JPH01262511A - Automatic focusing mechanism for image pickup device - Google Patents
Automatic focusing mechanism for image pickup deviceInfo
- Publication number
- JPH01262511A JPH01262511A JP9103388A JP9103388A JPH01262511A JP H01262511 A JPH01262511 A JP H01262511A JP 9103388 A JP9103388 A JP 9103388A JP 9103388 A JP9103388 A JP 9103388A JP H01262511 A JPH01262511 A JP H01262511A
- Authority
- JP
- Japan
- Prior art keywords
- scan
- focus adjustment
- focus
- maximum
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 claims abstract description 17
- 238000003384 imaging method Methods 0.000 claims description 40
- 239000000284 extract Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 abstract description 17
- 238000003909 pattern recognition Methods 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Landscapes
- Automatic Focus Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は撮像装置の自動焦点機構に関するものであり、
例えば撮像装置によるパターン認識のための自動焦点調
節に利用される。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an automatic focusing mechanism for an imaging device.
For example, it is used for automatic focus adjustment for pattern recognition by an imaging device.
従来の技術
この種の自動焦点機構としては、従来第7図に示すよう
なものが知られている。このものは画像コントローラa
によって制御される撮像機すと、その撮像光路上に置か
れた対物レンズCとによって、ワークd上のパターンを
認識し、処理する装置において、撮像機すと対物レンズ
Cとの間に設けたハーフミラ−eによって撮像光路rか
ら分岐し、かつ撮像機すの撮像面と等価な受光面をなす
ラインセンサgに達する第1測距光路りを形成している
。そして第1測距光路りはまた途中に設けられたハーフ
ミラ−1によってさらに分岐されかつ反射ミラーjによ
ってラインセンサgの第1測距光路りとは別の位置に達
する第2測距光路kを形成している。2. Description of the Related Art As this type of automatic focusing mechanism, the one shown in FIG. 7 is conventionally known. This one is image controller a
In this device, a pattern on a workpiece d is recognized and processed by an image pickup device controlled by an image pickup device and an objective lens C placed on the imaging optical path. A first ranging optical path is formed which branches from the imaging optical path r by the half mirror e and reaches the line sensor g, which forms a light receiving surface equivalent to the imaging surface of the imaging device. The first distance measuring optical path is further branched by a half mirror 1 provided in the middle, and a second distance measuring optical path k is formed by a reflecting mirror j to reach a position different from the first distance measuring optical path of the line sensor g. is forming.
第1測距光路りでは撮像面と等価な結像状態をラインセ
ンサg上に作るのに対し、第2測距光路にでは第1測距
光路りより長いために、第1測距光路りの場合よりは前
ピンの結像状態を作り、再結像状態を電気レベルで見た
ときの出力m、、mzの状態の組合せで合焦、前ピン、
後ピンを判定するようになっている。The first distance measurement optical path creates an imaging state equivalent to the imaging plane on the line sensor g, whereas the second distance measurement optical path is longer than the first distance measurement optical path. Rather than in the case of , the image formation state of the front focus is created, and the combination of the states of the outputs m, , mz when the re-imaging state is viewed at the electrical level is used to focus, front focus,
It is designed to judge back pins.
発明が解決しようとする課題
しかし上記のような従来方式では、測距のための光学系
と、この光学系で得た信号を処理する自動焦点のための
コントローラとが特別に必要である。このため構造が複
雑で高価につくし、装置が大型化する。また自動焦点は
撮像画面上の一点についてしか行えない不便もある。Problems to be Solved by the Invention However, in the conventional method as described above, an optical system for distance measurement and a controller for automatic focusing that processes signals obtained by this optical system are specially required. Therefore, the structure is complicated and expensive, and the device becomes large. There is also the inconvenience that automatic focusing can only be performed on one point on the imaging screen.
そこで本発明は撮像画面上で所望の部分を走査できる撮
像機を巧みに採用して、前記のような問題点を解消し得
る撮像装置の自動焦点機構を提供することを目的とする
ものである。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an automatic focusing mechanism for an imaging device that can solve the above-mentioned problems by skillfully employing an imaging device that can scan a desired portion on an imaging screen. .
課題を解決するための手段
本発明は前記のような目的を達成するために、撮像面の
所望部分を繰返し走査できる撮像手段と、(最像手段に
おける焦点調節手段と、焦点調節手段を所定の範囲で作
動させると共に所定の焦点調節位置ごとに撮像手段によ
る特定部分での走査を行わせる動作制御手段と、所望部
分での各回の走査における出力の差分値を算出して絶対
値で最大のものを得ると共に、さらにそられのうちの最
大のものを合焦情報値として抽出しそれを得た走査が行
われたときの焦点調節位置を合焦位置とする信号処理手
段とを備えたことを特徴とするものである。Means for Solving the Problems In order to achieve the above-mentioned objects, the present invention provides an imaging means capable of repeatedly scanning a desired portion of an imaging surface, a focus adjustment means in the most image means, and a focus adjustment means that an operation control means that operates within a range and causes the imaging means to scan a specific portion at each predetermined focus adjustment position, and calculates the difference value of the output in each scan of the desired portion and obtains the maximum absolute value. and a signal processing means that extracts the largest one of the deflections as a focus information value and sets the focus adjustment position at the time when the scan obtained is performed as the focus position. This is a characteristic feature.
撮像手段はMOS型カメラであり、焦点調節手段はピエ
ゾアクチュエータを駆動源とするのが好適である。Preferably, the imaging means is a MOS camera, and the focusing means uses a piezo actuator as a drive source.
作用
上記上たる特徴では、動作制御手段によって撮像手段の
焦点調節手段が所定の範囲で動作されるのに併せ、この
動作での所定の焦点調節位置ごとに撮像手段では撮像画
面中の所望の部分が走査される。この各回の走査により
得られる電気的な画像信号は各焦点調節位置に対応して
おり、各焦点調節位置での合焦度合の情報を、合焦度合
に応じたコントラストの違いとして含んでいる。そして
焦点tJ4節の所定範囲が被検面に対する合焦位置を必
ず含むように設定されることにより、前記画像信号に合
焦情報を含むことができる。In the above-mentioned feature, the focus adjustment means of the imaging means is operated within a predetermined range by the operation control means, and the imaging means adjusts the desired portion of the image capture screen at each predetermined focus adjustment position in this operation. is scanned. The electrical image signal obtained by each scan corresponds to each focus adjustment position, and includes information on the degree of focus at each focus adjustment position as a difference in contrast depending on the degree of focus. By setting the predetermined range of the focal point tJ4 to always include the in-focus position with respect to the test surface, it is possible to include focus information in the image signal.
そこで信号処理手段によって各回の走査で得られる電気
的な各画像信号の差分値が算出されその絶対値で最大の
ものが得られると、各走査における画面での最良の合焦
度合を示す情報として得ることができる。次いで信号処
理手段によって各回の走査における各最大差分値のうち
の最大のものが合焦情報値として抽出され、それを得た
走査が行われたときの焦点調節位置を合焦位置とされる
が、焦点調節の所定範囲中に合焦位置があることに対応
して、実際の合焦位置に合致した結果を得ることができ
る。Therefore, the signal processing means calculates the difference value of each electrical image signal obtained in each scan, and when the maximum absolute value is obtained, it is used as information indicating the best degree of focus on the screen in each scan. Obtainable. Next, the signal processing means extracts the maximum of the maximum difference values in each scan as a focus information value, and the focus adjustment position at which the scan obtained from this value is performed is determined as the focus position. , corresponding to the fact that the focus position is within the predetermined range of focus adjustment, it is possible to obtain a result that matches the actual focus position.
前記動作制御手段および信号処理手段は、撮像手段が持
っている電子制御手段の機能で代替することができる。The operation control means and the signal processing means can be replaced by the functions of the electronic control means possessed by the imaging means.
撮像手段にMOS型カメラを用いると、前記走査および
信号処理を高速で行うことができ、焦点調節手段がピエ
ゾアクチュエータを駆動源にしていると焦点調節動作を
微小ストロークづつ高速で振動なく行えると共に所定位
置に安定させ得る。したがってMOS型カメラとピエゾ
アクチュエータを組合せ使用すると、高速度でしかも正
確な自動焦点機能を発揮することができる。If a MOS type camera is used as the imaging means, the scanning and signal processing can be performed at high speed, and if the focus adjustment means uses a piezo actuator as the driving source, the focus adjustment operation can be performed in minute strokes at high speed and without vibration, and at a predetermined position. Can be stabilized in position. Therefore, when a MOS type camera and a piezo actuator are used in combination, a high-speed and accurate autofocus function can be achieved.
実施例
第1図は本発明をパターン認識のための撮像装置に適用
した場合の一実施例を示している。Embodiment FIG. 1 shows an embodiment in which the present invention is applied to an imaging device for pattern recognition.
この撮像装置は図に示すように台盤1上のワーク2の被
検面2aをカメラ4により撮像して被検面2aに施され
ている第2図に示すようなパターン50種類や良否を認
識するようになっている。As shown in the figure, this imaging device images the inspection surface 2a of the workpiece 2 on the base plate 1 with a camera 4, and detects 50 kinds of patterns as shown in FIG. I'm starting to recognize it.
この認識作業のためにカメラ4による撮像光路15中に
対物レンズ3が設置され、それらは高倍率で焦点深度の
浅い撮像光学系10をなしている。このような光学系で
は少しの焦点調節で合焦度合が大きく変わる。一方作業
性の向上の而から自動焦点機能に高速性が要求される。For this recognition work, an objective lens 3 is installed in the imaging optical path 15 of the camera 4, and these constitute an imaging optical system 10 with high magnification and a shallow depth of focus. In such an optical system, a slight focus adjustment can greatly change the degree of focus. On the other hand, high speed is required for the autofocus function in order to improve workability.
これらに対応するためカメラ4には撮像画面中の所望の
部分を繰返し高速で走査できる部分走査モードを持った
MO5型カメラを採用している。また対物レンズ3のホ
ルダー16にピエゾアクチュエータ6を接続して焦点調
節手段とし、ピエゾアクチュエータ6をピエゾ電源7に
より駆動することで焦点調節を微小ストロークづつ正確
にしかも高速に無振動で行えるようにしている。In order to cope with these problems, the camera 4 is an MO5 type camera having a partial scanning mode that can repeatedly scan a desired part of the imaged screen at high speed. In addition, a piezo actuator 6 is connected to the holder 16 of the objective lens 3 as a focus adjustment means, and by driving the piezo actuator 6 with a piezo power source 7, focus adjustment can be performed accurately in minute strokes, at high speed, and without vibration. There is.
カメラ4の駆動装W8および前記ピエゾ電源7は分配器
11を介しマイクロコンピュータと云った電子制御装置
9に接続され、この制御装置9によってカメラ4および
ピエゾアクチュエータ6をパターン認識および自動焦点
のために動作制御し、またそれに伴う必要な信号処理を
行うようになっている。The driving unit W8 of the camera 4 and the piezo power source 7 are connected to an electronic control device 9 such as a microcomputer via a distributor 11, and the control device 9 controls the camera 4 and the piezo actuator 6 for pattern recognition and automatic focusing. It controls the operation and performs the necessary signal processing associated with it.
制御装置9によるパターン認識の動作については既に知
られているので説明は省略する。Since the pattern recognition operation by the control device 9 is already known, a description thereof will be omitted.
制御装置9による自動焦点動作は、パターン認識の動作
の前に必要に応じ行われる。そのための具体的構成とし
ては、制御装置9にカメラ4およびピエゾアクチュエー
タ6に自動焦点動作を行わせる動作制御手段12として
の機能と、必要な信号処理を行う信号処理手段13とし
ての機能とをプログラムにより与えである。The automatic focusing operation by the control device 9 is performed as necessary before the pattern recognition operation. As a specific configuration for this purpose, the control device 9 is programmed with a function as an operation control means 12 that causes the camera 4 and the piezo actuator 6 to perform automatic focusing operations, and a function as a signal processing means 13 that performs necessary signal processing. It is given by.
動作制御手段120機能によっては、ピエゾアクチュエ
ータ6を所定の焦点調節範囲Zで動作させると共に、所
定の焦点調節位置ごとにカメラ4における撮像面の所望
する特定の部分を走査させる。Depending on the function of the operation control means 120, the piezo actuator 6 is operated in a predetermined focus adjustment range Z, and a desired specific portion of the imaging surface of the camera 4 is scanned for each predetermined focus adjustment position.
所定の焦点調節範囲Zは、台盤1上で通常通りに位置決
めされるワーク2の被検面2aに対しての合焦位置を含
み得るように設定されるもので、30μm程度必要であ
る。また高精度に合焦位置を判別するため焦点調節のス
テンプ幅を2μm程度に設定するのが好ましい。そこで
ピエゾアクチュエータ6の駆動は2μmづつ16段階に
行うようにする。これによりピエゾアクチュエータ6の
変位量pz、は0Braから32μmまでとなり、焦点
調節位置は変位なしの状態を入れて17段階のアドレス
に設定される。この各アドレスを得るためピエゾアクチ
ュエータ6を駆動するのに必要な各ピエゾ電圧Pv8は
、第3図に示すピエゾ電圧PvNとピエゾアクチュエー
タ6の変位量PZNとの関係から設定することができ、
それをテーブル化して制御装置9に予めプログラムして
おく。ピエゾアクチュエータ6の変位速度はlμIII
/ff1s程度である。The predetermined focus adjustment range Z is set so as to include the in-focus position with respect to the test surface 2a of the workpiece 2 normally positioned on the base plate 1, and is required to be about 30 μm. Further, in order to determine the focus position with high precision, it is preferable to set the step width for focus adjustment to about 2 μm. Therefore, the piezo actuator 6 is driven in 16 steps of 2 μm each. As a result, the displacement pz of the piezo actuator 6 is from 0 Bra to 32 μm, and the focus adjustment position is set to 17 addresses including a state of no displacement. Each piezo voltage Pv8 required to drive the piezo actuator 6 to obtain each address can be set from the relationship between the piezo voltage PvN and the displacement amount PZN of the piezo actuator 6 shown in FIG.
It is made into a table and programmed into the control device 9 in advance. The displacement speed of the piezo actuator 6 is lμIII
/ff1s.
カメラ4における部分走査は、例えば被検面2a上の適
当な部分、例えば焦点状態を判別するのに有利な部分、
あるいは特に焦点を合わせたい部分である第2図に仮想
線で示すような対象部分Pに対応する画像部分につき行
われる。このため制御装置9には撮像面上の部分走査エ
リアを設定する入力が適宜なされる。The partial scanning performed by the camera 4 may be performed at a suitable portion on the surface to be inspected 2a, for example, a portion advantageous for determining the focus state.
Alternatively, this is performed on an image portion corresponding to a target portion P as shown by the imaginary line in FIG. 2, which is a portion to be particularly focused on. For this reason, input for setting a partial scanning area on the imaging plane is appropriately made to the control device 9.
1回の部分走査は例えば5本の走査ライン分けわれる。One partial scan is divided into, for example, five scanning lines.
実際の部分走査モードでは、通常の全走査ラインのうち
5本のラインを有効ラインとした後、21本のラインを
無効ラインとし、次の5本のラインをを効ラインとする
と云ったことを繰返すことで行われる。この部分走査に
より得られるカメラ4のモニタ画像は第4図に示すよう
に、有効ライン部分(白抜き)21と無効ライン部分(
斜線)22とが交互に配列した状態となる。In actual partial scanning mode, 5 lines out of all normal scan lines are set as valid lines, 21 lines are set as invalid lines, and the next 5 lines are set as effective lines. It is done through repetition. As shown in FIG. 4, the monitor image of the camera 4 obtained by this partial scanning includes an effective line portion (white) 21 and an invalid line portion (
(diagonal lines) 22 are arranged alternately.
そしてこの画面で云えば有効ライン部分21のうち、前
記17段階の焦点調節アドレスに対応する各走査ライン
部分21.〜2117を選択し、この各ライン部分21
.〜2117で部分走査が行われるのに同期して対物レ
ンズ3が対応する順位のアドレスに位置するよう焦点調
節動作を行わせる。In this screen, among the effective line portions 21, each scanning line portion 21 .corresponds to the 17 focus adjustment addresses. ~2117, and each line part 21
.. In synchronization with the partial scanning performed in steps 2117 to 2117, a focus adjustment operation is performed so that the objective lens 3 is positioned at the corresponding address.
各有効ライン部分21+〜211?に対応する画像は第
5図に一部を省略して示すように、被検面2a上の対象
部分Pにおける像が、対物レンズ3の各焦点tA節テア
ドレスの合焦度合に応じた鮮明度で形成される。Each effective line portion 21+~211? As shown in FIG. 5 with a portion omitted, the image corresponding to the image at the target portion P on the test surface 2a is sharp according to the degree of focus of each focal point tA node of the objective lens 3. Formed in degrees.
合焦度が低いとパターン5の像5aにボケが生じ、像5
aがない部分との境界のコントラストが小さい。また合
焦度が高いとパターン5の像5aは鮮明となり、像5a
がない部分とのコントラストが大きい。このコントラス
トの違いは各有効ライン部分2L〜211フについての
部分走査における出力電位の違いとして知ることができ
る。If the focus level is low, the image 5a of the pattern 5 will be blurred, and the image 5a will be blurred.
The contrast between the border and the part without a is small. Furthermore, when the degree of focus is high, the image 5a of pattern 5 becomes clear, and the image 5a
There is a great contrast with the parts without. This difference in contrast can be known as a difference in output potential in partial scanning for each effective line portion 2L to 211F.
そこで信号処理手段13の機能により先ず、各有効走査
部分211〜21.7での、時系列で与えられる走査出
力について差分値Nを求める。差分値Nは連続した走査
出力における所定の画素単位分ごとの出力どうしを比較
して求められ、その絶対値INIが画素間のコントラス
ト情報となる。Therefore, by the function of the signal processing means 13, first, a difference value N is determined for the scanning output given in time series in each effective scanning portion 211 to 21.7. The difference value N is obtained by comparing outputs for each predetermined pixel unit in continuous scanning outputs, and its absolute value INI becomes contrast information between pixels.
したがって各有効ライン部分21.〜21+?のどの部
分のINIが最大となるかを判定すれば、合焦度合の最
も高い画像を得た有効ライン部分を知ることができ、所
定の焦点調節範囲に合焦位置が含まれていることに対応
してそのINIが最大である有効ライン部分での画像が
実際上合焦状態にあったことを意味し、その走査が行わ
れたときの対物レンズ3の焦点調節アドレスが合焦位置
であると判定することができる。Therefore, each effective line portion 21. ~21+? By determining which part of the throat has the maximum INI, it is possible to know the effective line part where the image with the highest degree of focus was obtained, and it can be determined that the in-focus position is included in the predetermined focus adjustment range. Correspondingly, this means that the image in the effective line portion whose INI is maximum was actually in focus, and the focus adjustment address of the objective lens 3 when that scan was performed is the focus position. It can be determined that
この判定も信号処理手段13の機能により実行される。This determination is also executed by the function of the signal processing means 13.
具体的には各有効走査部分21.〜2117のそれぞれ
についてINIを求めておいてそれを各有効走査部分2
1.〜211?でのコントラスト情報とし、さらにそれ
らのうち最大のINIを合焦情報NMとして抽出し、こ
の?JMが得られた有効走査部分を走査したときの対物
レンズ3の焦点調節アドレスを合焦位置と判定する。Specifically, each effective scanning portion 21. Find the INI for each of ~2117 and apply it to each effective scanning portion 2.
1. ~211? The maximum INI among them is extracted as focus information NM, and this ? The focus adjustment address of the objective lens 3 when scanning the effective scanning portion where JM was obtained is determined to be the in-focus position.
この判定を得たとき動作制御手段12の機能によって、
その判定に係るアドレスまで対物レンズ3が移動させら
れる。これによって光学系IOは高倍率で焦点深度の浅
いものであっても台盤1上にセットされたワーク2の被
検面2aに焦点を自動的にかつ正確に合わされ、パター
ン5の認識が的確に行われる。When this determination is obtained, the function of the operation control means 12 causes
The objective lens 3 is moved to the address related to the determination. As a result, the optical system IO is automatically and accurately focused on the inspection surface 2a of the workpiece 2 set on the base plate 1, even if it has a high magnification and a shallow depth of focus, and the pattern 5 can be recognized accurately. It will be held in
なお、前記実施例では焦点調節が対物レンズ3を動かす
ことで行っているが、これに限るものではなく、台盤l
によるワーク2の昇降で行うこともできるし、カメラ4
において行うこともできその方式は間はない。In the above embodiment, the focus adjustment is performed by moving the objective lens 3, but the invention is not limited to this, and the base plate l
It can also be done by raising and lowering the workpiece 2 using the camera 4.
It can also be done in a number of ways.
発明の効果
本発明によれば所望の部分を繰返し走査できる撮像手段
とその焦点調節手段、動作制御手段および信号処理手段
だけで自動焦点機能を達成することができ、動作制御、
信号処理の各手段は撮像手段でパターン認識等を行うの
に用いられる制御装置の制御機能で代替し得るし、焦点
調節手段も通常用いられるものであるから、従来のよう
な特別な光学系やコントローラを必要とせず構造が簡単
で安価なものとなる。また装置が大型化することもない
。さらに撮像手段における自動焦点のための走査は部分
的であって、所定の焦点調節範囲での各焦点調節位置に
て逐次行うものの時間の延長にはならない。そして部分
走査は撮像画面のどの部分についても行うことができ、
被検面の焦点調節に有利な部分や焦点を特に合わせたい
部分等必要部分について自由に自動焦点機能を働かせる
ことができる。Effects of the Invention According to the present invention, an automatic focusing function can be achieved using only an imaging means capable of repeatedly scanning a desired area, its focus adjustment means, operation control means, and signal processing means, and operation control,
Each signal processing means can be replaced by the control function of the control device used for pattern recognition etc. in the imaging means, and the focus adjustment means is also commonly used, so there is no need for a special optical system or a conventional one. The structure is simple and inexpensive since no controller is required. Furthermore, the device does not become larger. Further, the scanning for automatic focusing in the imaging means is partial, and although it is performed sequentially at each focus adjustment position within a predetermined focus adjustment range, it does not extend the time. Partial scanning can be performed on any part of the imaging screen,
The autofocus function can be freely operated on necessary parts such as parts of the surface to be examined that are advantageous for focus adjustment and parts to be particularly focused.
また撮像手段にMOS型カメラ、焦点調節手段の駆動源
にピエゾアクチュエータを用いるとそれらの性質上前記
部分走査による自動焦点動作が高速でかつ正確に無振動
でなされる。Furthermore, if a MOS type camera is used as the imaging means and a piezo actuator is used as the drive source for the focus adjustment means, the automatic focusing operation by partial scanning can be performed at high speed, accurately, and without vibration due to their properties.
第1図は本発明の一実施例を示すパターン認識用の撮像
装置の概略図、第2図はワークの被検面の平面図、第3
図はピエゾ電圧pv、4とピエゾアクチュエータの変位
mpz、との関係特性を示すグラフ、第4図はカメラ4
のモニタ画面で見た部分走査状態を示す図、第5図は部
分走査の繰返しにより得た画像の状態を示す図、第6図
は各部分走査で得た最大差分値の絶対値分布グラフ、第
7図は自動焦点機構の従来例を示す撮像装置の概略図で
ある。
2・・・−・・−−−−・・・−・−−−−−・・−・
・−・・−・・・・ワーク2a・−・・・−−−−−・
・・・・−・−・・−・・−・・−・−・・被検面3・
−・・・・・−・−・・・・・−・・−・・・・・−・
・−・・対物レンズ4−・・−・−・・・−・・・−・
・・・−・−・・・・・−MOS 型カメラ6・・・−
・・・・・−・・・・・・−・−・・・・−・・・・・
ピエゾアクチュエータ7・−・・・・−・・・・・−・
−・・・−・−・・・・・−・・・・ピエゾti!9・
・・・・・・・・−・・・・−・−・・・・・−・・・
・・・・・・・制御装置12・・・−・・・−・・・−
・・−・・−・−・・・・−・−・−動作制御手段13
・−・・・・−・−・・−・・−・−・−・・・−・・
・−・・・・・−信号処理手段。
代理A4弁理士 中尾 敏男 はか1名第 1 図
第2図
第5図
第3図
ピエゾも圧PVN()
検を ≦2FIG. 1 is a schematic diagram of an imaging device for pattern recognition showing an embodiment of the present invention, FIG. 2 is a plan view of the surface to be inspected of a workpiece, and FIG.
The figure is a graph showing the relationship between the piezo voltage pv, 4 and the displacement mpz of the piezo actuator.
5 is a diagram showing the state of an image obtained by repeating partial scans, and FIG. 6 is an absolute value distribution graph of the maximum difference value obtained in each partial scan. FIG. 7 is a schematic diagram of an imaging device showing a conventional example of an automatic focusing mechanism. 2・・・−・・−−−−・・−・−−−−−・・−・
・−・・−・・Work 2a・−・−−−−−・
・・−・−・・−・・−・・−・−・・Test surface 3・
−・・・・・−・−・・・・・−・・−・・・・・・・−・
・−・Objective lens 4−・−・−・−・・・
・・・−・−・・・MOS type camera 6・・・−
・・・・・・−・・・・・・−・−・・・・−・・・・・・
Piezo actuator 7・−・・・・−・・・・・・・・・−・
−・・・−・−・・・・・・・・・・・・Piezo ti! 9・
・・・・・・・・・−・・−・−・・・・・・・−・・・
......Control device 12...-...--
・・−・・−・−・・・・−・−・−Operation control means 13
・−・・−・−・・−・・−・−・−・・−・・
・-・・・・・・-Signal processing means. Acting A4 Patent Attorney Toshio Nakao Number 1 Figure 2 Figure 5 Figure 3 Piezo pressure PVN () ≦2
Claims (2)
、撮像手段における焦点調節手段と、焦点調節手段を所
定の範囲で作動させると共に所定の焦点調節位置ごとに
撮像手段による特定部分での走査を行わせる動作制御手
段と、所望部分での各回の走査における出力の差分値を
算出して絶対値で最大のものを得ると共に、さらにそら
れのうちの最大のものを合焦情報値として抽出しそれを
得た走査が行われたときの焦点調節位置を合焦位置とす
る信号処理手段とを備えたことを特徴とする撮像装置の
自動焦点機構。(1) An imaging means that can repeatedly scan a desired part of the imaging surface, a focus adjustment means in the imaging means, and a method for operating the focus adjustment means within a predetermined range and scanning a specific part by the imaging means at each predetermined focus adjustment position. Calculate the difference value between the outputs of each scan at the desired portion, obtain the maximum absolute value, and further extract the maximum deviation as the focus information value. and a signal processing means that sets the focus adjustment position at the time when scanning is performed to obtain the autofocus mechanism.
はピエゾアクチュエータを駆動源とする請求項(1)記
載の撮像装置の自動焦点機構。(2) The automatic focusing mechanism of the imaging device according to claim (1), wherein the imaging means is a MOS type camera, and the focus adjustment means uses a piezo actuator as a driving source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9103388A JPH01262511A (en) | 1988-04-13 | 1988-04-13 | Automatic focusing mechanism for image pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9103388A JPH01262511A (en) | 1988-04-13 | 1988-04-13 | Automatic focusing mechanism for image pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01262511A true JPH01262511A (en) | 1989-10-19 |
Family
ID=14015199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9103388A Pending JPH01262511A (en) | 1988-04-13 | 1988-04-13 | Automatic focusing mechanism for image pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01262511A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58162844A (en) * | 1982-03-23 | 1983-09-27 | Toshiba Corp | Pattern inspecting device |
JPS6127515A (en) * | 1984-07-18 | 1986-02-07 | Mitsubishi Electric Corp | Optical device |
JPS638713A (en) * | 1986-06-30 | 1988-01-14 | Ricoh Co Ltd | Auto-focusing method of infrared image pickuip device |
JPS6325609A (en) * | 1986-07-18 | 1988-02-03 | Fuji Photo Film Co Ltd | Auto-focusing method |
JPS6398615A (en) * | 1986-10-16 | 1988-04-30 | Olympus Optical Co Ltd | Automatic focus adjusting method |
-
1988
- 1988-04-13 JP JP9103388A patent/JPH01262511A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58162844A (en) * | 1982-03-23 | 1983-09-27 | Toshiba Corp | Pattern inspecting device |
JPS6127515A (en) * | 1984-07-18 | 1986-02-07 | Mitsubishi Electric Corp | Optical device |
JPS638713A (en) * | 1986-06-30 | 1988-01-14 | Ricoh Co Ltd | Auto-focusing method of infrared image pickuip device |
JPS6325609A (en) * | 1986-07-18 | 1988-02-03 | Fuji Photo Film Co Ltd | Auto-focusing method |
JPS6398615A (en) * | 1986-10-16 | 1988-04-30 | Olympus Optical Co Ltd | Automatic focus adjusting method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7456377B2 (en) | System and method for creating magnified images of a microscope slide | |
US8180156B2 (en) | Method and device for machine-cutting a plate-shaped workpiece | |
US20050089208A1 (en) | System and method for generating digital images of a microscope slide | |
JPH08211281A (en) | Automatic focus detecting method | |
JP5162783B2 (en) | Method and apparatus for phase correction of position and detection signals in scanning microscopy and scanning microscope | |
JPS61198204A (en) | Automatic focusing method for microscope | |
JP3631304B2 (en) | Microscope automatic focusing device | |
JP2000266995A (en) | Microscope focusing point detecting method | |
JP3450406B2 (en) | Position adjustment device for observation image and scanning optical microscope | |
JPH0961720A (en) | Confocal scanning type optical microscope and measuring method using the microscope | |
JP3290606B2 (en) | Autofocus device for microscope | |
JPH09218355A (en) | Scanning laser microscope | |
JP2758760B2 (en) | Hardness measurement method | |
JPH01262511A (en) | Automatic focusing mechanism for image pickup device | |
JP2000275534A (en) | Confocal microscope | |
JP3708277B2 (en) | Scanning optical measuring device | |
JP2003014611A (en) | Scanning type probe microscope | |
EP3460557A1 (en) | Observation device and method, and observation device control program | |
JP4128256B2 (en) | Scanning laser microscope | |
JPH07280537A (en) | Imaging type inspection method and apparatus | |
JP2002323426A (en) | Scanning probe microscope | |
JP2001242070A (en) | Photographing device | |
JPH09250912A (en) | Pattern measurement device | |
JP2828145B2 (en) | Optical section microscope apparatus and method for aligning optical means thereof | |
WO2024111366A1 (en) | Focusing device, observation device, inspection device, and focusing method |