Nothing Special   »   [go: up one dir, main page]

JPH01272766A - Magnetron sputtering operation - Google Patents

Magnetron sputtering operation

Info

Publication number
JPH01272766A
JPH01272766A JP10339788A JP10339788A JPH01272766A JP H01272766 A JPH01272766 A JP H01272766A JP 10339788 A JP10339788 A JP 10339788A JP 10339788 A JP10339788 A JP 10339788A JP H01272766 A JPH01272766 A JP H01272766A
Authority
JP
Japan
Prior art keywords
substrate
negative voltage
target
film
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10339788A
Other languages
Japanese (ja)
Inventor
Kouichirou Akari
孝一郎 赤理
Tadashi Kumakiri
熊切 正
Atsushi Munemasa
淳 宗政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10339788A priority Critical patent/JPH01272766A/en
Publication of JPH01272766A publication Critical patent/JPH01272766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To continuously perform the cleaning of a substrate and the vapor deposition of a film in the same atmosphere by impressing a negative voltage on the target side and also impressing a negative voltage lower than that applied to the target side on the substrate side to clean the substrate surface and then raising the negative voltage at the substrate side to a value higher than the negative voltage on the target side to carry out sputtering. CONSTITUTION:A substrate 6 is set in a vacuum chamber 1, and the inside of the chamber 1 is evacuated and an inert gas is introduced, by which the pressure inside the chamber 1 is adjusted to the pressure condition (e.g., about 10<-3>Torr) at the time of film-forming operation. Subsequently, a negative voltage is applied to the target 4 side by means of an electric power source 8 for film formation to initiate glow discharge, and a negative voltage lower in electric potential than the negative voltage applied to the target 4 side is impressed on the substrate 6 side to clean the substrate 6 surface. After this electric discharge cleaning is completed, the electric potential of negative voltage is regulated so that it is higher at the substrate 6 side than at the target 4 side and then sputtering is exerted, by which a film is formed on the substrate 6. By this method, sufficient cleaning effects can be produced and also stable thin film formation can be carried out.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はマグネトロンスパッタ操業方法に関し、詳細に
は基板表面の放電洗浄工程と基板への蒸着膜形成工程を
同一雰囲気内で連続的に実施で与る様にしたマグネトロ
ンスパッタ操業方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetron sputtering operation method, and more specifically, a method of operating a magnetron sputter, in which a discharge cleaning step of a substrate surface and a step of forming a vapor deposited film on the substrate can be performed continuously in the same atmosphere. This invention relates to a magnetron sputtering operation method in which

[従来の技術] スパッタリング等の物理的蒸着法によって基板上に金属
や化合物の薄膜を形成する場合には、薄膜の付着力を高
めると共にその性質の安定化を図る目的で、基板の前処
理が行なわれる。基板の前処理としては、まず真空装置
外で基板の予熱洗浄処理が行なわれ、製作工程や保存工
程で付着した各種の汚染物質が取除かれた後、更に真空
装置内で真空放電洗浄が行なわれて基板表面になお残留
している吸着ガス等が取り除かれる。
[Prior Art] When forming a thin film of metal or compound on a substrate by physical vapor deposition such as sputtering, pretreatment of the substrate is necessary to increase the adhesion of the thin film and stabilize its properties. It is done. As for substrate pretreatment, the substrate is first preheated and cleaned outside the vacuum equipment to remove various contaminants that have adhered during the manufacturing and storage processes, and then vacuum discharge cleaning is performed inside the vacuum equipment. The adsorbed gas and the like still remaining on the substrate surface are removed.

第2図は典型的なマグネトロンスパッタ装置の構成を示
す概略説明図であり、図中1は真空チャンバー、2はタ
ーゲットホルダー、3は永久磁石、4はターゲット、5
は基板ホルダー、6は基板、7はメツシュアノード、8
は成膜用高周波電源、9は放電洗浄用及びバイアス印加
用の直流電圧電源、10はシャッターを夫々示す。
FIG. 2 is a schematic explanatory diagram showing the configuration of a typical magnetron sputtering apparatus, in which 1 is a vacuum chamber, 2 is a target holder, 3 is a permanent magnet, 4 is a target, and 5 is a
is a substrate holder, 6 is a substrate, 7 is a mesh node, 8
Reference numeral 9 indicates a high frequency power supply for film formation, 9 indicates a DC voltage power supply for discharge cleaning and bias application, and 10 indicates a shutter.

当該装置では、減圧ガス(例えばAr等)雰囲気中にタ
ーゲット4(陰極)と基板6(陽極)を離して対向配置
すると共にそれらの間に高電圧を印加することによって
グロー放電状態を形成し、該放電空間に形成されたプラ
ズマ正イオンをターゲット表面に衝突させ、ターゲット
表面から放出されるスパッタ粒子を基板上に蒸着させる
。そして前記永久磁石3によって電界と直交する方向に
磁界を形成することにより、放電効率を高め成膜速度を
促進させる。
In this device, a glow discharge state is formed by arranging a target 4 (cathode) and a substrate 6 (anode) facing each other with a distance between them in a reduced pressure gas (for example, Ar) atmosphere, and applying a high voltage between them. Plasma positive ions formed in the discharge space collide with the target surface, and sputtered particles emitted from the target surface are deposited on the substrate. By forming a magnetic field in a direction perpendicular to the electric field using the permanent magnet 3, the discharge efficiency is increased and the film formation rate is accelerated.

上記蒸着膜形成に先立って基板6を放電洗浄する当って
は、次の様に行なわれる。即ち真空チャンバー1内を真
空排気後Ar等の不活性ガスを導入し、真空チャンバー
1内の圧力を調整した上で、基板6が陰極となる様にメ
ツシュアノード7と基板6間に数百乃至数千ボルトの電
圧を電源9によって印加しグロー放電を引き起こす。そ
してイオン化された不活性ガスイオンが基板6ヘイオン
衝撃を与えることによって、基板6上に付着している残
留吸着ガス等が除去される。
The discharge cleaning of the substrate 6 prior to the formation of the deposited film is carried out as follows. That is, after the inside of the vacuum chamber 1 is evacuated, an inert gas such as Ar is introduced, and the pressure inside the vacuum chamber 1 is adjusted. A voltage of several thousand volts is applied by a power source 9 to cause a glow discharge. Then, the ionized inert gas ions impact the substrate 6 with ions, thereby removing residual adsorbed gas and the like adhering to the substrate 6.

尚上記電源9は、高品質の薄膜を得る目的で、膜形成中
においても基板6側に負電圧を印加する場合(バイアス
スパッタリング法)にも利用されている。
The power source 9 is also used to apply a negative voltage to the substrate 6 even during film formation (bias sputtering method) in order to obtain a high quality thin film.

[発明が解決しようとする課題] 第3図は、放電洗浄及び蒸着膜形成の各工程を含めたマ
グネトロンスパッタ操業の従来手順を示すフローチャー
トである。放電洗浄を行なう場合には前述した様に、ま
ず真空チャンバー内の圧力調整が行なわれるが、従来で
は直流電圧電源によるグロー放電の維持可能な圧力範囲
が10−”Torr台までである為、放電洗浄時のチャ
ンバー内圧力は10−2丁orr程度に設定されていた
。一方マグネトロンスバッタの成膜時の圧力は、ターゲ
ットホルダー内に配置された永久磁石によるマグネトロ
ン効果と高周波電源の使用により、成膜時のグロー放電
は1G−’Torr台まで維持可能となるが、できる膜
の膜質の点からより低圧力下での成膜が望ましい為、一
般に成膜時の圧力は10−’Torr程度に設定されて
いた。従って放電洗浄工程から成膜工程に穆る際には、
第3図に示す様に真空チャンバー内の圧力を成膜に最適
な圧力値に再調整する必要があり、ますだ第1にはその
間の時間的損失が挙げられる。又反応性スパッタを実施
する場合や基板を加熱する場合等には、圧力の再調整の
間に反応性ガスの導入や基板の加熱を行っており、時間
的な損失は勿論のこと基板の再汚染の恐れもあった。更
に放電洗浄時のグロー放電は一般に1O−2Torr程
度のおだやかな減圧状態で行なうのが一般であるから、
基板に衝突する際の不活性ガスイオンのエネルギーが低
く、且つ流入電流密度も小さいので十分な洗浄効果が得
られないという問題もあった。
[Problems to be Solved by the Invention] FIG. 3 is a flowchart showing the conventional procedure of magnetron sputtering operation including the steps of discharge cleaning and vapor deposited film formation. As mentioned above, when performing discharge cleaning, the pressure inside the vacuum chamber is first adjusted. Conventionally, the pressure range that can maintain glow discharge using a DC voltage power supply is up to 10-" Torr, so the pressure in the vacuum chamber is adjusted. The pressure inside the chamber during cleaning was set to about 10-2 orr.On the other hand, the pressure during film formation using magnetron scattering was determined by the magnetron effect of the permanent magnet placed inside the target holder and the use of a high-frequency power source. The glow discharge during film formation can be maintained up to 1 G-'Torr, but from the viewpoint of the quality of the resulting film, it is desirable to form the film at a lower pressure, so the pressure during film formation is generally around 10-'Torr. Therefore, when moving from the discharge cleaning process to the film forming process,
As shown in FIG. 3, it is necessary to readjust the pressure in the vacuum chamber to the optimum pressure value for film formation, and the first problem is the time loss during this process. In addition, when performing reactive sputtering or heating the substrate, reactive gas is introduced and the substrate is heated while the pressure is readjusted, which not only results in time loss but also requires the substrate to be reheated. There was also a risk of contamination. Furthermore, glow discharge during discharge cleaning is generally performed under a mild reduced pressure of about 10-2 Torr.
There is also the problem that a sufficient cleaning effect cannot be obtained because the energy of the inert gas ions when colliding with the substrate is low and the inflow current density is also low.

本発明はこうした状況のもとでなされたものであって、
その目的とするところは、時間的損失が少なく且つ基板
の再汚染の恐れもなく、十分な洗浄効果を発揮しつつ安
定した薄膜を形成できる様なスパッタリング操業方法を
提供することにある。
The present invention was made under these circumstances, and
The purpose is to provide a sputtering operation method that can form a stable thin film while exhibiting a sufficient cleaning effect with little time loss and no fear of recontamination of the substrate.

[課題を解決する為の手段] 上記目的を達成し得た本発明とは、マグネトロンスパッ
タ装置を用いて基板上に薄膜を形成するに当たり、該装
置内を成膜操業時の圧力条件に調整した状態で、ターゲ
ット側に負電圧を印加して主放電を発生させると共に、
前記基板側には前記ターゲット側よりも電位の低い負電
圧を印加して基板表面の清浄化を図り、引続き前記基板
側の負電圧電位を前記ターゲット側の負電圧電位よりも
高くなる様に調整してスパッタリングを行ない基板上に
成膜する点に要旨を有するマグネトロンスパッタ操業方
法である。
[Means for Solving the Problems] The present invention that achieves the above object is that when forming a thin film on a substrate using a magnetron sputtering device, the inside of the device is adjusted to the pressure conditions during film-forming operation. In this state, a negative voltage is applied to the target side to generate a main discharge, and
A negative voltage having a lower potential than the target side is applied to the substrate side to clean the substrate surface, and the negative voltage potential of the substrate side is subsequently adjusted to be higher than the negative voltage potential of the target side. This is a magnetron sputtering operation method whose main point is to perform sputtering to form a film on a substrate.

[作用] 第4図は本発明方法の手順を示すフローチャートである
。尚本発明方法を実施する為のマグネトロンスパッタ装
置の構成は、基本的には第2図に示した構成と同様であ
り、第2図及び第4図を同時に参照しつつ本発明方法を
説明する。
[Operation] FIG. 4 is a flowchart showing the procedure of the method of the present invention. The structure of the magnetron sputtering apparatus for carrying out the method of the present invention is basically the same as the structure shown in FIG. 2, and the method of the present invention will be explained with reference to FIG. 2 and FIG. 4 at the same time. .

真空チャンバー1内への基板セットから不活性ガス導入
までの工程は従来と同様である(前記第3図参照)。本
発明においては、最初の圧力調整の段階において、真空
チャンバー1内を成膜時の圧力条件(例えば10−’T
orrの低い圧力)に調整する。尚反応性スパッタを行
なう場合には、不活性ガスを導入するときに必要な反応
ガスを同時に導入してから真空チャンバー内が成膜時の
圧力状態に調整される。即ち本発明法においては、不活
性ガス(及び反応性ガス)を導入した後の圧力調整の段
階で真空チャンバー1内が成膜時の圧力に設定される。
The steps from setting the substrate into the vacuum chamber 1 to introducing an inert gas are the same as in the conventional method (see FIG. 3). In the present invention, in the initial pressure adjustment stage, the inside of the vacuum chamber 1 is adjusted to the pressure conditions during film formation (for example, 10-'T
orr low pressure). When performing reactive sputtering, a necessary reactive gas is introduced at the same time as the inert gas is introduced, and then the pressure inside the vacuum chamber is adjusted to the pressure state at the time of film formation. That is, in the method of the present invention, the pressure inside the vacuum chamber 1 is set to the pressure at the time of film formation at the stage of pressure adjustment after introducing the inert gas (and reactive gas).

次に前述のバイアススパッタ法と同様にして、成膜用電
源8によってターゲット4側に負電圧(vt)を印加し
てグロー放電を発生させると共に、バイアス印加用電源
9によって基板6側にも負電圧(Vs)を印加する。但
し、本発明方法ではグロー放電発生後のしばらくの間は
基板6側がターゲット4側よりも電位が低くなる様に(
vt>vs)前記電源8.9の電圧を設定する。この状
態では基板6側に到達するイオンエネルギーがターゲッ
ト4側に到達するイオンエネルギーよりも大きくなるの
で、基板6の表面におけるスパッタエツチングが優位の
状態となり、該表面の放電洗浄が行なわれる。
Next, in the same manner as the bias sputtering method described above, a negative voltage (vt) is applied to the target 4 side by the film forming power source 8 to generate a glow discharge, and a negative voltage (vt) is also applied to the substrate 6 side by the bias applying power source 9. Apply voltage (Vs). However, in the method of the present invention, the potential on the substrate 6 side is lower than that on the target 4 side for a while after the glow discharge occurs (
vt>vs) Set the voltage of the power supply 8.9. In this state, the ion energy reaching the substrate 6 side is greater than the ion energy reaching the target 4 side, so sputter etching on the surface of the substrate 6 becomes dominant, and the surface is discharge cleaned.

この様にして一定時間を経過させて放電洗浄が完了する
と、引続いて基板6側の負電圧電位がターゲット4側の
負電圧電位よりも高((Vs>vt)なる様に調整され
る。この様に電圧を設定した後はターゲット4側でのス
パッタ作用が大きくなり、前述した原理に従って基板6
上に薄膜が形成される。
When discharge cleaning is completed after a certain period of time has elapsed in this way, the negative voltage potential on the substrate 6 side is subsequently adjusted to be higher than the negative voltage potential on the target 4 side ((Vs>vt). After setting the voltage in this way, the sputtering effect on the target 4 side increases, and the substrate 6
A thin film is formed on top.

尚前記第2図に示したマグネトロンスパッタ装置の基本
構成は既に述べた通り、基本的にはそのまま本発明方法
に利用されるのであるが、本発明方法を実施するには、
その他覚源8.9の負電圧を調整する為の機構が付加さ
れる必要がある。
As already mentioned, the basic configuration of the magnetron sputtering apparatus shown in FIG.
It is necessary to add a mechanism for adjusting the negative voltage of the sensing source 8.9.

本発明は上述の如く構成されるが、要するに成膜時と同
じ圧力状態で基板の放電洗浄が行なえるので、時間の節
約になると共に、反応性スパッタの場合であっても基板
の再汚染等が防がれる。又ターゲット側(マグネトロン
カソード側)で主放電を発生させているので、従来より
低い圧力下での放電洗浄が可能であり、これによって基
板に到達するイオンのエネルギーが大きくなり、基板へ
の清浄効果が向上する。更に基板へのイオン衝撃エネル
ギーが大きくなることによって、洗浄中の基板温度の上
昇も大きくなり、基板を別途加熱せずども基板への薄膜
の密着性向上が図れる。
The present invention is configured as described above, but in short, the discharge cleaning of the substrate can be performed under the same pressure conditions as during film formation, which saves time and prevents re-contamination of the substrate even in the case of reactive sputtering. is prevented. In addition, since the main discharge is generated on the target side (magnetron cathode side), discharge cleaning can be performed under lower pressure than before, which increases the energy of the ions that reach the substrate, resulting in a cleaning effect on the substrate. will improve. Furthermore, as the ion bombardment energy to the substrate increases, the temperature of the substrate increases during cleaning, and the adhesion of the thin film to the substrate can be improved without separately heating the substrate.

以下実施例によって本発明を更に詳細に説明するが、下
記実施例は本発明を限定する性質のものではなく、前・
後記の趣旨に徴して設計変更することはいずれも本発明
の技術的範囲に含まれるものである。
The present invention will be explained in more detail with reference to Examples below, but the Examples below are not intended to limit the present invention.
Any design changes for the purposes described below are included within the technical scope of the present invention.

[実施例コ 下記の手順に従って本発明方法を実施し、基板6上にT
iN膜を形成した。
[Example 1] The method of the present invention was carried out according to the following procedure, and T was deposited on the substrate 6.
An iN film was formed.

ターゲット4としてTi板を用い、該ターゲット4を真
空チャンバー1内にセットした後真空排気した。このと
きの真空チャンバー1内の圧力はI X 10−’To
rr以下であった。
A Ti plate was used as the target 4, and the target 4 was set in the vacuum chamber 1 and then evacuated. The pressure inside the vacuum chamber 1 at this time is I X 10-'To
It was below rr.

次にAr(不活性ガス)を11005CCの流量で、及
びN2  (反応性ガス)を9SCCMの流量で夫々導
入した後、チャンバー内の圧力を3×10−’Torr
となる様に調整した。
Next, after introducing Ar (inert gas) at a flow rate of 11005 CC and N2 (reactive gas) at a flow rate of 9 SCCM, the pressure inside the chamber was reduced to 3 × 10-'Torr.
It was adjusted so that

更に、基板6側の電圧を一500■に、ターゲット側の
電圧を一200■に夫々設定して15分間放電洗浄を行
ない、引続いて基板6側の電圧を一200Vに、ターゲ
ット側の電圧−5oovに夫々設定してスパッタリング
を実施した。このときの基板6及びターゲット4におけ
る電圧の時間的変化を第1図に示す。
Furthermore, the voltage on the substrate 6 side was set to -500 V and the voltage on the target side was set to -200 V, respectively, and discharge cleaning was performed for 15 minutes, and then the voltage on the substrate 6 side was set to -200 V and the voltage on the target side was set to Sputtering was performed with each setting set to -5oov. FIG. 1 shows temporal changes in the voltages at the substrate 6 and target 4 at this time.

その結果、基板6上には安定したTiN膜が形成された
As a result, a stable TiN film was formed on the substrate 6.

尚木発明者らは、反応ガスの流量(8〜10103CC
、真空チャンバー1内の圧力(3〜5 x 10−’T
orr) 、放電洗浄時における基板6及びターゲット
4の電圧(基板側電圧ニー500〜−400V、ターゲ
ット側電圧ニー200〜−100■)、放電洗浄時間(
5〜15分)、成膜時における基板6及びターゲット4
の電圧(基板側電圧ニー200〜−100V、ターゲッ
ト側電圧ニー500〜−400V)等の条件を上記範囲
内で各種設定して本発明を実施したところ、いずれも安
定したTiN膜が基板6上に形成された。
Inventors Naoki et al.
, the pressure in the vacuum chamber 1 (3~5 x 10-'T
orr), the voltage of the substrate 6 and target 4 during discharge cleaning (substrate side voltage knee 500 to -400V, target side voltage knee 200 to -100V), discharge cleaning time (
5 to 15 minutes), substrate 6 and target 4 during film formation
When the present invention was carried out by setting various conditions such as voltage (substrate side voltage knee 200 to -100V, target side voltage knee 500 to -400V) within the above range, a stable TiN film was formed on the substrate 6. was formed.

[発明の効果コ 上述した如く本発明方法によれば、既述した手順に従っ
て操業することによって、基板の放電洗浄と基板への蒸
着膜形成工程とが同一7囲気内で連続的に達成されるの
で、従来における様な圧力再調整による時間的損失をな
くし、十分な洗浄効果を発揮しつつ安定した薄膜を形成
することができる。
[Effects of the Invention] As described above, according to the method of the present invention, by operating according to the procedure described above, the discharge cleaning of the substrate and the step of forming a vapor deposited film on the substrate can be continuously accomplished within the same seven atmospheres. Therefore, it is possible to eliminate the time loss due to pressure readjustment as in the conventional method, and to form a stable thin film while exhibiting a sufficient cleaning effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施した際の基板6及びターゲッ
ト4における電位の時間的変化を示すグラフ、第2図は
典型的なマグネトロンスパッタ装置の構成を示す概略説
明図、第3図は従来のマグネトロンスパッタ操業の手順
を示すフローチャート、第4図は本発明方法の手順を示
すフローチャートである。 1・・・真空チャンバー 2・・・ターゲットホルダー
3・・・永久磁石    4・・・ターゲット5・・・
基板ホルダー  6・・・基板7・・・メツシュアノー
ド 8・・・成膜用高周波電源 9・・・直流電圧電源  10・・・シャッター丼 廻
  (〉) 第3図 第4図
FIG. 1 is a graph showing temporal changes in potential at the substrate 6 and target 4 when the method of the present invention is carried out, FIG. 2 is a schematic explanatory diagram showing the configuration of a typical magnetron sputtering apparatus, and FIG. 3 is a conventional FIG. 4 is a flowchart showing the steps of the magnetron sputtering operation. FIG. 4 is a flowchart showing the steps of the method of the present invention. 1... Vacuum chamber 2... Target holder 3... Permanent magnet 4... Target 5...
Substrate holder 6... Substrate 7... Mesh anode 8... High frequency power source for film formation 9... DC voltage power source 10... Shutter bowl rotation (>) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] マグネトロンスパッタ装置を用いて基板上に薄膜を形成
するに当たり、該装置内を成膜操業時の圧力条件に調整
した状態で、ターゲット側に負電圧を印加して主放電を
発生させると共に、前記基板側には前記ターゲット側よ
りも電位の低い負電圧を印加して基板表面の清浄化を図
り、引続き前記基板側の負電圧電位を前記ターゲット側
の負電圧電位よりも高くなる様に調整してスパッタリン
グを行ない基板上に成膜することを特徴とするマグネト
ロンスパッタ操業方法。
When forming a thin film on a substrate using a magnetron sputtering device, a negative voltage is applied to the target side to generate a main discharge while the inside of the device is adjusted to the pressure conditions for film forming operation, and a main discharge is generated on the substrate. A negative voltage having a lower potential than the target side is applied to the substrate side to clean the substrate surface, and then the negative voltage potential of the substrate side is adjusted to be higher than the negative voltage potential of the target side. A magnetron sputtering operation method characterized by performing sputtering to form a film on a substrate.
JP10339788A 1988-04-25 1988-04-25 Magnetron sputtering operation Pending JPH01272766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10339788A JPH01272766A (en) 1988-04-25 1988-04-25 Magnetron sputtering operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10339788A JPH01272766A (en) 1988-04-25 1988-04-25 Magnetron sputtering operation

Publications (1)

Publication Number Publication Date
JPH01272766A true JPH01272766A (en) 1989-10-31

Family

ID=14352926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10339788A Pending JPH01272766A (en) 1988-04-25 1988-04-25 Magnetron sputtering operation

Country Status (1)

Country Link
JP (1) JPH01272766A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536610A (en) * 1991-07-26 1993-02-12 Shimadzu Corp Vacuum film forming equipment
WO2014060817A1 (en) * 2012-10-18 2014-04-24 Soitec Method for bonding by means of molecular adhesion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536610A (en) * 1991-07-26 1993-02-12 Shimadzu Corp Vacuum film forming equipment
WO2014060817A1 (en) * 2012-10-18 2014-04-24 Soitec Method for bonding by means of molecular adhesion
FR2997224A1 (en) * 2012-10-18 2014-04-25 Soitec Silicon On Insulator METHOD OF BONDING BY MOLECULAR ADHESION
US9548202B2 (en) 2012-10-18 2017-01-17 Soitec Method for bonding by means of molecular adhesion

Similar Documents

Publication Publication Date Title
JP4179642B2 (en) Method and apparatus for forming metal layer
US5830330A (en) Method and apparatus for low pressure sputtering
EP0584483B1 (en) Method for preparing a shield to reduce particles in a physical vapor deposition chamber
US4874494A (en) Semiconductor manufacturing apparatus
US6767436B2 (en) Method and apparatus of plasma-enhanced coaxial magnetron for sputter-coating interior surfaces
WO2015025823A1 (en) Sputtering film formation device and sputtering film formation method
JPH01272766A (en) Magnetron sputtering operation
US6468404B2 (en) Apparatus and method for reducing redeposition in a physical vapor deposition system
JP2005534803A (en) Sputtering method and apparatus for forming residual stress optimized coating
JP3659653B2 (en) Method for providing a layer on a substrate and sputtering apparatus used therefor
JPH0892764A (en) Sputtering device
US20120219820A1 (en) Housing and method for making the same
JP4355046B2 (en) Cleaning method and substrate processing apparatus
JP2694058B2 (en) Arc vapor deposition equipment
JPS63458A (en) Vacuum arc vapor deposition device
JPS621471B2 (en)
US6060131A (en) Method of forming a thin film by plasma chemical vapor deposition
US8568905B2 (en) Housing and method for making the same
JP2744505B2 (en) Silicon sputtering equipment
JP3364692B2 (en) Film forming method and apparatus for electromagnetic wave shielding
JPH0547713A (en) Apparatus for plasma processing
JP2002043235A (en) Plasma treatment system
JPS63303050A (en) Manufacture of thin zircon nitride film
JPH0536610A (en) Vacuum film forming equipment
JPH01184263A (en) Pretreatment for coating