JPH01252704A - Complex member and its manufacture - Google Patents
Complex member and its manufactureInfo
- Publication number
- JPH01252704A JPH01252704A JP8041488A JP8041488A JPH01252704A JP H01252704 A JPH01252704 A JP H01252704A JP 8041488 A JP8041488 A JP 8041488A JP 8041488 A JP8041488 A JP 8041488A JP H01252704 A JPH01252704 A JP H01252704A
- Authority
- JP
- Japan
- Prior art keywords
- sintered alloy
- sintered
- base material
- less
- rolling roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 46
- 239000002184 metal Substances 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 28
- 238000005245 sintering Methods 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 8
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 238000001513 hot isostatic pressing Methods 0.000 claims abstract description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 49
- 239000000956 alloy Substances 0.000 claims description 49
- 239000002131 composite material Substances 0.000 claims description 19
- 150000001247 metal acetylides Chemical class 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 14
- 238000005496 tempering Methods 0.000 claims description 14
- 238000010791 quenching Methods 0.000 claims description 12
- 230000000171 quenching effect Effects 0.000 claims description 12
- 238000011282 treatment Methods 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 abstract description 12
- 238000005096 rolling process Methods 0.000 abstract description 12
- 239000010959 steel Substances 0.000 abstract description 12
- 239000011159 matrix material Substances 0.000 abstract description 8
- 239000002775 capsule Substances 0.000 abstract description 6
- 238000005097 cold rolling Methods 0.000 abstract description 4
- 238000005098 hot rolling Methods 0.000 abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 abstract description 3
- 238000007788 roughening Methods 0.000 abstract description 2
- 229910000851 Alloy steel Inorganic materials 0.000 abstract 2
- 238000007872 degassing Methods 0.000 abstract 1
- 230000001376 precipitating effect Effects 0.000 abstract 1
- 238000003466 welding Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 16
- 229910001018 Cast iron Inorganic materials 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000007792 addition Methods 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000008393 encapsulating agent Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、金属基材と焼結合金層との積層構造を有する
複合部材およびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a composite member having a laminated structure of a metal base material and a sintered alloy layer, and a method for manufacturing the same.
熱間圧延用または冷間圧延用ロールの胴部表面は、摩耗
が少ないこと、肌荒れ(亀裂、凹凸、欠は等)が生じに
くいこと、および被圧延材との焼付きを生じにくいこと
等が必要である。従来より、熱間圧延用ロールとしては
、鋳鉄からなる胴部を有する鋳鉄ロールが、冷間圧延用
ロールとしては、鍛鋼からなる胴部を有する鍛鋼ロール
が使用されており、また、その耐摩耗性を高めるために
、鋳鉄ロールでは、胴部を高合金化し、セメンタイト、
および複炭化物、その他の特殊炭化物を晶出させること
により硬度を高め、他方鍛鋼ロールでは、胴部の高合金
化と、焼入れ・焼もどしの熱処理により、マルテンサイ
ト変態、ベイナイト変態、および二次硬化等を生起させ
て高硬度化を図っている。なお、冷間圧延用ロールとし
ては、上記のほかに、合金粉末(C:l、3〜3%、C
r:15〜21%、W+2Mo : 8%以下)を焼結
材料とする焼結晶を使用することも提案されている(特
開昭58−213856号)。The surface of the body of a roll for hot rolling or cold rolling has low wear, is less prone to roughness (cracks, unevenness, chips, etc.), and is less likely to seize with the rolled material. is necessary. Traditionally, cast iron rolls with bodies made of cast iron have been used as rolls for hot rolling, and forged steel rolls with bodies made of forged steel have been used as rolls for cold rolling. In order to improve the properties, the body of cast iron rolls is made of high alloy, cementite,
Hardness is increased by crystallizing double carbides, double carbides, and other special carbides.On the other hand, in forged steel rolls, high alloying of the body and heat treatment of quenching and tempering result in martensitic transformation, bainitic transformation, and secondary hardening. etc., in order to increase the hardness. In addition to the above, the cold rolling roll may also contain alloy powder (C:l, 3-3%, C
It has also been proposed to use a sintered crystal made of sintered materials (r: 15-21%, W+2Mo: 8% or less) (Japanese Patent Laid-Open No. 58-213856).
鋳鉄ロールおよび鍛鋼ロールのいずれも、その胴部は、
鋳造品を素材として製作される。これらの鋳造品は一般
に組繊が粗大であり、炭化物は粗大なネット状の晶出形
態を呈する。鋳鉄ロールの胴部は、この粗大な鋳造組織
を殆どそのまま有し、他方鍛鋼ロールの場合は、加工と
熱処理による組織変化を経由するけれども、もとの鋳造
組織の影響をうけるため、その組織は比較的粗大である
。The body of both cast iron rolls and forged steel rolls is
Manufactured using cast material. These cast products generally have coarse fibers, and the carbide exhibits a coarse net-like crystallization form. The body of a cast iron roll has this coarse cast structure almost as it is, while forged steel rolls undergo structure changes due to processing and heat treatment, but are influenced by the original cast structure, so the structure changes. It is relatively coarse.
そのため、これらのロールは、耐摩耗性は比較的良好で
あるが、靭性や延性等の機械的性質に劣るという問題が
ある。他方、前記合金粉末の焼結材は、緻密で微細な組
織を有し、鋳鉄ロールや鍛鋼ロールを凌ぐ耐摩耗性・耐
肌荒性と共に、良好な機械的性質を備えているが、被圧
延材との間に焼付が生じ易いという欠点がある。Therefore, although these rolls have relatively good wear resistance, they have a problem of being inferior in mechanical properties such as toughness and ductility. On the other hand, the sintered material of the alloy powder has a dense and fine structure, and has excellent mechanical properties as well as wear resistance and roughness resistance that exceed those of cast iron rolls and forged steel rolls. It has the disadvantage that it tends to seize with the material.
本発明は上記に鑑み、圧延ロール等として好適な耐摩耗
性、耐肌荒性および耐焼付性等の表面特性、並びに良好
な機械的性質、特に強靭性を具備する複合部材およびそ
の製造方法を提供しようとするものである。In view of the above, the present invention provides a composite member having surface properties such as abrasion resistance, roughening resistance, and seizure resistance suitable for use as rolling rolls, etc., as well as good mechanical properties, particularly toughness, and a method for manufacturing the same. This is what we are trying to provide.
[課題を解決するための手段および作用]本発明の複合
部材は、金属基材と、その表面要所に積層形成された焼
結合金層からなり、前記焼結合金層は、C:2〜3.5
%、Si:0.4%以下、Mn:0.4%以下、Cr:
3〜6%、V:6〜12%、W:5〜14%、Coニア
〜14%、Mo:3〜9%、残部実質的にFeからな
り、マルテンサイトもしくはベイナイト基地に粒径10
μm以下のMC型および/またはM6C型炭化物が分散
析出した金属組織を有することを特徴としている。[Means and effects for solving the problems] The composite member of the present invention is composed of a metal base material and a sintered alloy layer laminated at key points on the surface of the metal base material, and the sintered alloy layer has a C:2 to 3.5
%, Si: 0.4% or less, Mn: 0.4% or less, Cr:
3-6%, V: 6-12%, W: 5-14%, Conia ~14%, Mo: 3-9%, the remainder consists essentially of Fe, with a grain size of 10% on the martensite or bainite base.
It is characterized by having a metal structure in which MC type and/or M6C type carbides of μm or less are dispersed and precipitated.
以下、本発明について、まずその焼結合金層の成分限定
理由を説明する。%は重量%である。Hereinafter, regarding the present invention, the reason for limiting the components of the sintered alloy layer will be explained first. % is by weight.
C:2〜3.5%
Cは、マトリックスに固溶し、また一部は■やWと結合
して炭化物を形成することにより焼結合金の硬度を高め
る。clの下限値を2%としたのは、それより少ないと
、VやWの炭化物の形成に必要なclのバランスが悪く
、焼結合金を高合金化したことの効果が十分に得られず
、他方3.5%をこえると、■やWの炭化物の粗大化等
により靭性が低下する。よって、2〜3.5%とした。C: 2-3.5% C increases the hardness of the sintered alloy by forming a solid solution in the matrix and also combining with ■ and W to form carbides. The reason why the lower limit of cl is set to 2% is that if it is less than that, the balance of cl necessary for the formation of carbides of V and W will be poor, and the effect of highly alloying the sintered alloy will not be sufficiently obtained. On the other hand, if it exceeds 3.5%, the toughness decreases due to the coarsening of the carbides of ■ and W. Therefore, it was set at 2 to 3.5%.
Si:0.4%以下
Siは焼結合金の焼入れ性を高めるが、焼もどし処理に
よる二次硬化への関与は殆どないため、高温硬さの改善
効果は小さく、従って0.4%までの添加で十分である
。Si: 0.4% or less Si improves the hardenability of sintered alloys, but since it has little involvement in secondary hardening through tempering, the effect of improving high-temperature hardness is small. Addition is sufficient.
Mn:0.4%以下
Mnは焼結合金の焼入れ性を改善する元素であるが、焼
もどし処理による二次硬化は期待できないので、高温硬
さの改善効果は小さく、従って0.4%までの添加で十
分である。Mn: 0.4% or less Mn is an element that improves the hardenability of sintered alloys, but secondary hardening cannot be expected through tempering treatment, so the effect of improving high-temperature hardness is small, and therefore up to 0.4%. The addition of is sufficient.
Cr:3〜6%
Crは焼結合金のマトリックスに固溶して焼入性を大き
く高め、また焼もどし軟化抵抗性を示す元素である。こ
の効果を得るには3%以上の添加を必要とする。しかし
、Crの増量は、焼結合金の焼付抵抗性の低下を招き、
特に熱間圧延用ロール等の用途においては、6%をこえ
ると、実用上焼付の問題が生じる。よって、Cr量は3
〜6%とした。Cr: 3 to 6% Cr is an element that is dissolved in the matrix of the sintered alloy to greatly improve hardenability and exhibits temper softening resistance. To obtain this effect, it is necessary to add 3% or more. However, increasing the amount of Cr leads to a decrease in the seizure resistance of the sintered alloy.
Particularly in applications such as hot rolling rolls, if it exceeds 6%, problems of seizure will occur in practice. Therefore, the amount of Cr is 3
~6%.
V:6〜12%
■は本発明における焼結合金の成分構成を特徴づける最
も重要な元素の1つである。すなわち、■は、焼結合金
のマトリックスに固溶し、焼入れ後の焼もどし処理によ
り、微細なMC型炭化物として析出し顕著な二次硬化現
象を生起し、併せて焼もどし軟化抵抗性を示す。また、
焼結合金組織の微細化とそれによる靭性等の機械的性質
の向上に寄与する。その添加量が、6%未満の少量であ
っても、組織の微細化による機械的性質の改善効果は得
られるが、焼もどし処理により十分な星のMC型炭化物
を析出させて高硬度・高耐摩耗性を得るには、少なくと
も6%の添加を必要とする。V: 6-12% (1) is one of the most important elements characterizing the composition of the sintered alloy in the present invention. That is, ■ is dissolved in the matrix of the sintered alloy, and when tempered after quenching, it precipitates as fine MC-type carbides, causing a remarkable secondary hardening phenomenon, and also shows resistance to tempering softening. . Also,
It contributes to the refinement of the sintered alloy structure and the improvement of mechanical properties such as toughness. Even if the amount added is small (less than 6%), the effect of improving mechanical properties by refining the structure can be obtained. Additions of at least 6% are required to obtain wear resistance.
添加量の増加に伴ってその効果は増すが、12%をこえ
ると、析出炭化物が粗大化し、靭性等の機械的性質が低
下し、また切削加工性等が悪くなる。The effect increases as the amount added increases, but if it exceeds 12%, the precipitated carbides become coarse, mechanical properties such as toughness deteriorate, and machinability deteriorates.
よって、VjJは6〜12%とした。Therefore, VjJ was set to 6 to 12%.
W:5〜14%
Wは前記■と並ぶ重要な元素である。すなわち、Wは強
力な炭化物形成元素であり、マトリックスに固溶し、焼
もどし処理によりMC型炭化物として微細析出し顕著な
二次硬化を生起させる。また焼もどし軟化抵抗性を示す
。添加量の下限値を5%としたのは、それより少ないと
、MC型炭化物の析出量が不足し、十分な二次硬化を達
成できないからである。添加量を増すほど、その効果は
増大するが、14%をこえると、析出炭化物の粗大化に
より、靭性等の機械的性質の低下をみる。よって、5〜
14%に規定した。W: 5 to 14% W is an important element along with the above-mentioned (2). That is, W is a strong carbide-forming element, solidly dissolved in the matrix, and finely precipitated as MC type carbide by tempering treatment, causing remarkable secondary hardening. It also shows resistance to temper softening. The lower limit of the amount added is set to 5% because if it is less than that, the amount of MC type carbide precipitated will be insufficient and sufficient secondary hardening will not be achieved. The effect increases as the amount added increases, but when it exceeds 14%, mechanical properties such as toughness deteriorate due to coarsening of precipitated carbides. Therefore, 5~
It was set at 14%.
Co:7〜14%
Coは、焼もどし処理による炭化物の析出と、マトリッ
クスの二次マルテンサイト化による焼結合金の強化を助
長すると共に、高温硬さの向上に奏効する。この効果を
得るには、少なくとも7%の添加を必要とするが、14
%をこえるとその効果はほぼ飽和する。従って、7〜1
4%とした。Co: 7 to 14% Co promotes the precipitation of carbides during tempering treatment and the strengthening of the sintered alloy by making the matrix into secondary martensite, and is effective in improving high-temperature hardness. To achieve this effect, an addition of at least 7% is required, but 14
%, the effect is almost saturated. Therefore, 7-1
It was set at 4%.
Mo:3〜9%
Moは、焼入れ性を高めると共に、焼もどし処理により
微細な炭化物を形成して顕著な二次硬化を生起し、高温
硬さの保持に奏効する。添加量が3%に満たないと、そ
の効果が十分でなく、他方9%をこえると、その効果は
ほぼ飽和する。よって、3〜9%とした。Mo: 3 to 9% Mo not only improves hardenability but also forms fine carbides during tempering treatment to cause significant secondary hardening, and is effective in maintaining high-temperature hardness. If the amount added is less than 3%, the effect is not sufficient, while if it exceeds 9%, the effect is almost saturated. Therefore, it was set at 3 to 9%.
第1図は本発明の複合部材の例として、円筒形状を有す
る金属基材(10)の外周面に前記成分組成を有する焼
結合金層(20)を形成した円筒体の断面構造を模式的
に示している。この複合体は、例えばその中空孔内にア
ーバー(30,30)を嵌着して圧延ロールとして使用
される。図の例では、一定の層厚を有する焼結合金層(
20)を基材(10)の外周面の全体に亘って形成して
いるが、必ずしもそうである必要はなく、その用途・使
用条件に応じた必要な部分にのみ選択的に設け、他の部
分は基材の表面が露出したままの部分複合構造としてよ
いことはいうまでもない。FIG. 1 schematically shows the cross-sectional structure of a cylindrical body, as an example of the composite member of the present invention, in which a sintered alloy layer (20) having the above-mentioned composition is formed on the outer peripheral surface of a metal base material (10) having a cylindrical shape. It is shown in This composite body is used as a rolling roll, for example, by fitting arbors (30, 30) into its hollow holes. In the example shown, the sintered alloy layer (
20) is formed over the entire outer circumferential surface of the base material (10), but it does not necessarily have to be so, and it can be selectively provided only in the necessary parts according to the application and usage conditions. It goes without saying that the portion may have a partial composite structure in which the surface of the base material remains exposed.
本発明の複合部材は、前記成分組成を有する金属粉末を
焼結材料とし、熱間静水圧加圧焼結法により、金属基材
(鋳造材等)の表面に焼結合金層を形成し、ついでその
焼結合金層の調質のための焼入れおよび焼もどし処理を
行うことにより製造される。すなわち、金属基材の表面
に、適宜のカプセル材を用いて焼結材料である金属粉末
の充填層を形成し、その粉末充填層内を脱気したうえ、
密封し、熱間静水圧加圧焼結に付し、好ましくは900
〜1200℃X500〜1500kg r / crA
の条件下に焼結合金層を形成する。使用する金属粉末は
、形成される焼結合金層の組織を均質微細なものとする
ために、粒径約30〜250μmのものが好ましい。な
お、粉末が比較的多量の酸化皮膜を有するものである場
合には、その粉末充填層の脱気・密封を行う前に、加熱
下に還元ガスを導入して酸化皮膜を還元すればよい。焼
結完了後、カプセル材の除去および必要な形状修正のた
めの機械加工が加えられる。なお、金属基材の材質は、
目的とする複合部材の用途・使用条件等に応じて任意に
選択されるものであり、例えば圧延用ロール等のように
強度や靭性を必要とするものである場合は、各種の強靭
鋼、例えば、SCM鋼やSNCM鋼等を使用すれば十分
である。The composite member of the present invention uses a metal powder having the above-mentioned composition as a sintered material, and forms a sintered alloy layer on the surface of a metal base material (cast material, etc.) by a hot isostatic pressure sintering method, The sintered alloy layer is then subjected to quenching and tempering treatments for refining the sintered alloy layer. That is, a filled layer of metal powder, which is a sintered material, is formed on the surface of a metal base material using an appropriate encapsulant, and the inside of the powder filled layer is degassed.
sealed and subjected to hot isostatic pressing sintering, preferably at 900
~1200℃X500~1500kg r/crA
A sintered alloy layer is formed under these conditions. The metal powder used preferably has a particle size of about 30 to 250 μm in order to make the structure of the sintered alloy layer formed homogeneous and fine. If the powder has a relatively large amount of oxide film, the oxide film may be reduced by introducing a reducing gas under heating before deaerating and sealing the powder-filled bed. After sintering is complete, machining is performed to remove the encapsulant and make any necessary shape modifications. In addition, the material of the metal base material is
It is arbitrarily selected depending on the intended use and usage conditions of the composite member. For example, in the case of a product that requires strength and toughness, such as a rolling roll, various types of high-strength steel, such as , it is sufficient to use SCM steel, SNCM steel, etc.
焼結合金層の焼入れ処理における焼入れ温度は1050
〜1250℃1好ましくは、1100〜1200℃であ
り、またその温度からの冷却は、亀裂・変形等の防止の
ために、略常圧のガスを冷媒とするガス冷却、または加
圧ガス(例えば3〜7 kg f /cffl)を冷媒
とする強制ガス冷却により行うことが好ましい、上記焼
入れ処理につづく焼もどし処理は、500〜600℃1
より好ましくは520〜580℃に加熱保持した後、徐
冷する操作を1回または複数回(例えば2〜4回)反復
することにより好適に達成される。この焼もどし処理に
より、焼結合金層は、そのマトリックスのオーステナイ
トからマルテンサイトもしくはベイナイトへの相変態と
、MC型および/またはM、C型炭化物の析出による二
次硬化が生起する。その析出炭化物の粒径は、約10μ
m以下(おおむね、数μmないしそれ以下)と極微細で
あり、また析出量は面積率で約25〜35%と、一般の
溶製材における炭化物量(通常、約10〜15%)に比
し豊富であり、かつ均一分散性を有している。The quenching temperature in the quenching process of the sintered alloy layer is 1050
~1250℃1 Preferably, the temperature is 1100~1200℃, and cooling from that temperature is performed by gas cooling using substantially normal pressure gas as a refrigerant, or pressurized gas (e.g. The tempering treatment following the above-mentioned quenching treatment, which is preferably carried out by forced gas cooling using a refrigerant of 3 to 7 kgf/cffl), is carried out at 500 to 600°C1.
More preferably, this is suitably achieved by repeating the operation of heating and maintaining the temperature at 520 to 580°C and then gradually cooling it once or multiple times (for example, 2 to 4 times). By this tempering treatment, the sintered alloy layer undergoes phase transformation from austenite in its matrix to martensite or bainite, and secondary hardening due to precipitation of MC type and/or M, C type carbides. The particle size of the precipitated carbide is approximately 10μ
It is extremely fine, measuring less than 1.0 m (roughly several μm or less), and the amount of precipitation is about 25 to 35% in terms of area ratio, compared to the amount of carbide in general ingot material (usually about 10 to 15%). It is abundant and has uniform dispersibility.
焼結合金層の層厚は特に限定されないが、圧延ロール等
として使用されるものである場合、約3閣より薄い層厚
では、圧延時の圧延荷重により、焼結合金層内に生じる
剪断応力の作用で焼結合金層に剥離が生じ易くなるので
、約3111I11以上とするのが好ましい。層厚を厚
くする程、耐久性は向上するが、あまり厚くすると、焼
結合金層の緻密性の低下や熱応力による亀裂の発生傾向
の増加等をみるので、約25胴を上限とするのが適当で
ある。The thickness of the sintered alloy layer is not particularly limited, but if it is used as a rolling roll or the like, if the layer is thinner than about 3 mm, the shear stress generated in the sintered alloy layer due to the rolling load during rolling will be reduced. Since peeling tends to occur in the sintered alloy layer due to the effect of The thicker the layer, the better the durability, but if it is too thick, the density of the sintered alloy layer will decrease and the tendency for cracks to occur due to thermal stress will increase, so the upper limit should be about 25 mm. is appropriate.
本発明の複合部材は、熱間静水圧加圧焼結により形成さ
れる焼結合金層の緻密かつ微細な組織と、その合金成分
組成および焼入れ・焼もどしの熱処理効果とが相まって
、高度の耐摩耗性、耐肌荒性および耐焼付性を備え、ま
た金属部材との複合構造であるので、例えばこれを圧延
用ロールの胴部材として使用する場合に必要な強度・靭
性等の機械的性質をも兼ね備えていると共に、アーバー
などの他部材と組合せる場合にも、焼嵌め等の簡単な操
作により所望の構造部材に組立てることができる。The composite member of the present invention has a high degree of durability due to the combination of the dense and fine structure of the sintered alloy layer formed by hot isostatic pressure sintering, the alloy composition, and the heat treatment effects of quenching and tempering. It has abrasion resistance, surface roughness resistance, and seizure resistance, and because it has a composite structure with metal parts, it has the mechanical properties such as strength and toughness that are necessary when using it as a body member of a rolling roll, for example. In addition, when combining it with other members such as an arbor, it can be assembled into a desired structural member by simple operations such as shrink fitting.
(実施例]
災患尉土
第2図に示すように、円筒形状の金属基材(10)に円
筒状金属カプセル材(C)を嵌装して溶接4合し、カプ
セル部材(C)の内側の空間内に、焼結材料である金属
粉末(P)を充填し、室温で脱気後、密封したうえ、熱
間静水圧加圧焼結に付す。焼結完了後、カプセル材(C
)を機械加工により除去すると共に、Innの余肉代を
残して粗加工を行う。(Example) As shown in Figure 2, a cylindrical metal capsule material (C) is fitted onto a cylindrical metal base material (10) and welded together, and the inner side of the capsule member (C) is The space is filled with metal powder (P), which is a sintering material, and after being degassed at room temperature, it is sealed and subjected to hot isostatic pressure sintering.After sintering is completed, the capsule material (C
) is removed by machining, and rough machining is performed leaving an excess thickness of Inn.
ついで、焼結合金層の調質のための焼入れ・焼もどし処
理を行う。上記工程を経て、焼結合金層である外層と金
属基材である内層との同心円状二層積層構造をもつ第1
図に示すような円筒形状の複合部材を得た。外径:36
4胴、内径: 220mm、長さ:100世、焼結合金
層層厚ニア価。Then, quenching and tempering treatments are performed to refine the sintered alloy layer. Through the above steps, the first layer has a concentric two-layer laminated structure consisting of an outer layer that is a sintered alloy layer and an inner layer that is a metal base material.
A cylindrical composite member as shown in the figure was obtained. Outer diameter: 36
4 cylinders, inner diameter: 220mm, length: 100mm, sintered alloy layer thickness near value.
(1)金属基材
材質: S CM 440114 (0,4%C−0,
35%S i −0,75%Mn−1%Cr −0,2
%Mo)(IF)焼結材料(金属粉末)
ガスアトマイズ粉末(50〜150μm)成分組成(−
(%) : C2,2,S i O,3,MnO,
3,Cr 4.4. V 6.2. W 7.1.
Co 10.8゜Mo 7.2. F e Baf
。酸素濃度150ppm。(1) Metal base material: S CM 440114 (0.4%C-0,
35%S i -0,75%Mn-1%Cr -0,2
%Mo) (IF) Sintered material (metal powder) Gas atomized powder (50-150μm) Component composition (-
(%): C2,2,S i O,3,MnO,
3, Cr 4.4. V6.2. W 7.1.
Co 10.8°Mo 7.2. F e Baf
. Oxygen concentration 150 ppm.
(m)焼結条件
1150℃X1000kg f /CTAX 3 Hr
(IV)焼結合金層の熱処理
(1)焼入れ処理
真空焼入れチャンバー内にて1200℃に1時間保持後
、ガス(常温常圧Arガス)を導入してガス冷却による
焼入れを行う。(m) Sintering conditions: 1150°C x 1000kg f/CTAX 3 Hr
(IV) Heat treatment of sintered alloy layer (1) Quenching treatment After holding at 1200° C. for 1 hour in a vacuum quenching chamber, gas (room temperature and normal pressure Ar gas) is introduced to perform quenching by gas cooling.
(2)焼もどし処理
540℃に5時間加熱保持して放冷する処理を3回反復
実施する。(2) Tempering treatment A process of heating and holding at 540° C. for 5 hours and allowing to cool is repeated three times.
(V)焼結合金層の品質
(イ)健全性
ダイチエツク、および超音波探傷により、焼結合金層内
および金属基材との界面のいずれにも欠陥はなく、その
界面は、全周全長に亘って完全に融着結合していること
が確認された。(V) Quality of the sintered alloy layer (a) Soundness inspection and ultrasonic flaw detection revealed that there were no defects either within the sintered alloy layer or at the interface with the metal base material, and the interface was found to be visible over the entire circumference and entire length. It was confirmed that the bond was completely fused.
(ロ)ミクロ組織
顕微鏡観察により、鋳鉄系ロールに比べて均質微細な炭
化物(MC型、M、C型)が分析分散した緻密な組織を
存していることが認められる。第3図にその顕微鏡組織
(倍率: 4000)を示す。炭化物粒径は約5μm以
下であり、面積率は約30%である。(b) Microstructure Microscopic observation reveals that the roll has a dense structure in which homogeneous fine carbides (MC type, M, C type) are analyzed and dispersed, compared to cast iron rolls. Fig. 3 shows its microscopic structure (magnification: 4000). The carbide particle size is about 5 μm or less, and the area ratio is about 30%.
(ハ)硬度
得られた複合部材の焼結合金層の表面硬度は、その面方
向および深さ方向に亘って、HR託5〜67と高く、バ
ラツキは±LH++c以下と小さく均質である。(c) Hardness The surface hardness of the sintered alloy layer of the obtained composite member is as high as 5 to 67 in the surface direction and in the depth direction, and the variation is small and homogeneous as less than ±LH++c.
(ニ)耐焼付性試験
回転する試験片の表面に相手材(SO5304)を押付
けて回転トルクを測定し、トルクの異常変動の有無によ
り試験片と相手材との摺接面間の焼付の有無を判定する
フレックス型焼付試験(押付荷重: 1.50kg)に
より、上記供試材(試験面:焼結合金層)と、従来の鋳
造ロール材料の代表例であるチルド鋳鉄、および従来の
焼結合金(C2,8%。(d) Seizure resistance test A mating material (SO5304) is pressed against the surface of a rotating test piece and the rotational torque is measured, and the presence or absence of abnormal fluctuations in torque determines the presence or absence of seizing between the sliding surfaces of the test piece and the mating material. A flex-type seizure test (pressing load: 1.50 kg) was conducted to determine the properties of the above sample material (test surface: sintered alloy layer), chilled cast iron, which is a typical example of conventional casting roll material, and conventional sintered alloy. Gold (C2, 8%.
Si0.4%、Mn0.4%、Ni1.2%、Cr2O
%、Mo1%、Fe Bad、焼結条件は前記と同一
)について焼付抵抗性の測定を行った。その試験におい
てチルド鋳鉄および比較焼結合金は、いずれも試験開始
後間もなくトルク値の異常変動が生じ、特に比較焼結合
金では荷重の増加に伴ってトルク値の鋭いピークがみら
れたのに対し、発明例の焼結合金層では、トルク値が安
定しており、相手材との摺接面間の焼付きの発生は全く
ないことが観察された。Si0.4%, Mn0.4%, Ni1.2%, Cr2O
%, Mo1%, Fe Bad, and the sintering conditions were the same as above). In the test, both the chilled cast iron and the comparative sintered alloy experienced abnormal fluctuations in torque values shortly after the start of the test, and in particular, the comparative sintered alloy showed a sharp peak in torque value as the load increased. It was observed that in the sintered alloy layer of the invention example, the torque value was stable and there was no occurrence of seizure between the sliding surfaces with the mating material.
(ホ)実機使用試験
本実施例の円筒形状を有する複合部材の中空孔内にアー
パーを焼嵌めにより嵌着し、圧延ロールとして必要な仕
上げ加工を行ったうえ、平鋼仕上圧延用ロールとして実
機使用に供した結果、従来の代表的鋳造ロールである高
硬度ダクタイル鋳鉄ロールに比し摩耗速度は数分の1以
下であり、摩耗および肌荒れは極く軽微で、被圧延鋼材
との焼付も皆無であった。(e) Actual machine use test The aper was fitted into the hollow hole of the cylindrical composite member of this example by shrink fitting, and after performing the necessary finishing processing as a rolling roll, the actual machine was used as a roll for flat steel finishing rolling. As a result of use, the wear rate was less than a fraction of that of high-hardness ductile cast iron rolls, which are typical conventional casting rolls, and wear and surface roughness were extremely slight, and there was no seizure with rolled steel materials. Met.
本発明の複合部材は、表面の耐摩耗性、耐肌荒れ性およ
び耐焼付性にすぐれ、また構造部材として必要な強靭性
等を備えていると共に、他部材との組立ても容易である
。本発明の複合部材を、例えば圧延用ロールの胴部材料
としてアーバー等と組合せて使用することにより、従来
のロールを凌ぐ安定した耐用寿命が得られ、またその胴
部表面状態が安定していることにより、被圧延材の品質
改善にも大きな効果が得られる。なお、本発明複合部材
は、そのほか軸受、シリンダ等の構造部材としても有用
である。The composite member of the present invention has excellent surface abrasion resistance, roughness resistance, and seizure resistance, and has the toughness necessary as a structural member, and can be easily assembled with other members. By using the composite member of the present invention in combination with an arbor or the like as a material for the body of a rolling roll, for example, a stable service life that exceeds that of conventional rolls can be obtained, and the surface condition of the body is stable. As a result, a great effect can be obtained in improving the quality of the rolled material. The composite member of the present invention is also useful as other structural members such as bearings and cylinders.
第1図は本発明の複合部材の断面構造の例を示す径方向
半裁断面図、第2図は金属基材の外周面に焼結材料(金
属粉末)を充填した例を示す径方向半裁断面図、第3図
は焼結合金層の金属組織を示す図面代用顕微鏡写真であ
る。
10:金属基材、20:焼結合金層、C:カプセル材。
P:焼結合金粉末。Fig. 1 is a radial half-cut cross-sectional view showing an example of the cross-sectional structure of the composite member of the present invention, and Fig. 2 is a radial half-cut cross-sectional view showing an example in which the outer peripheral surface of a metal base material is filled with sintered material (metal powder). Figures 3 and 3 are micrographs in place of drawings showing the metal structure of the sintered alloy layer. 10: Metal base material, 20: Sintered alloy layer, C: Capsule material. P: Sintered alloy powder.
Claims (1)
0.4%以下、Mn:0.4%以下、Cr:3〜6%、
V:6〜12%、W:5〜14%、Co:7〜14%、
Mo:3〜9%、残部実質的にFeからなり、マルテン
サイトもしくはベイナイト基地に、粒径10μm以下の
MC型および/またはM_6C型炭化物が分散析出した
金属組織を有する焼結合金層が積層形成されていること
を特徴とする複合部材。 2、金属基材の表面要所に、C:2〜3.5%、Si:
0.4%以下、Mn:0.4%以下、Cr:3〜6%、
V:6〜12%、W:5〜14%、Co:7〜14%、
Mo:3〜9%、残部実質的にFeである粒径:30〜
250μmの金属粉末を焼結材料として、熱間静水圧加
圧焼結法により焼結合金層を形成し、ついで1050〜
1250℃からの焼入れ、および500〜600℃での
焼もどし処理を行うことを特徴とする請求項1に記載の
複合部材の製造方法。[Claims] 1. C: 2 to 3.5%, Si:
0.4% or less, Mn: 0.4% or less, Cr: 3 to 6%,
V: 6-12%, W: 5-14%, Co: 7-14%,
Mo: 3 to 9%, the balance substantially consisting of Fe, and a sintered alloy layer is formed on a martensite or bainite base with a metal structure in which MC type and/or M_6C type carbides with a grain size of 10 μm or less are dispersed and precipitated. A composite member characterized by: 2. C: 2-3.5%, Si: at key points on the surface of the metal base material
0.4% or less, Mn: 0.4% or less, Cr: 3 to 6%,
V: 6-12%, W: 5-14%, Co: 7-14%,
Mo: 3-9%, remainder substantially Fe Particle size: 30-9%
Using 250 μm metal powder as a sintering material, a sintered alloy layer is formed by hot isostatic pressing sintering method, and then 1050 μm ~
The method for manufacturing a composite member according to claim 1, characterized in that quenching from 1250°C and tempering treatment at 500 to 600°C are performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8041488A JPH01252704A (en) | 1988-03-31 | 1988-03-31 | Complex member and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8041488A JPH01252704A (en) | 1988-03-31 | 1988-03-31 | Complex member and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01252704A true JPH01252704A (en) | 1989-10-09 |
Family
ID=13717635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8041488A Pending JPH01252704A (en) | 1988-03-31 | 1988-03-31 | Complex member and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01252704A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0510598A2 (en) * | 1991-04-22 | 1992-10-28 | Hitachi Metals, Ltd. | Wear-resistant compound roll |
JPH05148510A (en) * | 1991-04-22 | 1993-06-15 | Hitachi Metals Ltd | Wear resistant composite roll and manufacture thereof |
US20100292061A1 (en) * | 2007-02-20 | 2010-11-18 | Soentgen Thomas | Cylinder and/or roller and a process for the production of a cylinder and/or roller |
JP2020143380A (en) * | 2014-12-17 | 2020-09-10 | ウッデホルムズ アーベー | Wear resistant alloy |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126963A (en) * | 1982-01-22 | 1983-07-28 | Nachi Fujikoshi Corp | Powdered high speed steel |
JPS61219408A (en) * | 1985-03-26 | 1986-09-29 | Kubota Ltd | Composite ring roll |
-
1988
- 1988-03-31 JP JP8041488A patent/JPH01252704A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126963A (en) * | 1982-01-22 | 1983-07-28 | Nachi Fujikoshi Corp | Powdered high speed steel |
JPS61219408A (en) * | 1985-03-26 | 1986-09-29 | Kubota Ltd | Composite ring roll |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0510598A2 (en) * | 1991-04-22 | 1992-10-28 | Hitachi Metals, Ltd. | Wear-resistant compound roll |
JPH05148510A (en) * | 1991-04-22 | 1993-06-15 | Hitachi Metals Ltd | Wear resistant composite roll and manufacture thereof |
US20100292061A1 (en) * | 2007-02-20 | 2010-11-18 | Soentgen Thomas | Cylinder and/or roller and a process for the production of a cylinder and/or roller |
JP2020143380A (en) * | 2014-12-17 | 2020-09-10 | ウッデホルムズ アーベー | Wear resistant alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2715223B2 (en) | Roll outer layer material and composite roll | |
JPH07179997A (en) | High speed steel type powder alloy | |
JPH01252704A (en) | Complex member and its manufacture | |
JPH04358046A (en) | High speed steel base sintered alloy | |
JP2618309B2 (en) | Centrifugal casting sleeve roll and its manufacturing method | |
JP2601746B2 (en) | Centrifugal casting sleeve roll and its manufacturing method | |
JPS63297510A (en) | Composite member having excellent resistance to wear, seizure and surface roughening and its production | |
JPH07166300A (en) | High speed steel type powder alloy | |
JP2791445B2 (en) | High speed steel based sintered alloy | |
JPH01252703A (en) | Roll for rolling shaped steel and manufacture thereof | |
EP0510598B1 (en) | Wear-resistant compound roll | |
JPH0379083B2 (en) | ||
JP2796893B2 (en) | High speed steel based sintered alloy | |
JP3032995B2 (en) | High-speed steel-based sintered alloy for steel roll, roll body and manufacturing method | |
JP2972032B2 (en) | High speed steel based sintered alloy | |
JP2775614B2 (en) | High speed steel based sintered alloy | |
JP2796894B2 (en) | High speed steel based sintered alloy | |
JP2796896B2 (en) | High speed steel based sintered alloy | |
JP2972033B2 (en) | High speed steel based sintered alloy | |
JPH11246949A (en) | High speed steel series sintered alloy excellent in cracking resistance and roll for rolling using it | |
JPS61219405A (en) | Composite ring roll | |
JP3032996B2 (en) | High-speed steel-based sintered alloy for steel roll, roll body and manufacturing method | |
JP2796897B2 (en) | High speed steel based sintered alloy | |
JPH04221047A (en) | High speed steel type sintered alloy | |
JPH062086A (en) | High speed steel series sintered alloy |