. 3, and the phenomenon at the time of interruption is shown in FIG. 4, and will be explained. The short-circuit generator 1 of the test power source is connected to one end of the test circuit breaker 5, and the load capacitor lOb is connected to the other end. When the test circuit breaker 5 is opened at time t1, the current is cut off at the zero point t2 of the breaking current ρ, and the load side voltage v1 becomes the peak value EII of the power source side voltage Vs. The interpole voltage VP of the test circuit breaker 5 changes by E■(1-cosωt) as the power supply side voltage Vs changes. This value increases to twice the peak value of the power supply voltage after 1/2 cycle of the power supply frequency. In this way, a direct test of the advanced small current interruption test is performed.

しかし電力系統の高電圧、大容量化に伴い直接試験で進
み小電流遮断試験を行い為には莫大なコンデンサ容量が
必要となる。このため試験場ではコンデンサ容量の不足
分を補うためコンデンサ容量を増強することなく試験可
能な合成試験法が考案され進み小電流遮断試験が行われ
ている。しかし合成試験にも一長一短があり問題点も多
くある。
However, with the increase in the voltage and capacity of electric power systems, a huge amount of capacitor capacity is required in order to proceed with direct testing and perform small current interruption tests. For this reason, in order to make up for the lack of capacitor capacity, a synthetic test method that allows testing without increasing capacitor capacity has been devised and advanced small current interruption tests are being carried out at test sites. However, synthetic tests have advantages and disadvantages, and there are many problems.

J E C−2300にも記載されている代表的な進み
小電流遮断試験の合成試験回路を第5図、遮断時の現象
を第6図に示し説明する。試験電源となる短絡発電機1
を限流リアクトル2を介し電流源変圧器3bの低圧巻線
に接続し、高圧巻線に補助遮断器6を介して供試遮断器
5に接続し、他方の極は接地され遮断電流の大部分を供
給する電流源回路14を構成する。また短絡発電機1は
電圧源変圧器3aの低圧巻線に接続され、電圧源変圧器
3aの高圧巻線は電圧源コンデンサ10a を介して供
試遮断器5に接続され遮断電流■pが遮断された後、電
圧を印加する電圧源回路13aを構成する。遮断電流■
ρは、電流源回路14から流れる遅れの電流源電流Ii
と電圧源回路13aから流れる進みの電圧源電流Ivの
足しあわされた電流となる。一般には、電圧源電流Iv
は、遮断電流Ipの5〜10%位に設定される。供試遮
断器5が時刻t1で開極し遮断電流IPの零点で遮断す
る。この時、補助遮断器6も同時に遮断し電流源回路1
4は切離される。また、電圧源回路13aの電圧源コン
デンサLOaの端子電圧v1は電源側電圧Vsの波高値
Emとなり、供試遮断器5の極間電圧VPは電源電圧V
sの変化と共にEm(1−cosωt)で変化し直接試
験と同等の電圧が印加される。従って、直接試験の数%
のコンデンサ容量で大容量の進み小電流遮断試験ができ
るのである。ただし、ωは電源の角周波数。しかし、こ
の合成試験装置によると供試遮断器5の片極が接地され
ているため片極からのみ試験電圧が印加されることにな
り、遮断器の系統内での使用状態とは違った電圧印加と
なる。また片極からの電圧印加のため対地電圧が苛酷に
なり、試験電圧によっては2Emの電圧値が商用周波耐
電圧波高値を上回る場合があり、この時にはこの回路は
進み小電流遮断試験には適用できない。
A synthetic test circuit for a typical advanced small current interruption test, which is also described in JEC-2300, is shown in FIG. 5, and the phenomenon during interruption is shown in FIG. 6 and will be explained. Short-circuit generator 1 as test power source
is connected to the low voltage winding of the current source transformer 3b via the current limiting reactor 2, and connected to the high voltage winding via the auxiliary circuit breaker 6 to the test circuit breaker 5, and the other pole is grounded to determine the magnitude of the breaking current. A current source circuit 14 is configured to supply the portion. In addition, the short circuit generator 1 is connected to the low voltage winding of the voltage source transformer 3a, and the high voltage winding of the voltage source transformer 3a is connected to the test circuit breaker 5 via the voltage source capacitor 10a, so that the breaking current p is interrupted. After that, a voltage source circuit 13a for applying voltage is configured. Breaking current■
ρ is the delayed current source current Ii flowing from the current source circuit 14
The current is the sum of the leading voltage source current Iv flowing from the voltage source circuit 13a. Generally, the voltage source current Iv
is set at about 5 to 10% of the interrupting current Ip. The test circuit breaker 5 opens at time t1 and breaks at the zero point of the breaking current IP. At this time, the auxiliary circuit breaker 6 is also cut off at the same time, and the current source circuit 1
4 is separated. Further, the terminal voltage v1 of the voltage source capacitor LOa of the voltage source circuit 13a is the peak value Em of the power supply side voltage Vs, and the voltage between poles VP of the test circuit breaker 5 is the power supply voltage V
As s changes, Em (1-cos ωt) changes, and a voltage equivalent to a direct test is applied. Therefore, a few percent of direct tests
Large capacity lead and small current interruption tests can be performed with a capacitor capacity of . However, ω is the angular frequency of the power source. However, according to this synthetic test device, since one pole of the test circuit breaker 5 is grounded, the test voltage is applied only from one pole, and the voltage is different from that of the circuit breaker in use in the system. It becomes an impression. In addition, since the voltage is applied from one pole, the ground voltage becomes severe, and depending on the test voltage, the voltage value of 2Em may exceed the peak value of the commercial frequency withstand voltage. In this case, this circuit advances and is not suitable for small current interruption tests. Can not.

(発明が解決しようとする課題) 上記遮断器の進み小電流遮断試験の合成試験装置による
と電流遮断後、片極からの電圧印加となり系統内での使
用状態と違った試験となる6本発明の目的とする所は、
遮断器の使用状態に近い状態での試験を可能とする遮断
器の進み小電流遮断試験の合成試験装置番提供すること
にある。
(Problems to be Solved by the Invention) According to the synthetic test device for the advanced small current interruption test of the circuit breaker described above, after the current is interrupted, voltage is applied from one pole, resulting in a test that is different from the state in which it is used in the system.6 The present invention The purpose of
An object of the present invention is to provide a synthetic test device for advanced small current interruption testing of circuit breakers that enables testing in conditions close to the conditions in which the circuit breaker is used.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明によれば、供試遮断器
と第1の補助遮断器を直列に接続し第1の補助遮断器の
片側端子を接地して、短絡発電機を有する電流源回路よ
り第2の補助遮断器を介し遅れの□電流を供給する。ま
た電流源回路と並列に接続される電源側電圧源回路より
遅れの電流が供給され電流源回路の電流と足しあわせら
れた電流が遮断電流として供給される。供試遮断器、第
1の補助遮断器及び第2の補助遮断器を開極し電流が遮
断されると共に電流源回路が切離され供試遮断器の片極
には電源側電圧源回路より交流電圧が印加され、供試遮
断器と第1の補助遮断器の接続点に予め充電した負荷側
電圧源回路のコンデンサから直流電圧を印加することに
より供試遮断器の電極間に進み小電流遮断時の印加電圧
と同等の電圧を印加することができ遮断器の系統内にお
ける使用状態に近い状態で進み小電流遮断試験を行うこ
とを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, according to the present invention, a test circuit breaker and a first auxiliary circuit breaker are connected in series, and one terminal of the first circuit breaker is grounded. Then, a delayed □ current is supplied from a current source circuit having a short-circuit generator through a second auxiliary circuit breaker. Further, a delayed current is supplied from a power supply side voltage source circuit connected in parallel with the current source circuit, and a current added to the current of the current source circuit is supplied as a cutoff current. The test breaker, the first auxiliary breaker, and the second auxiliary breaker are opened, the current is cut off, and the current source circuit is disconnected. An AC voltage is applied, and by applying a DC voltage from a pre-charged capacitor of the load side voltage source circuit to the connection point of the test circuit breaker and the first auxiliary circuit breaker, a small current flows between the electrodes of the test circuit breaker. It is characterized by being able to apply a voltage equivalent to the voltage applied at the time of interruption, and performing a small current interruption test under conditions close to the conditions in which the circuit breaker is used in the system.

(作 用) 上記の如く構成された試験装置によると、供試遮断器の
片極のみから電圧を印加することなく。
(Function) According to the test equipment configured as described above, voltage was not applied only from one pole of the test circuit breaker.

両極より電圧を印加することにより遮断器の系統内にお
ける使用状態により近い状態で進み小電流遮断性能の検
証が可能となる。
By applying voltage from both poles, it is possible to proceed in a state closer to the usage state of the circuit breaker in the system, making it possible to verify the small current breaking performance.

(実施例) 以下本発明の実施例を第1図及び第2図を参照して説明
する。第1図において短絡発電機1を限流リアクトル2
aを介して電圧源変圧器3aの低圧側に接続し、高圧側
には過渡回復電圧調整用抵抗4aと過渡回復電圧調整用
コンデンサ4bの直列回路を接続し電源側電圧源回路1
3を構成する。また前記短絡発電機1を限流リアクトル
2bを介し電流源変圧器3bの低圧側に接続し高圧側に
は補助遮断器6bを介し前記電圧源変圧器3aの高圧側
に並列に接続し電流源回路14を構成する。電源側電圧
源回路13と電流源回路14の接続点11aより供試遮
断器5と補助遮断器6aを通り接地点12の回路におい
て補助遮断器6aの片極を接地゛する。また供試遮断器
5と補助遮断器6aの接続点11bと接地点12の間に
負荷側電圧源回路15を接続する。負荷側電圧源回路1
5は接続点11bと接地点12の間に、波形調整用コン
デンサ8と波形調整用抵抗7と始動キャップ9と直流電
圧源コンデンサ10の直列回路を接続する。
(Example) Examples of the present invention will be described below with reference to FIGS. 1 and 2. In Fig. 1, short circuit generator 1 is connected to current limiting reactor 2.
a to the low voltage side of the voltage source transformer 3a, and a series circuit of a transient recovery voltage adjustment resistor 4a and a transient recovery voltage adjustment capacitor 4b is connected to the high voltage side to form the power supply side voltage source circuit 1.
3. Further, the short-circuit generator 1 is connected to the low voltage side of the current source transformer 3b via the current limiting reactor 2b, and connected in parallel to the high voltage side of the voltage source transformer 3a via the auxiliary circuit breaker 6b to the high voltage side. A circuit 14 is configured. From the connection point 11a between the voltage source circuit 13 and current source circuit 14 on the power supply side, the circuit passes through the test breaker 5 and the auxiliary breaker 6a, and in the circuit at the grounding point 12, one pole of the auxiliary breaker 6a is grounded. Further, a load-side voltage source circuit 15 is connected between the connection point 11b of the test circuit breaker 5 and the auxiliary circuit breaker 6a and the ground point 12. Load side voltage source circuit 1
5 connects a series circuit of a waveform adjustment capacitor 8, a waveform adjustment resistor 7, a starting cap 9, and a DC voltage source capacitor 10 between the connection point 11b and the ground point 12.

始動ギャップ9は、電流零点検出装置9aと始動制御装
置9bを備えている。また直流電圧源コンデンサ10に
は図示していないが充電装置を備えている。
The starting gap 9 includes a current zero point detection device 9a and a starting control device 9b. Although not shown, the DC voltage source capacitor 10 is equipped with a charging device.

次に発明の作用を第1図及び第2図を参照して説明する
。電源側電圧源回路13と電流源回路14より規定の遮
断電流rpと規定の回復電圧波高値Efflを供給する
ように短絡発電機1の励磁、限流リアクトル2a、2b
の値及び電圧源変圧器3a、電流源変圧器3bのタップ
を設定する。このとき電流源の電圧は、遮断電流IPが
供試遮断器5、補助遮断器6a。
Next, the operation of the invention will be explained with reference to FIGS. 1 and 2. The short-circuit generator 1 is excited and the current-limiting reactors 2a, 2b are supplied with a specified cutoff current rp and a specified recovery voltage peak value Effl from the power supply side voltage source circuit 13 and current source circuit 14.
, and the taps of the voltage source transformer 3a and current source transformer 3b. At this time, the voltage of the current source is such that the breaking current IP is the test circuit breaker 5 and the auxiliary circuit breaker 6a.

6bの遮断時のアーク電圧により小さくならないように
しなければならなく、たとえばガス遮断器ではアーク電
圧が2〜3KV程度あり、l0KV程度のアーク電圧に
も影響されない給与電圧が必要でありアーク電圧の5程
度度必要である。供試遮断器5及び補助遮断器6a、6
bは遮断電流Ipの電流零点t2で遮断するように設定
しtlで開極する。遮断電流Ipが遮断されると供試遮
断器5の接続点11aには電源側電圧源回路13より電
源側電圧Vsが印加され過渡回復電圧が上昇し始める。
For example, in a gas circuit breaker, the arc voltage is about 2 to 3 KV, and a supply voltage that is not affected by an arc voltage of about 10 KV is required. It is necessary to some extent. Test circuit breaker 5 and auxiliary circuit breakers 6a, 6
b is set to be cut off at the current zero point t2 of the cutoff current Ip, and opened at tl. When the cutoff current Ip is cut off, the power supply voltage Vs is applied from the power supply voltage source circuit 13 to the connection point 11a of the test breaker 5, and the transient recovery voltage begins to rise.

過渡回復電圧波形は、過渡回復電圧調整用抵抗4a及び
過渡回復電圧調整用コンデンサ4bにより調整すること
ができる。
The transient recovery voltage waveform can be adjusted by the transient recovery voltage adjustment resistor 4a and the transient recovery voltage adjustment capacitor 4b.

また遮断電流Ipの電流零点t2で遮断された直後に、
電流零点検出装置9aにより電流零点を検出し始動制御
装置9bにより始動ギャップ9を始動する。予め充電さ
れた直流電圧源コンデンサ10を放電し負荷側電圧Em
を印加するために波形調整用コンデンサ8に直流電圧が
充電される。この直流電圧の極性は電源側電圧Vsの過
渡回復電圧と同極性であり電圧の立上りは波形調整用抵
抗7及び波形調整用コンデンサ8で調整する。電源側電
圧Vsの過渡回復電圧調整及び負荷側電圧Vlの波形調
整は、それぞれの電圧立上り部分の電位差が最少となる
ように調整する。このようにし供試遮断器5には電源側
電圧Vsと負荷側型rf:、vlが印加される。負荷側
電圧Vlが波高値Emに達すると、供試遮断器5の極間
電圧VPはほぼEo+(1−cosωt)となって進み
小電流遮断時の極間電圧と同等の電圧が得られる。
Immediately after the interruption at the current zero point t2 of the interruption current Ip,
The current zero point is detected by the current zero point detection device 9a, and the starting gap 9 is started by the starting control device 9b. The pre-charged DC voltage source capacitor 10 is discharged and the load side voltage Em
In order to apply the voltage, the waveform adjustment capacitor 8 is charged with a DC voltage. The polarity of this DC voltage is the same as the transient recovery voltage of the power supply side voltage Vs, and the rise of the voltage is adjusted by a waveform adjustment resistor 7 and a waveform adjustment capacitor 8. The transient recovery voltage adjustment of the power supply side voltage Vs and the waveform adjustment of the load side voltage Vl are adjusted so that the potential difference between the respective voltage rising portions is minimized. In this way, the power supply side voltage Vs and the load side type rf:, vl are applied to the test circuit breaker 5. When the load side voltage Vl reaches the peak value Em, the voltage VP between the poles of the test circuit breaker 5 becomes approximately Eo+(1-cosωt) and advances to obtain a voltage equivalent to the voltage between the poles when interrupting a small current.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、交流電源から遅れ
電流を供給し、電流遮断後、供試遮断器の電源側端子に
交流電圧を印加し、これとほぼ同時に予め充電された直
流電圧源コンデンサから負荷側電圧を他方の端子に印加
することにより、進み小電流遮断時の極間電圧とは11
同等の電圧を印加することができ、遮断器の系統におけ
る実使用状態に沿った方法での進み小電流試験が可能な
遮断器の進み小電流試験の合成試験装置を提供すること
ができる。
As explained above, according to the present invention, a delayed current is supplied from an AC power supply, and after the current is cut off, an AC voltage is applied to the power supply side terminal of the circuit breaker under test, and at the same time, a pre-charged DC voltage source By applying the load side voltage from the capacitor to the other terminal, the voltage between electrodes when cutting off a small leading current is 11
It is possible to provide a synthetic test device for a small leading current test of a circuit breaker, which can apply an equivalent voltage and can perform a small leading current test in a manner consistent with the actual usage conditions in a circuit breaker system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す進み小電流試験の合成
試験装置の回路図、第2図は第1図に示す回路における
遮断時の電圧及び電流波形図、第3図は一般的な進み小
電流試験回路図、第4図は第3図に示す回路における遮
断時の電圧及び電流波形図、第5図は従来の進み小電流
試験の合成試験装置の回路図、第6図は第5図に示す回
路における遮断暗電圧及び電流波形図である。 1・・・短絡発電機、     2a、2b・・・限流
リアクトル、3a・・・電圧源変圧器、    3b・
・・電流漸変JE器、4a・・・過渡回復電圧調整用抵
抗、 4b・・・過渡回復電圧調整用コンデンサ、5・・・供
試遮断器、6a 、 6b・・・補助遮断器。 7・・・波形調整用抵抗、  8・・・波形調整用コン
デンサ、9・・・始動キャップ、   9a・・・電流
零点検出装置、9b・・・始動制御装置、   10・
・・直流電圧源コンデンサ、11a、llb・・・接続
点、    12・・・接地点、13・・・電源側電圧
源回路、 14・・・電流源回路、15・・・負荷側電
圧源回路。 代理人 弁理士 則 近 憲 佑 同    第子丸   健 第2図 τ 第3図 第 4 図 τ 第5図
Fig. 1 is a circuit diagram of a synthetic test device for advanced small current test showing an embodiment of the present invention, Fig. 2 is a voltage and current waveform diagram at the time of interruption in the circuit shown in Fig. 1, and Fig. 3 is a general diagram. Figure 4 is a voltage and current waveform diagram at the time of interruption in the circuit shown in Figure 3, Figure 5 is a circuit diagram of a conventional synthetic test device for a small lead current test, and Figure 6 is a circuit diagram of a leading small current test. 6 is a diagram of cutoff dark voltage and current waveforms in the circuit shown in FIG. 5. FIG. 1... Short circuit generator, 2a, 2b... Current limiting reactor, 3a... Voltage source transformer, 3b.
... Gradual current JE device, 4a... Resistor for adjusting transient recovery voltage, 4b... Capacitor for adjusting transient recovery voltage, 5... Test breaker, 6a, 6b... Auxiliary circuit breaker. 7... Resistor for waveform adjustment, 8... Capacitor for waveform adjustment, 9... Starting cap, 9a... Current zero point detection device, 9b... Starting control device, 10.
...DC voltage source capacitor, 11a, llb... connection point, 12... grounding point, 13... power supply side voltage source circuit, 14... current source circuit, 15... load side voltage source circuit . Agent Patent Attorney Yudo Ken Chika Ken Daikomaru Figure 2 τ Figure 3 Figure 4 τ Figure 5

Claims (1)

【特許請求の範囲】[Claims] 試験用電源となる交流電源と、この交流電源に低圧巻線
が接続された第1の試験用変圧器と、この第1の試験用
変圧器高圧巻線に供試遮断器、第1の補助遮断器の直列
回路を接続し第1の補助遮断器の他方の端子が接地され
閉回路となる電源側電圧源回路と、前記交流電源に前記
第1の試験用変圧器の低圧巻線と並列に第2の試験用変
圧器の低圧巻線を接続し、この第2の試験用変圧器の高
圧巻線に第2の補助遮断器を接続した電流源回路と、第
2の補助遮断器の他方の端子は前記第1の試験用変圧器
と前記供試遮断器の接続部に接続され、第2の試験用変
圧器の他方の端子は接地点に接続される回路と、あらか
じめ所定の電圧に充電された第1のコンデンサから始動
用ギャップ、抵抗を通して第2コンデンサの両端の接続
されこの両端を前記第1の補助遮断器の両端に接続され
た負荷側電圧源回路とを備えてなる遮断器の進み小電流
遮断試験の合成試験装置。
An AC power supply serving as a test power supply, a first test transformer to which a low voltage winding is connected to the AC power supply, a test circuit breaker connected to the high voltage winding of the first test transformer, and a first auxiliary test transformer. A power supply side voltage source circuit that connects the series circuit of the circuit breaker and the other terminal of the first auxiliary circuit breaker is grounded to form a closed circuit, and the AC power supply is connected in parallel with the low voltage winding of the first test transformer. The low voltage winding of the second test transformer is connected to the current source circuit, and the second auxiliary circuit breaker is connected to the high voltage winding of the second test transformer. The other terminal is connected to the connection between the first test transformer and the circuit breaker under test, and the other terminal of the second test transformer is connected to a circuit connected to a ground point and a predetermined voltage. A circuit breaker comprising a starting gap from a first capacitor charged to 1, connected to both ends of a second capacitor through a resistor, and a load-side voltage source circuit having both ends connected to both ends of the first auxiliary circuit breaker. Composite test device for small current interruption test.
JP63121857A 1988-05-20 1988-05-20 Synthetic tester for small leading current breaking test Pending JPH01292274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63121857A JPH01292274A (en) 1988-05-20 1988-05-20 Synthetic tester for small leading current breaking test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63121857A JPH01292274A (en) 1988-05-20 1988-05-20 Synthetic tester for small leading current breaking test

Publications (1)

Publication Number Publication Date
JPH01292274A true JPH01292274A (en) 1989-11-24

Family

ID=14821652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63121857A Pending JPH01292274A (en) 1988-05-20 1988-05-20 Synthetic tester for small leading current breaking test

Country Status (1)

Country Link
JP (1) JPH01292274A (en)

Similar Documents

Publication Publication Date Title
CN107966633B (en) Method and system for rapidly judging single-phase earth fault line of power distribution network of power supply system
JP2591525B2 (en) Circuit breaker test equipment
JPH01292274A (en) Synthetic tester for small leading current breaking test
US3064183A (en) Circuit-breaker testing arrangements
JPH0735831A (en) Method and apparatus for testing breaker
JP2675649B2 (en) Switchgear test method and device
JPH0651036A (en) Short line fault testing device
JPH06186309A (en) Interruption test circuit for switch
JPH04363677A (en) Synthetic test circuit for breaker
JP2787050B2 (en) Insulation recovery test circuit for switchgear
JPS61155780A (en) Equivalence tester for small leading current of breaker
JP2666946B2 (en) Capacitor switching performance test equipment
JPS61225675A (en) Method and apparatus for testing switch gear
JPH03249579A (en) Combined breaking test device for circuit breaker
JPS60207079A (en) Synthesis test of breaker
JPH1123639A (en) Single pole intermittent spark ground fault tester
JPH0738014B2 (en) Step-out synthesis tester for circuit breaker
Zhang et al. An Interphase Permanent Fault Identification Method for Distribution Network Considering the Influence of Detection Signal Frequency
JPH0563748B2 (en)
SU1737615A1 (en) Device for compensation of emf of faulty phase under single- phase short-circuits in network with ungrounded neutral
JPS6119942B2 (en)
JPH0519029A (en) Composite equivalent test circuit of circuit breaker
CN114977145A (en) Active intervention type arc extinction method with cooperation of double fast switches
JPH08233915A (en) Cut-off tester for resistance cut-off type breaker and cut-off testing method using the same
JPH04351978A (en) Composite short-circuit testing circuit