Nothing Special   »   [go: up one dir, main page]

JPH01250027A - Temperature measuring instrument - Google Patents

Temperature measuring instrument

Info

Publication number
JPH01250027A
JPH01250027A JP7761188A JP7761188A JPH01250027A JP H01250027 A JPH01250027 A JP H01250027A JP 7761188 A JP7761188 A JP 7761188A JP 7761188 A JP7761188 A JP 7761188A JP H01250027 A JPH01250027 A JP H01250027A
Authority
JP
Japan
Prior art keywords
temperature
information
ultrasonic wave
tube body
echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7761188A
Other languages
Japanese (ja)
Inventor
Naohiko Takayama
高山 直彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7761188A priority Critical patent/JPH01250027A/en
Publication of JPH01250027A publication Critical patent/JPH01250027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To accurately measure temperature without being affected by an electromagnetic field by projecting an ultrasonic wave in a tube body and receiving echoes from reflection bodies, and converting the echo information into temperature information. CONSTITUTION:In the tube body 1 which has reflection plates 2 at a specific interval and is filled with liquid, the ultrasonic wave is projected from its one end and an ultrasonic wave transmitting and receiving circuit 5 receives the echo from the reflecting plates 2. The received echo information is converted by a temperature converting circuit 7 into the temperature information, which is displayed on a display device 8. In this case, the interval between the reflection plates 2 arranged in the tube body is already known, so the acoustic velocity in the liquid between the reflection plates can be calculated from the time difference between the echoes reflected by the reflection plates. The acoustic velocity depends upon the temperature, so the acoustic velocity can be converted into the temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は温度測定装置、特にハイパーサーミア(温熱
治療)分野において人体内部の温度測定に用いられる温
度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature measuring device, and particularly to a temperature measuring device used for measuring the temperature inside a human body in the field of hyperthermia (thermia therapy).

〔従来技術〕[Prior art]

ハイパーサーミアにおいて人体内加温領域の温度を正確
に測定する必要がある、 体内温度測定するのに一般に熱電対、サーミスタ測定計
が用いられている。
In hyperthermia, it is necessary to accurately measure the temperature in the heated region of the human body. Thermocouples and thermistor meters are generally used to measure the temperature inside the human body.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

熱電対、サーミスタいずれの場合も電磁場内ではリード
線がアンテナとして作用し、リード線に電流が誘導され
、そのために正確な温度測定ができないと共に熱電対、
サーミスタの挿入により電磁場を乱すという問題があっ
た。
In the case of both thermocouples and thermistors, the lead wire acts as an antenna in the electromagnetic field, and a current is induced in the lead wire, making accurate temperature measurement impossible.
There was a problem in that the insertion of a thermistor disturbed the electromagnetic field.

特に熱電対を用いる場合はリード線に高周波電流が流れ
ると測湿接点の整流作用により、熱起電力以外の電圧が
発生し、誤差を生ずる。
In particular, when a thermocouple is used, when a high frequency current flows through the lead wire, a voltage other than the thermoelectromotive force is generated due to the rectifying action of the humidity measuring contact, causing an error.

電磁波と干渉することなく温度測定できるものとして元
ファイバを用いた光学的温度計も用いられているが、安
定性に欠け、そのために繰り返えし校正を行なう必要が
ある。
Optical thermometers using original fibers are also used to measure temperature without interfering with electromagnetic waves, but they lack stability and require repeated calibration.

この発明は上記に鑑み、電磁場に影響されることなく温
度測定が正確に行な得、且つ2校正を必要としない温度
測定装危全提供することを目的とする。
In view of the above, it is an object of the present invention to provide a temperature measuring device that can accurately measure temperature without being affected by electromagnetic fields and does not require two-way calibration.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、所定間隔隔てて配設された反射体を有する
流体が充填された管体と、この管体内にその一端エフ超
音波を照射し、前記反射体からのエコ全受信する超音波
送受波手段と、受信されたエコ情報?:濡度清報に変換
する手段とを備えたものである。
The present invention includes a tube filled with fluid having reflectors arranged at predetermined intervals, and an ultrasonic transmission/reception system that irradiates F-ultrasonic waves at one end of the tube and receives all the echoes from the reflectors. Wave means and received eco-information? : It is equipped with means for converting into wetness information.

〔作 用〕[For production]

液体内金伝搬する超音波の速度(音速)は温度に依存す
るので、音速が判れば液体の温度が求められる。
The speed of ultrasonic waves propagating in a liquid (sound speed) depends on the temperature, so if the sound speed is known, the temperature of the liquid can be determined.

管体内に配設された反射体の間隔(距離)F’!既知で
あるので9反射体で反射場れたエコの時間差から反射体
間における液体中の音速が計算できる。
Interval (distance) of reflectors arranged inside the tube F'! Since this is known, the speed of sound in the liquid between the reflectors can be calculated from the time difference of the echo fields reflected by the nine reflectors.

音速は温度に依存しているので、音速から温度に変換で
きる。すなわちエコ情報(エコの時間差清報)から温度
情報に変換できる。
Since the speed of sound is dependent on temperature, it can be converted from the speed of sound to temperature. In other words, it is possible to convert eco information (eco time difference information) into temperature information.

その結果、管体を人体内に挿入しておけば反射体間領域
の人体内部の温度が検出できる。
As a result, if the tube is inserted into the human body, the temperature inside the human body in the area between the reflectors can be detected.

〔夾施例〕 第1図は一実施例の構成を示すブロック図である。[Examples] FIG. 1 is a block diagram showing the configuration of one embodiment.

この温度測定装置は9人体内の温度測定部に挿入される
検出部へと、超音波の送受信部全有する温度測定部Bと
で構成されている。
This temperature measuring device consists of a temperature measuring section B which includes a detecting section inserted into a temperature measuring section inside the human body, and an ultrasonic wave transmitting/receiving section.

検出部Aは、アクリル樹脂等で形成された円筒状の細管
(管体)山と、この細管α】内にそれの底板(11)か
ら一定の距離隔ててアIレミ箔等からなる反射板(反射
体) (2Jが配設されており、底板(11〕と反射板
ので区画された領域■】も含め細管U)内には水・アル
コール等の液体(3)が充填されている。なお、細管山
の領域(Xi”除く外周を断熱材で覆っても工い〇 検出部Bは前記細管(1)の一端に配設された超音波振
動子(4)、超音波送受波回路(5)、前記細管山の底
板(IIJからのエコと1反射板(2)からのエコの時
間差全検出する時間噴出回路0J1時間検出回路(6)
で検出された時間差から温度に変換する温度変換回路(
7)、温度変換回路(7)で変換された温度信号を表示
する表示器(8Jとで構成されている。
The detection part A consists of a cylindrical thin tube (tubular body) made of acrylic resin or the like, and a reflector made of aluminum foil or the like placed inside this thin tube α at a certain distance from its bottom plate (11). (Reflector) (2J is arranged, and the thin tube U, including the region ① divided by the bottom plate (11) and the reflector) is filled with a liquid (3) such as water or alcohol. Note that it is possible to cover the outer periphery except for the area of the capillary peak (Xi) with a heat insulating material. Detection part B includes an ultrasonic transducer (4) disposed at one end of the capillary tube (1), and an ultrasonic wave transmitting/receiving circuit. (5), time ejection circuit 0J1 time detection circuit (6) that detects the entire time difference between the echo from the bottom plate of the thin tube mountain (IIJ and the echo from 1 reflection plate (2))
Temperature conversion circuit (
7), and a display device (8J) that displays the temperature signal converted by the temperature conversion circuit (7).

上記構成において細管(IJ’!rカテーテル等を介し
て人体内に挿入し、領域(X)’を測温部に位置させる
In the above configuration, it is inserted into the human body via a thin tube (IJ'!r catheter, etc.), and the region (X)' is located at the temperature measuring section.

この状態で、送受信回路(5)で超音波振動子(4)全
駆動じ、パルス状の超音波ビームを細管O】内にそれの
軸方向に入射させる。
In this state, the ultrasonic transducer (4) is fully driven by the transmitter/receiver circuit (5), and a pulsed ultrasonic beam is made to enter the thin tube O in its axial direction.

エコは、超音波振動子(4Jで受信され送受波回路(5
)で、第2図に示すA−モード信号が受信される。
Eco is received by an ultrasonic transducer (4J) and a transmitting/receiving circuit (5
), the A-mode signal shown in FIG. 2 is received.

第2図で(イ)は細管(1)の底板(II)からのエコ
、轡は細管tlJ内の反射板(2)からのエコである。
In Fig. 2, (a) is the echo from the bottom plate (II) of the thin tube (1), and 轡 is the echo from the reflection plate (2) in the thin tube tlJ.

このA−モード信号は時間検出回路(6)で、第2図の
(イ)(口」間の時間、すなわち底板(11)と反射板
a)で区画され次領域(X) を超音波が伝搬する時間
tが求められる。
This A-mode signal is detected by the time detection circuit (6), which corresponds to the time between (A) (portion) in Figure 2, that is, the time between the bottom plate (11) and the reflector plate (a), and the ultrasonic wave is transmitted to the next area (X). The propagation time t is determined.

この時間tは領域(3)の温度、すなわち領域囚の位置
する人体内部の温度に依存しているので9時間−温度変
換テープlvを有する温度変換回路(7)で温度情報に
変換され9表示器(8)で表示される。
Since this time t depends on the temperature of the area (3), that is, the temperature inside the human body where the area prisoner is located, it is converted into temperature information by the temperature conversion circuit (7) having a 9-hour-temperature conversion tape lv and displayed as 9 It is displayed in the box (8).

また、温度変換回路(7)からの温度情報は図示しない
加温装置の制御信号として用いることもできる。
Further, the temperature information from the temperature conversion circuit (7) can also be used as a control signal for a heating device (not shown).

なお1図示の冥施例では一万の反射体全細管の底板とし
、それと一定の間隔全開て九反射板で一つの領域囚全区
画したが、細管内にそれの軸方向にそって反射板を複数
枚配設し、領域を多段に画成すれば、細管の軸方向にお
ける温度分布全測定することができる。
In addition, in the example shown in Figure 1, the bottom plate of a thin tube with 10,000 reflectors is used, and one area is divided into one area by nine reflective plates fully opened at a certain interval. By arranging a plurality of tubes and defining regions in multiple stages, it is possible to measure the entire temperature distribution in the axial direction of the thin tube.

筐九、領域(X)内の液体の温度変化が他の領域に伝わ
ると誤差を生じるOしたがって、領域間を断熱するため
に反射板を断熱材で包み込むか9反射敬白体断熱材で形
成するのが有効である。
9. If the temperature change of the liquid in area (X) is transmitted to other areas, an error will occur. Therefore, in order to insulate between areas, the reflective plate should be wrapped in a heat insulating material or should be formed with a reflective white body insulating material. is valid.

さらに細管全超音波反射材で形成すれば可撓性を有する
細管とすることも司能である0この場合。
Furthermore, if the thin tube is entirely made of an ultrasonic reflecting material, it is also possible to make the thin tube flexible.

反射板で区画された測温部を形成する領域は直線状にし
ておく必要がある。
The region forming the temperature measurement section divided by the reflector must be kept in a straight line.

〔効 果〕〔effect〕

この発明に工れば、を磁場内においても温度を正確に測
定することができ1校正も必要としないものである。
By incorporating the present invention, temperature can be accurately measured even in a magnetic field, and no calibration is required.

【図面の簡単な説明】[Brief explanation of the drawing]

1:細管(管体)  2:反射板(反射体)3:液体 
     4:超音波振動子5:送受波回路   6:
時間検出回路7:温度夏換回路  8:表示器 特許出願人 株式会社島津製作所− i−,、: −、、X  ・ 代理人  弁理士 弐 石 屑 彦、゛冗lIL゛7・
1.t; 窄l 図 不2図
1: Thin tube (tube body) 2: Reflector plate (reflector) 3: Liquid
4: Ultrasonic transducer 5: Transmission/reception circuit 6:
Time detection circuit 7: Temperature/summer conversion circuit 8: Display patent applicant Shimadzu Corporation - i-,: -,,
1. t; Narrowing l Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)所定間隔隔てて配設された反射体を有する流体が
充填された管体と、この管体内にその一端より超音波を
照射し前記反射体からのエコを受信する超音波送受手段
と、受信されたエコ情報を温度情報に変換する変換手段
とを備えてなる温度測定装置。
(1) A tube filled with fluid having reflectors arranged at predetermined intervals, and an ultrasonic transmitting/receiving means for irradiating ultrasonic waves into the tube from one end and receiving echoes from the reflectors. , and conversion means for converting received eco-information into temperature information.
JP7761188A 1988-03-30 1988-03-30 Temperature measuring instrument Pending JPH01250027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7761188A JPH01250027A (en) 1988-03-30 1988-03-30 Temperature measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7761188A JPH01250027A (en) 1988-03-30 1988-03-30 Temperature measuring instrument

Publications (1)

Publication Number Publication Date
JPH01250027A true JPH01250027A (en) 1989-10-05

Family

ID=13638710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7761188A Pending JPH01250027A (en) 1988-03-30 1988-03-30 Temperature measuring instrument

Country Status (1)

Country Link
JP (1) JPH01250027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296374A (en) * 1989-10-20 1994-03-22 University Of Strathclyde Apparatus for assessing a particular property in a medium
FR2712395A1 (en) * 1993-11-12 1995-05-19 Bosch Gmbh Robert Method and apparatus for operating an ultrasonic detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296374A (en) * 1989-10-20 1994-03-22 University Of Strathclyde Apparatus for assessing a particular property in a medium
FR2712395A1 (en) * 1993-11-12 1995-05-19 Bosch Gmbh Robert Method and apparatus for operating an ultrasonic detector
US5531118A (en) * 1993-11-12 1996-07-02 Robert Bosch Gmbh Method and device for operating an ultrasonic sensor

Similar Documents

Publication Publication Date Title
JP4879179B2 (en) Non-intrusive test for materials between spaced walls
US5280728A (en) Ultrasonic flow velocity measurement method and apparatus thereof
US11022502B2 (en) Ultrasonic waveguide technique for distribute sensing and measurements of physical and chemical properties of surrounding media
US5824915A (en) Volumetric flow meter
JPS5948327B2 (en) Flowmeter
JPH01250027A (en) Temperature measuring instrument
Lynnworth et al. Nuclear reactor applications of new ultrasonic transducers
RU2580907C1 (en) Ultrasonic waveguide level meter for liquid
US20240310195A1 (en) Ultrasonic measuring cell and method for measuring the volume flow of a liquid in a tube
US5936160A (en) Method and apparatus for measuring sound velocity in liquid
US3580058A (en) Dual ultrasonic sensors employing a single mode of ultrasonic transmission
JPS60115810A (en) Ultrasonic flowmeter
Mahadeva et al. Studies of the accuracy of clamp-on transit time ultrasonic flowmeters
JPS6254112A (en) Thickness measuring method for scale in pipe
JP2001133319A (en) Acoustic velocity measuring device
JPS5897633A (en) Temperature measurement system
JPH08334321A (en) Ultrasonic distance-measuring apparatus
JPS638515A (en) Ultrasonic flow rate measuring instrument
JPS631217Y2 (en)
JPH02116745A (en) Ultrasonic solution density measuring apparatus
JP2001330485A (en) Ultrasonic flowmeter
RU2438102C2 (en) Vi melnikov ultrasonic liquid level indicator
JPH0394109A (en) Ultrasonic measuring device
JPH10300556A (en) Measuring apparatus for level of molten metal
JPH05172793A (en) Sound characteristic value measuring device