Nothing Special   »   [go: up one dir, main page]

JPH01259123A - Manufacture of steel bar and wire rod by continuous hot rolling - Google Patents

Manufacture of steel bar and wire rod by continuous hot rolling

Info

Publication number
JPH01259123A
JPH01259123A JP8470088A JP8470088A JPH01259123A JP H01259123 A JPH01259123 A JP H01259123A JP 8470088 A JP8470088 A JP 8470088A JP 8470088 A JP8470088 A JP 8470088A JP H01259123 A JPH01259123 A JP H01259123A
Authority
JP
Japan
Prior art keywords
point
temperature
rolling
rolled material
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8470088A
Other languages
Japanese (ja)
Inventor
Koro Takatsuka
公郎 高塚
Mitsuru Moritaka
森高 満
Yutaka Kanatsuki
金築 裕
Yoichi Akutagawa
芥川 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8470088A priority Critical patent/JPH01259123A/en
Publication of JPH01259123A publication Critical patent/JPH01259123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To form a directly spheroidized structure by controlling the continuous hot rolling stage of a steel bar of carbon steel containing specific amounts of C and temp. treatment directly after the above stage, respectively, so as to obviate the necessity of subsequent spheroidizing annealing treatment. CONSTITUTION:In the course of the continuous hot rolling stage of a steel bar or wire rod of carbon steel or alloy steel containing 0.03-1.5% C, the surface layer part of the rolled stock is subjected to forcedly cooling down to the Ms point or below, by which a hardened structure of martensite, etc., is formed. Subsequently, cooling conditions after the above forcedly cooling until the rolled stock reaches the next rolling mill are controlled and the temp. in the central part of the rolled stock in a recuperating stage is regulated to a temp. in the region of Ar1 point-Ae1 point and, then, finish rolling is applied to the above rolled stock, by which prestructure easy of spheroidizing in all the cross sections of the rolled stock can be formed. Further, the rolled stock is heated up to a temp. in the region of Ac1 point-Ac3 point directly after the finish rolling, cooled down to a temp. in the region between the Ac1 point and 600 deg.C, and held at constant temp. in the above temp. region for 20min-5h, by which the directly spheroidized structure can be obtained. By this method, the necessity of spheroidizing annealing treatment can be obviated and, as a result, the process can be simplified and energy can be economized.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は棒鋼及び線材の熱間連続圧延による製造に係り
、特に熱間連続圧延工程及びその直後の温度制御により
、以降の球状化焼なまし処理を省略し得る直接球状化組
織を得る方法に関する。 (従来の技術) 冷間鍛造用鋼や軸受鋼、工具鋼などの高炭素鋼では、冷
間での加工に先立ち、延性を付与したり、硬さを減じて
その加工性を改善することを目的として、一般に球状化
焼なまし処理が行われることが多い。この球状化焼なま
しの方法としては、従来から、−■A1点直下の温度に
適当時間加熱保持した後、冷却する長時間加熱法、■A
1点とA3点との間の二相域に加熱後、徐冷して変態を
終了させる徐冷法、■A1をはさんでその直上と直下の
温度に繰り返し加熱冷却する繰り返し法、等の方法があ
る。 このような球状化焼なまし処理は、熱間圧延によって棒
鋼、線材などに成形した後、別ラインの熱処理炉で所定
の温度まで再加熱して実施されるのが通常であるが、こ
れには一般に10〜15時間程度の極めて長い処理時間
を要するため、生産性が低く、熱処理コストが高くなり
、また、エネルギー節減等の観点からも、上記熱処理方
法は好ましいとは云えない。 そこで、これらの改善策として、球状化を容易にする方
法として前組織(圧延上りの組織)を調整する方法、或
いは更には熱間圧延後に実施する球状化焼なまし処理そ
のものを省略する方法が試みられている。 前者の方法は、例えば、熱間圧延後、製品冷却帯での急
冷(水冷)によってマルテンサイトのような焼入れ組織
或いは中間組織とする方法等であるが、この方法により
圧延材全断面にわたって上記焼入れ組織或いは中間組織
とするには多量の冷却水の使用及び/又は多くの冷却時
間を費やしても容易ではなく、圧延材中心部に層状パー
ライトが生成するのが通例である。したがって、所望の
前組織の調整が可能なのは、上記焼入れ組織或いは中間
組織が比較的容易に得られる圧延材表面部に限られると
いう問題がある。 また、後者の球状化焼なまし処理自体を省略できる方法
、すなわち、熱間圧延時及び圧延後の温度コントロール
等によって球状化組織を直接得る方法としては、例えば
、特開昭5!;l−136421号、同59−1302
4号などに示されている方法がある。しかし、いずれの
方法も熱間圧延中にこれらの温度コントロールを圧延材
中心部に至る全断面にわたって実施するのは不可能であ
り、熱間圧延仕上りで圧延材全断面にわたる球状化組織
は得られないという問題がある。 このような問題を解決するために、本出願人は先に熱間
連続圧延により或いは更にその直後の温度制御により、
以降の球状化焼なまし処理で球状化組織を得やすくし、
或いは球状化焼なまし処理を省略して直接球状化組織を
得る方法を提案した(特願昭61−294309号、同
61−294310号、同62−221129号)。 すなわち、1つは、■熱間圧延工程、特に仕上圧延前の
中間冷却帯において、圧延材表層部を水等の冷却剤によ
ってMs点以下に強冷し、次圧延機(仕上圧延機)に到
達するまでの強冷後の復熱時間を調節することによって
、復熱過程において圧延材中心部をAr1点以下の温度
に降下させてバーライ1〜変態させることにより、熱間
圧延工程中、特に仕上圧延開始時までに圧延材断面内の
未変態組織の変態を完了させ、仕上圧延加工により変態
組織、特に層状パーライト組織の板状或いは棒状の炭化
物を分断(或いは分断促進)することによっで、以降の
熱処理工程における球状化組織の形成が容易となるよう
な前組織を実現する方法である(第1図参照)。 或いは、■仕上圧延加工時の圧延負荷や圧延調整等の操
業上の問題を軽減するために、上記の復熱終了時の圧延
材中心部の温度をAr1〜Ae1点の温度域まで降下さ
せ、このような温度域から仕上圧延を開始し、圧延によ
る加工誘起変態により生じた層状パーライト組織中の板
状或いは棒状の炭化物を仕上圧延過程中に分断(或いは
分断促進)することによって同様に以降の熱処理工程に
おける球状化組織の形成が容易となるような前組織を実
現する方法(第2図参照)である。 更には、■上記■、■のいずれの場合も圧延直後の温度
制御(徐冷又は恒温保持)によって、直接球状化組織を
実現する方法である。この温度制御のうち、徐冷法は、
熱間圧延過程で得られた全断面内で球状化の容易な前組
織をもつ圧延材を、仕上圧延直後にAcm点〜Ac3点
の温度域に加熱した後、50℃/hr以下の冷却速度で
徐冷して球状化組織を得る方法であり、恒温保持法は、
仕上圧延直後にAcm点以下600℃までの温度域で0
゜5〜5hrの恒温保持を行うことにより球状化組織を
得る方法である。 (発明が解決しようとする課題) 本出願人が提案した前記方法のうち、熱間圧延直後に恒
温保持による温度制御を行う方法、すなわち、仕」二圧
延直後に、Ac、意思下600 ℃までの温度域で0.
5〜5hr恒温保持する方法の場合は、恒温保持中に炭
化物を凝集、成長させることにより、直接球状化組織が
得られる。 しかし乍ら、仕上圧延前の圧延材中心温度がAr、点〜
Ae1点の場合(すなわち、仕上圧延中に加工誘起変態
を生じさせる場合)において加工(仕上圧延)開始温度
が低い場合には、生成する層状パーライトが比較的微細
で、したがって、仕上圧延過程でこの組織中の板状或い
は棒状の炭化物から分断或いは分断促進させて生成する
炭化物も比較的細かく、そのため、これらの組織を前述
の温度制御法により恒温保持した場合、恒温保持後の硬
さは、従来のオフラインによる球状化焼鈍材よりも高い
レベルにとどまっているという問題があった・ 本発明は、先の本出願人の提案に係る方法のうち、熱間
圧延直後に恒温保持による温度制御を行う方法の問題点
を解決するためになされたものであって、熱間連続圧延
工程及びその直後の温度制御により、従来のオフライン
での球状化焼鈍材と同レベルの硬さを有する直接球状化
組織を得る方法を提供することを目的とするものである
。 (課題を解決するための手段) 前記目的を達成するため、本発明者は、特に仕上圧延開
始前の圧延材中心部の温度がAr□点〜Ae□点の場合
(仕上圧延過程で加工誘起変態を生じさせる場合)にお
いて、仕上圧延での加工温度が低い場合でも、所定の球
状化組織が得られ、且つ従来のオフライン球状化焼鈍材
と同程度の硬さレベルが得られる方法について鋭意研究
を重ねた。 その結果、仕上圧延終了直後であって恒温保持前の加熱
条件並びに恒温保持条件を規制すること=7− により、残留炭化物を核として再凝集、成長させると、
球状化組織の微細化の程度が緩和されて、硬さも従来の
オフライン球状化焼鈍材と同程度のものが得られること
を見い出したものである。 すなわち、本発明に係る熱間連続圧延による棒鋼及び線
材の製造方法は、0.03〜1.5%Cを含む炭素鋼又
は合金鋼の棒鋼又は線材の熱間連続圧延工程の途中で、
圧延材表層部をMs点以下に強冷し、該圧延材が次圧延
機に到達するまでの間の強冷後の冷却条件を調節するこ
とにより、復熱過程において圧延材中心部をAr□点〜
Ae□点間の温度域に降下させ(又は復熱過程において
圧延材中心部をAr、意思下の温度に降下させてバーラ
イ1〜変態させ)、次いで仕上圧延を行って圧延材全断
面内で球状化の容易な前組織を得て、更に仕上圧延直後
にAcI点〜Ac3点の温度域に加熱した後、Ac、意
思下600℃までの温度域に冷却して、該温度域で20
m」n〜5hrの範囲で恒温保持することにより、直接
球状化組織を得ることを特徴とするものである。 以下に本発明を更に詳細に説明する。 まず、本発明において熱間圧延直後の温度制御の対象と
する熱間圧延材は、本出願人が先に提案した以下■又は
■の方法により得られる球状化の容易な前組織を有する
圧延材である。 ■0.03〜1.5%Cを含む炭素鋼又は合金鋼の棒鋼
又は線材の熱間連続圧延工程の途中で、圧延材表層部を
Ms点以下に強冷し、該圧延材が次圧延機に到達するま
での間の強冷後の冷却条件を調節することにより、復熱
過程において圧延材中心部をAr1点〜Ae□点間の温
度域に降下させ、次いで仕上圧延を行って圧延材全断面
内で球状化の容易な前組織を得る方法(第2図参照)。 ■0,03〜1.5%Cを含む炭素鋼又は合金鋼の棒鋼
又は線材の熱間連続圧延工程の途中で、圧延材表層部を
Ms点以下に強冷し、該圧延材が次圧延機に到達するま
での間の強冷後の冷却条件を調節することにより、復熱
過程において圧延材中心部をAr1点以下の温度に降下
させてバーライ1へ変態させ、次いで仕上圧延を行って
圧延材全断面内で球状化の容易な前組織を得る方法(第
1図参照)。 本発明者は、このように熱間圧延上りで球状化の容易な
前組織を有する圧延材について、恒温保持条件を変えて
得られる組織と硬さとの関係を調べるために基礎実験を
行った。 第3図はその基礎実験の結果の一例を示したものである
。本実験では、供試鋼として348Cを用い、加工条件
(温度パターン及び加工率)は、155mm口ビレット
から30mmφ棒鋼への圧延時に、仕上圧延前の中間冷
却帯において圧延材表面をMs点以下に強冷した後の復
熱過程及びその後の仕上圧延過程での温度履歴を実機に
おいて詳細に把握した冷却帯冷却能の実験式を用いた圧
延過程の温度解析により求めることにより決定したもの
であり、総加工率は約50%、加工開始温度(仕上圧延
開始温度)は640”C(Ar1〜Ae□点間の温度)
であり、加工終了後Acよ点直上の740℃に昇温した
後、680℃の保持温度まで1200C/hrの速度で
冷却した場合である。なお、Ar1点は厳密には鋼種、
冷却速度等によって異なるが、ここではAr1=550
℃とみなした。またAe1点2720℃である。 第3図から明らかなように、保持時間がおよそ20分以
上になると硬さが顕著に低下する。これは、オーステナ
イト中へ固溶した一部の炭化物が恒温保持過程で残存炭
化物を核として析出、凝集及び成長して球状化組織とな
るためである。一方、保持時間がおよそ20分未満では
、炭化物の析出或いは凝集及び成長が充分行われないた
め、球状化組織にまでは至らず、粒状化組織等にとどま
るため、硬さは比較的高いレベルとなっている。したが
って、このような短時間での恒温保持では良好な球状化
組織は得られない。 以上の結果は、加工開始温度が640℃(Ar1点〜A
e□点間の温度)の場合であるが、Ar1点〜Aei点
の温度範囲で加工開始温度が更に低い場合(例、600
℃)でも、およそ20分以上の恒温保持時間で所定の硬
さ及び組織が得られることが確認された。 この点、従来の温度制御法、すなわち、加工(仕上圧延
)終了後にAcm点〜Ac3点の温度範囲に昇温せず、
A01点直下に保持する方法では、加工(仕上圧延)開
始時の圧延材中心部温度がAr1点〜Ae1点で加工(
仕上圧延)中に加工誘起変態を生じさせる場合において
、加工開始温度が低い(例、600℃)ときには恒温保
持後の硬さは従来のオフライン球状化焼鈍材よりも高い
レベルである。 したがって、本発明では、上述の各種基礎実験の結果に
基づき、更に恒温保持による温度制御条件を詳細に検討
して完成したものである。 次に1本発明における熱間連続圧延ラインの一例と共に
条件限定理由を説明する。 第4図は熱間連続圧延ラインを示したものであり、20
はビレット等を加熱する加熱炉で、この後段にはNα1
〜Nα8の圧延機からなる粗圧延機列21、Nα9〜N
α12の圧延機からなる中間圧延機列22及びNo、 
13〜N016の圧延機からなる仕上圧延機列23が直
列状に配置されている。24は中間圧延機列22と仕上
圧延機列23との間に設けられた中間冷却帯であり、2
5は仕上圧延機列と冷却床26との間に設けられた後段
冷却帯であり、これらの冷却帯24.25で圧延材に供
給する冷却水流量はプロセスコントロールコンピュータ
ーを含む制御装置29により制御されるようになってい
る。30.31.32は圧延材の表面温度を測定する温
度計であり、27は熱処理炉である。 上記圧延ラインにおいて、加熱炉20から抽出されたビ
レット等は粗圧延機列21及び中間圧延機列22で順次
圧延され、この圧延材を中間冷却帯24にて表層部をM
s点以下としてマルテンサイト等の焼入れ組織とし1.
中間冷却帯24と仕上圧延機列23間での表層部の復熱
過程において、圧延材中心部の温度がAr1点〜八〇へ
点の温度域となるように或いはAr1点以下となるよう
に冷却条件(冷却水流量及び復熱時間)を制御して仕上
圧延を開始する。 このような温度域から仕上圧延を開始すれば、圧延材全
断面内で球状化の容易な前組織が得られる。すなわち、
圧延材中心部の温度がAr1点〜A e 1点の温度域
の場合は圧延による加工誘起変態を生じて層状パーライ
ト組織が生成する(圧延材中心部の温度がAr1点以下
の場合はバーライ1−変態する)と共に、この組織中の
板状又は棒状の炭化物が分断(或いは分断促進)される
ため、球状化の容易な前組織が得られる。 なお、仕」二圧延開始温度をAr1点〜Ae□点の温度
域とするのは、より高温域から仕上圧延できるので、仕
上圧延時の圧延負荷、圧延調整の難しさの緩和等により
操業性が改善され、実用上の効果が大きいためである。 また、圧延材表層部において水等の冷却剤によってMs
点以下に強冷され得られる焼入れ組織は、仕上圧延加工
による歪エネルギーの増加などにより一層球状化の形成
が容易な前組織となり、また圧延材中心部と表層部以外
の領域は、中間組織をも含んだこれらの混合組織となっ
ているため、同様に仕上圧延加工によって球状化の容易
な前組織となる。 この後、すなわち、仕上圧延直後に、熱処理炉27でA
cm点〜Ac3点の温度域に加熱した後、Ac1点〜6
00℃の範囲で恒温保持し、この恒温保持中に一層オー
ステナイト中へ固溶した一部の炭化物を残存炭化物を核
として析出、凝集及び成長させて球状化組織を得る。 恒温保持温度の下限を600℃とするのは、この温度以
下の範囲での恒温保持では炭化物の凝集が遅滞するため
に、これらを成長させて球状化組織とするのに必要な時
間が極めて長くなり、実用的でなくなるためである。ま
た、上限をAc1点とするのは、この温度を超えると炭
化物はオーステナイト中へ固溶し始め、以後の冷却過程
で層状パーライトが生成して良好な球状化組織が得られ
なくなるためである。 恒温保持時間の下限を20m1nとするのは、これより
短時間になると残存炭化物を核として炭化物を再凝集、
成長させることが不充分となると共   −に、加工(
仕上圧延)開始温度が更に低い場合(例、600℃)に
も所定の硬さ及び球状化組織が得られなくなるためであ
る。また上限を5hrとするのは、これ以上長くなって
も球状化効果の上昇にさほど影響を及ぼさず、またオン
ライン処理であるため、保持時間が長くなれば大規模な
熱処理が必要となり、生産性も低下して実用的でなくな
るためである。 恒温保持終了後の冷却速度は、徐冷などのように特に調
整する必要がなく、空冷でよい。
(Industrial Application Field) The present invention relates to the production of steel bars and wire rods by continuous hot rolling, and in particular, the present invention relates to the production of steel bars and wire rods by continuous hot rolling, and in particular, by using the continuous hot rolling process and temperature control immediately thereafter, it is possible to directly produce steel bars and wire rods by omitting the subsequent spheroidizing annealing process. This invention relates to a method for obtaining a spheroidized tissue. (Conventional technology) For high carbon steels such as cold forging steels, bearing steels, and tool steels, prior to cold working, it is necessary to improve workability by imparting ductility or reducing hardness. For this purpose, a spheroidizing annealing process is often performed. Conventionally, methods for this spheroidizing annealing include a long-time heating method in which heat is maintained at a temperature just below the -■A1 point for an appropriate period of time, and then cooled;
There are several methods, such as a slow cooling method in which the material is heated to a two-phase region between point A1 and point A3 and then gradually cooled to complete the transformation, and a repeated method in which the material is repeatedly heated and cooled to a temperature just above and below A1. be. This type of spheroidizing annealing treatment is normally carried out by hot rolling to form a steel bar, wire rod, etc., and then reheating it to a predetermined temperature in a heat treatment furnace on a separate line. generally requires an extremely long treatment time of about 10 to 15 hours, resulting in low productivity and high heat treatment costs.Also, the above heat treatment method cannot be said to be preferable from the viewpoint of energy saving and the like. Therefore, as a method to improve these, there is a method of adjusting the pre-structure (structure after rolling) to facilitate spheroidization, or a method of omitting the spheroidization annealing process itself which is carried out after hot rolling. is being attempted. The former method is, for example, a method in which after hot rolling, the product is rapidly cooled (water-cooled) in a product cooling zone to form a quenched structure like martensite or an intermediate structure. It is not easy to obtain a microstructure or an intermediate structure even if a large amount of cooling water and/or a long cooling time are used, and layered pearlite is usually formed in the center of the rolled material. Therefore, there is a problem in that the desired pre-structure can be adjusted only in the surface portion of the rolled material where the above-mentioned quenched structure or intermediate structure can be obtained relatively easily. In addition, as a method that can omit the latter spheroidizing annealing process itself, that is, a method of directly obtaining a spheroidized structure by controlling the temperature during and after hot rolling, for example, JP-A No. 5, No. ; l-136421, 59-1302
There is a method shown in No. 4 etc. However, with either method, it is impossible to control the temperature over the entire cross section of the rolled material during hot rolling, and it is impossible to obtain a spheroidized structure over the entire cross section of the rolled material in the hot rolled finish. The problem is that there is no. In order to solve such problems, the present applicant first carried out continuous hot rolling or by temperature control immediately thereafter,
The subsequent spheroidizing annealing process makes it easier to obtain a spheroidized structure,
Alternatively, a method of omitting the spheroidizing annealing treatment and directly obtaining a spheroidized structure was proposed (Japanese Patent Applications No. 61-294309, No. 61-294310, No. 62-221129). In other words, one is: (1) In the hot rolling process, especially in the intermediate cooling zone before finish rolling, the surface layer of the rolled material is strongly cooled to below the Ms point with a coolant such as water, and then transferred to the next rolling mill (finishing mill). By adjusting the reheating time after strong cooling, the center of the rolled material is lowered to a temperature below the Ar1 point during the reheating process and transformed to Barley 1. By completing the transformation of the untransformed structure in the cross section of the rolled material by the start of finish rolling, and dividing (or promoting the division) the transformed structure, especially the plate-like or rod-like carbides of the layered pearlite structure, by the finish rolling process. This is a method of realizing a pre-structure that facilitates the formation of a spheroidized structure in the subsequent heat treatment process (see FIG. 1). Alternatively, (1) In order to reduce operational problems such as rolling load and rolling adjustment during finish rolling, the temperature at the center of the rolled material at the end of the reheating described above is lowered to a temperature range of Ar1 to Ae1, Finish rolling is started from such a temperature range, and plate-like or rod-like carbides in the layered pearlite structure produced by the deformation-induced transformation caused by rolling are split (or splitting is promoted) during the finish rolling process. This is a method (see FIG. 2) of realizing a prestructure that facilitates the formation of a spheroidized structure in the heat treatment process. Furthermore, (1) In both of the above (2) and (2), it is a method of directly realizing a spheroidized structure by controlling the temperature (slow cooling or constant temperature maintenance) immediately after rolling. Among these temperature controls, the slow cooling method is
A rolled material having a pre-structure that is easily spheroidized in the entire cross section obtained in the hot rolling process is heated to a temperature range of Acm point to Ac3 point immediately after finish rolling, and then a cooling rate of 50 ° C / hr or less is applied. This is a method to obtain a spheroidized tissue by slow cooling at
0 in the temperature range below the Acm point and up to 600℃ immediately after finish rolling
This is a method of obtaining a spheroidized tissue by maintaining the temperature at a constant temperature of 5 to 5 hours. (Problems to be Solved by the Invention) Among the above methods proposed by the present applicant, a method in which temperature control is performed by constant temperature maintenance immediately after hot rolling, that is, immediately after finishing rolling, Ac, up to 600 °C at will. 0 in the temperature range.
In the case of a method in which the temperature is maintained for 5 to 5 hours, a spheroidized structure can be directly obtained by coagulating and growing carbides during the constant temperature maintenance. However, the temperature at the center of the rolled material before finish rolling is Ar,
In the case of Ae1 point (that is, when strain-induced transformation occurs during finish rolling), if the processing (finish rolling) start temperature is low, the layered pearlite produced is relatively fine, and therefore, this layered pearlite is formed during the finish rolling process. The carbides that are generated by splitting or promoting splitting from the plate-shaped or rod-shaped carbides in the structure are also relatively fine, so when these structures are kept at constant temperature using the temperature control method described above, the hardness after being kept at constant temperature is lower than that of the conventional method. There was a problem that the temperature remained at a higher level than that of offline spheroidized annealed materials. Among the methods previously proposed by the applicant, the present invention is a method in which the temperature is controlled by constant temperature maintenance immediately after hot rolling. This method was developed to solve the problems of the method, and by using a continuous hot rolling process and temperature control immediately after that, a directly spheroidized structure with the same level of hardness as the conventional offline spheroidized annealed material was created. The purpose is to provide a method for obtaining (Means for Solving the Problems) In order to achieve the above object, the present inventors have developed a method to solve the problem, especially when the temperature of the center of the rolled material before the start of finish rolling is between Ar□ point and Ae□ point (deformation-induced We are conducting intensive research on a method to obtain the desired spheroidal structure and the same level of hardness as conventional offline spheroidized annealed materials even when the processing temperature in finish rolling is low. layered. As a result, by regulating the heating conditions and constant temperature holding conditions immediately after finish rolling and before constant temperature holding = 7-, if the residual carbides are reagglomerated and grown as nuclei,
It has been found that the degree of refinement of the spheroidal structure is relaxed, and the hardness is comparable to that of conventional offline spheroidized annealed materials. That is, in the method for producing steel bars and wire rods by hot continuous rolling according to the present invention, during the hot continuous rolling process of carbon steel or alloy steel bars or wire rods containing 0.03 to 1.5% C,
By strongly cooling the surface layer of the rolled material to below the Ms point and adjusting the cooling conditions after the hard cooling until the rolled material reaches the next rolling mill, the central part of the rolled material is heated to Ar□ during the reheating process. point~
Lower the temperature to a temperature range between Ae After obtaining a pre-structure that is easy to spheroidize, and further heating to a temperature range of AcI point to Ac3 point immediately after finishing rolling, it is cooled to a temperature range of up to 600°C, and then heated to a temperature of 20°C in this temperature range.
It is characterized in that a spheroidized structure is directly obtained by maintaining the temperature at a constant temperature in the range of m''n to 5 hours. The present invention will be explained in more detail below. First, in the present invention, the hot-rolled material to be subjected to temperature control immediately after hot rolling is a rolled material having a pre-structure that is easily spheroidized and obtained by the method described in (1) or (2) below, which was previously proposed by the applicant. It is. ■During the hot continuous rolling process of carbon steel or alloy steel bars or wire rods containing 0.03 to 1.5% C, the surface layer of the rolled material is strongly cooled to below the Ms point, and the rolled material is then rolled. By adjusting the cooling conditions after strong cooling before reaching the mill, the center of the rolled material is lowered to a temperature range between Ar1 point and Ae□ point in the reheating process, and then finish rolling is performed to reduce the rolling A method to obtain a pre-structure that facilitates spheroidization within the entire cross section of the material (see Figure 2). ■During the hot continuous rolling process of carbon steel or alloy steel bars or wire rods containing 0.03 to 1.5% C, the surface layer of the rolled material is strongly cooled to below the Ms point, and the rolled material is rolled next time. By adjusting the cooling conditions after strong cooling before reaching the mill, the temperature of the center of the rolled material is lowered to below the Ar1 point in the reheating process, transforming it into barley 1, and then finishing rolling is performed. A method for obtaining a pre-structure that facilitates spheroidization within the entire cross section of a rolled material (see Figure 1). The present inventor conducted basic experiments to investigate the relationship between the hardness and the structure obtained by changing the constant temperature holding conditions on a rolled material having a pre-structure that easily becomes spheroidized after hot rolling. Figure 3 shows an example of the results of the basic experiment. In this experiment, 348C was used as the test steel, and the processing conditions (temperature pattern and processing rate) were such that during rolling from a 155mm billet to a 30mmφ steel bar, the surface of the rolled material was kept below the Ms point in the intermediate cooling zone before finish rolling. It was determined by calculating the temperature history of the recuperation process after strong cooling and the subsequent finish rolling process through temperature analysis of the rolling process using an empirical formula for the cooling zone cooling capacity, which was obtained in detail on the actual machine. The total processing rate is approximately 50%, and the processing start temperature (finish rolling start temperature) is 640"C (temperature between Ar1 and Ae□ points)
This is the case where the temperature was raised to 740°C just above the Ac point after finishing the processing, and then cooled at a rate of 1200C/hr to the holding temperature of 680°C. In addition, strictly speaking, Ar1 point is the steel type,
Although it varies depending on the cooling rate etc., here Ar1 = 550
It was considered as ℃. Moreover, the Ae1 point is 2720°C. As is clear from FIG. 3, when the holding time exceeds approximately 20 minutes, the hardness decreases significantly. This is because some of the carbides solid-solved in the austenite precipitate, aggregate, and grow with the remaining carbides as nuclei during the constant temperature holding process, resulting in a spheroidized structure. On the other hand, if the holding time is less than approximately 20 minutes, carbide precipitation, aggregation, and growth will not occur sufficiently, and the structure will not reach a spheroidal structure but will remain in a granular structure, resulting in a relatively high level of hardness. It has become. Therefore, a good spheroidized structure cannot be obtained by maintaining the temperature for such a short time. The above results show that the processing start temperature is 640℃ (Ar1 point ~ A
(e□ temperature), but if the processing start temperature is lower in the temperature range from Ar1 point to Aei point (e.g. 600
℃), it was confirmed that the desired hardness and structure could be obtained by holding the temperature at a constant temperature of about 20 minutes or more. In this respect, the conventional temperature control method does not raise the temperature to the temperature range of Acm point to Ac3 point after finishing processing (finish rolling).
In the method of holding the temperature just below the A01 point, the temperature at the center of the rolled material at the start of processing (finish rolling) is between the Ar1 point and the Ae1 point.
In the case where deformation-induced transformation occurs during finish rolling), when the deformation start temperature is low (eg, 600° C.), the hardness after constant temperature maintenance is at a higher level than that of conventional offline spheroidized annealed materials. Therefore, the present invention was completed based on the results of the above-mentioned various basic experiments and further detailed study of temperature control conditions through constant temperature maintenance. Next, the reason for limiting the conditions will be explained along with an example of a continuous hot rolling line in the present invention. Figure 4 shows a continuous hot rolling line, with 20
is a heating furnace that heats billets, etc., and in the latter stage is an Nα1
Rough rolling mill row 21 consisting of rolling mills of ~Nα8, Nα9~N
Intermediate rolling mill row 22 consisting of α12 rolling mills and No.
A finishing rolling mill row 23 consisting of rolling mills No. 13 to No. 16 is arranged in series. 24 is an intermediate cooling zone provided between the intermediate rolling mill row 22 and the finishing rolling mill row 23;
Reference numeral 5 denotes a rear cooling zone provided between the finishing rolling mill row and the cooling bed 26, and the flow rate of cooling water supplied to the rolled material in these cooling zones 24 and 25 is controlled by a control device 29 including a process control computer. It is now possible to do so. 30, 31, and 32 are thermometers that measure the surface temperature of the rolled material, and 27 is a heat treatment furnace. In the above rolling line, billets and the like extracted from the heating furnace 20 are sequentially rolled in a rough rolling mill row 21 and an intermediate rolling mill row 22, and the rolled material is passed through an intermediate cooling zone 24 to
A hardened structure such as martensite is used below the s point.1.
In the reheating process of the surface layer between the intermediate cooling zone 24 and the finishing rolling mill row 23, the temperature at the center of the rolled material is in the temperature range from Ar1 point to 80 points or below Ar1 point. Finish rolling is started by controlling the cooling conditions (cooling water flow rate and reheating time). If finish rolling is started in such a temperature range, a pre-structure that is easily spheroidized within the entire cross section of the rolled material can be obtained. That is,
When the temperature at the center of the rolled material is in the temperature range from Ar1 point to Ae1 point, deformation-induced transformation occurs due to rolling and a layered pearlite structure is generated (when the temperature at the center of the rolled material is below Ar1 point, barley 1 - At the same time, the plate-shaped or rod-shaped carbides in this structure are divided (or their division is promoted), so that a pre-structure that can easily be spheroidized is obtained. The reason why the finish rolling start temperature is set in the temperature range from Ar1 point to Ae□ point is that finish rolling can be performed from a higher temperature range, which improves operability by reducing the rolling load during finish rolling and the difficulty of rolling adjustment. This is because it improves and has a great practical effect. In addition, Ms.
The hardened structure obtained by hard cooling to below the point becomes a pre-structure in which it is easier to form spheroidization due to the increase in strain energy due to finish rolling, and the area other than the center and surface layer of the rolled material has an intermediate structure. Since it has a mixed structure including these, it also becomes a pre-structure that can be easily spheroidized by finish rolling. After this, that is, immediately after finishing rolling, A
After heating to a temperature range of cm point to Ac3 point, Ac1 point to Ac6 point
The temperature is maintained at a constant temperature in the range of 00° C., and during this constant temperature maintenance, some of the carbides solid-solved in the austenite are precipitated, aggregated, and grown using the remaining carbides as nuclei, thereby obtaining a spheroidized structure. The reason why the lower limit of constant temperature holding temperature is set at 600℃ is because the aggregation of carbides is delayed when constant temperature is kept below this temperature range, so the time required to grow these into a spheroidal structure is extremely long. This is because it becomes impractical. The reason why the upper limit is set to Ac1 point is that when this temperature is exceeded, carbides begin to form a solid solution in austenite, and layered pearlite is generated in the subsequent cooling process, making it impossible to obtain a good spheroidized structure. The reason why the lower limit of constant temperature holding time is set to 20 m1n is that if the time is shorter than this, the carbide will re-agglomerate using the remaining carbide as a nucleus.
In addition to insufficient growth, processing (
This is because the desired hardness and spheroidized structure cannot be obtained even when the starting temperature (for finish rolling) is lower (eg, 600° C.). The reason why the upper limit is set at 5 hr is that even if the holding time is longer than this, it will not have much effect on the increase in the spheroidizing effect, and since it is an online process, if the holding time is longer, a large-scale heat treatment will be required, which will improve productivity. The reason for this is that the temperature decreases, making it impractical. The cooling rate after the end of constant temperature maintenance does not need to be specially adjusted as in slow cooling, and air cooling may be used.

【以下余白】[Left below]

(実施例) 次に本発明の実施例を示す。 実施例1 第4図に示した熱間圧延ラインにて鋼種548C(Ae
1z720℃)の155mm口ビレットを9゜0℃に加
熱した後、熱間連続圧延し、仕上圧延開始前の中間冷却
帯24において、圧延材(45mmφ)表層部をMs点
(=350℃)以下とし、水冷後、仕上圧延機列23の
Nα13圧延機に至るまでの約12secの圧延材表層
部の復熱過程において圧延材中心部温度がAr□点〜A
e1点の温度域に入るように、100m3/hrの冷却
水流量で4 、5 see間強制水冷した(最表面部の
冷却速度:約300 ℃/5eC)。このときの仕上圧
延開始時の圧延材中心温度は約650 ℃1表面温度は
約520℃1断面内平均温度は約560℃である。 引き続いて仕上圧延を実施した30mmφの棒鋼に仕上
げた。この場合、圧延材中心部で代表される未変態組織
(適冷オーステナイト組織)は仕上圧延過程で変態し、
生成した層状パーライトの板状或いは棒状の炭化物は仕
上圧延によって分断されて粒状組織を呈し、また、圧延
材表層部の焼入れ組織は圧延加工による歪エネルギーの
増加等によって各々粒状化組織の形成が容易な組織とな
っている。 この直後に、圧延材(30mmφ棒鋼)を熱処理炉27
でAc1点(= 7.20℃)以上の740℃に加熱し
、この温度から680℃までの温度域をおよそ150℃
/hrの冷却速度で冷却した後、この温度で約40m1
n保持し、以後空冷した。 得られた組織を第5図及び第6図に示す。表層部では組
織Nα2程度の球状化組織が得られ、中心部でも組織N
α3程度の球状化組織が得られた。このように、熱間圧
延後の適切なる温度制御により、圧延材全断面内にわた
って組織Nα3以上の直接球状化組織が得られ、また、
硬さも全断面内でHv180以下となり、従来のオフラ
インでの球状化焼鈍材と同レベルの値がオンライン処理
で得られた。 実施例2 実施例1の場合と同様に、鋼種S Cr420(Ae、
点z725°C)の155mm口ビレットを930℃に
加熱した後、熱間連続圧延し、仕上圧延前の中間冷却帯
24で圧延材(45mmφ)表層部温度をMs点1,5
380℃)以下とし、水冷後、仕上圧延機例23に到達
するまでの約10secの圧延材表層部の復熱過程にお
いて圧延材中心温度がAr□点〜Ae□点の温度域に入
るように、90m3/hrの冷却水流量で5 、5 s
ee間強制水冷した(最表面部の冷却速度:約250℃
へec)。このときの仕上圧延開始時の圧延材中心温度
は約660℃、表面温度は約510℃、断面的平均温度
は約560℃である。 引き続いて30mmφ棒鋼に仕上げた。この場合も圧延
材中心部で代表される未変態組織(適冷オーステナイト
組織)は仕」二圧延過程で変態し、生成した層状パーラ
イト組織の板状或いは棒状の炭化物は仕上圧延によって
粒状組織を呈し、また、圧延材表層部の焼入れ組織は圧
延加工による歪エネルギーの増加等によって各々球状化
組織の形成が容易な組織となっている。 この直後に、圧延材(30mmφ棒鋼)を熱処理炉27
でAc1点(725℃)以上の770℃に加熱した後、
680℃までの温度域をおよそ150℃/hrの冷却速
度で徐冷し、この温度で約40m1n保持し、以後空冷
した。 得られた組織を第7図及び第8図に示す。このように、
低合金鋼においても熱間圧延後の適切な温度制御により
、全断面内でほぼ組織No2程度の球状化組織が得られ
、硬さも全断面内でHv140程度となり、従来のオフ
ラインの球状化焼鈍材と同レベルの値がオンライン処理
で得られた。 比較例1 実施例1の場合と同様の鋼種548Gの155mm口の
30mmφ棒鋼への熱間連続圧延工程において、仕上圧
延直後に740℃に加熱し、680℃までの温度域を1
50℃/hrの冷却速度で冷却し、この温度で15m1
n恒温保持し、実施例1と同じく常温まで空冷した。こ
の場合には、粒状炭化物及び層状バーライ1−を含んだ
組織となっており、良好な球状化組機は得られなかった
。 比較例2 実施例2の場合と同様の鋼種5Cr420の155mm
口ビレットの30mmφ棒鋼への熱間連続圧延工程にお
いて、仕上圧延直後に770℃に加熱し、680℃まで
の温度域を150℃/hrの冷却速度で冷却し、この温
度で15m1n恒温保持し、実施例2と同じく常温まで
空冷した。この場合には、粒状炭化物及び層状パーライ
トを含んだ組織となっており、良好な球状化組織は得ら
れなかった。 実施例3 実施例1の場合と同様に、鋼種548Cの155mm口
ビレットを900℃に加熱した後、熱間連続圧延し、仕
上圧延開始前の中間冷却帯24において、圧延材(45
mmφ)表層部をMs点に350℃)以下とし、水冷後
、仕上圧延機列23のNα13圧延機に到達するまでの
約12secの圧延材表層部の復熱過程において、圧延
材中心部温度がAr□点〜Ae1の温度域に入るように
20011Ia/hrの冷却水流量で4 、5 sec
間強制水冷した(最表面部の冷却速度:約4. OO℃
/5ee)。このときの仕上圧延開始時の圧延材中心温
度は約600℃、表面温度は約480℃、断面円平均温
度は約510℃である。 引き続いて仕上圧延を実施して30mmφ棒鋼に仕上げ
た。 この直後に、圧延材(30mmφ棒鋼)を熱処理炉27
でAc1点(z720℃)以上の740 ℃に加熱し、
この温度から680℃までの温度域をおよそ150℃/
hrの冷却速度で冷却した後、この温度で約50m1n
保持し、以後空冷した。 得られた組織を第9図及び第10図に示す。表層部では
組織Nα2程度の球状化組織が得られ、中心部でも組織
Nα3程度の球状化組織が得られた。 このように、熱間圧延後の適切なる温度制御により、仕
上圧延開始前の圧延材中心温度が約600°CとAr□
点〜Ae□点の範囲で低い温度域の場合でも、圧延材全
断面内にわたって組織Nα3以上の直接球状化組織が得
られ、また、硬さも全断面内でHv180以下となり、
従来のオフラインでの球状化焼鈍材と同レベルの値がオ
ンラインで得られた。 実施例4 実施例2の場合と同様に、鋼種S Cr420(Ac□
点z725℃)の155mm口ビレットを930℃に加
熱した後、熱間連続圧延し、仕上圧延開始前の中間冷却
帯24で圧延材(4,5mmφ)表層部温度をMs点(
z380℃)以下とし、水冷後、仕上圧延機列23に到
達するまでの約10secの圧延材表層部の復熱過程に
おいて圧延材中心温度がAr□点〜Ae1点の温度域に
入るように180m3/hrの冷却水流量で5 、5 
see間強制水冷した(最表面部の冷却速度:約400
℃/5ec)。このときの仕上圧延開始時の圧延材中心
温度は約610℃、表面温度は約470℃、断面円平均
温度は約520℃である。 引き続いて30mmφ棒鋼に仕上げた。 この直後に、圧延材(30mmφ棒鋼)を熱処理炉27
でAc1点(z725℃)以上の770℃に加熱した後
、680℃までの温度域をおよそ150℃/hrの冷却
速度で徐冷し、以後空冷した。 得られた組織を第11図及び第12図に示す。 表層部、中心部とも組織Nn 2程度の球状化組織が得
られた。このように、低合金鋼においても熱間圧延後の
適切な温度制御により、仕上圧延開始前の圧延材中心温
度が約610℃とAr1点〜Ae□点の範囲で低い温度
減力場合でも、圧延材全断面内でほぼ組織Nα2程度の
球状化組織が得られ、硬さも全断面内でHv140程度
となり、従来のオフラインでの球状化焼鈍材と同レベル
の値がオンラインで得られた。 ル較奥立 実施例3の場合と同様の鋼種548Gの155mm口ビ
レットの30mmφ捧鋼への熱間連続圧延工程において
、仕上圧延直後にAc1点に720℃)以下の680℃
に約15m1n恒温保持した後、実施例3の場合と同様
に常温まで空冷した。この場合は、硬さがHv195程
度と従来のオフライン、  での球状化焼鈍材の硬さレ
ベル(Hv180以下)よりも高い値にとどまり、組織
もや5粒状を呈した。 井m傷 実施例4の場合と同様の鋼種S Cr420の155m
m口ビレットの30mmφ棒鋼への熱間連続圧延工程に
おいて、仕上圧延直後にAc1点以下の680℃に約5
0m1n恒温保持した後、実施例4の場合と同様に常温
まで空冷した。この場合は、硬さがHv155程度と従
来のオフラインでの球状化焼鈍材の硬さレベル(Hv1
40以下)よりも高い値にとどまり、組織もや5粒状を
呈した。 各側に用いた供試鋼の化学成分を第1表に示す。 第1表 化学成分(wt%) (続き) なお、各側では棒鋼の場合について示したが、本発明は
仕上圧延後にコイル状に巻き取られる線材に対してもま
ったく同様に実施し得るものである。また、第1表に示
した鋼種に限らず、0.03〜1.5%Cを含む他の炭
素鋼及び合金鋼に対しても同様に適用することができる
。 (発明の効果) 以上詳述したように、本発明によれば、仕上圧延後のオ
ンラインでの適切な温度制御によって直接球状化組織を
得ることができ、従来オフラインで長時間を要していた
球状化焼鈍を省略することが可能となるので、工程の簡
略化及びエネルギー節減に極めて大きな効果をもたらす
ものである。 また、本温度制御法によれば、特に仕上圧延開始温度が
Ar□点〜Ae□点の範囲であって仕上圧延中に加工誘
起変態させる場合に、仕上圧延温度に拘わらず(すなわ
ち、A r z点〜Ae1点の範囲で加工温度が低くて
も)、直接球状化組織を得ることが可能であるので、実
操業上の融通性の点において極めて有利である。
(Example) Next, an example of the present invention will be shown. Example 1 Steel type 548C (Ae
After heating a 155mm-mouth billet (1z720°C) to 9°0°C, it is continuously hot rolled, and in the intermediate cooling zone 24 before the start of finish rolling, the surface layer of the rolled material (45mmφ) is heated to below the Ms point (=350°C). After water cooling, during the reheating process of the surface layer of the rolled material for about 12 seconds up to the Nα13 rolling mill of the finishing mill row 23, the temperature at the center of the rolled material ranged from point Ar□ to point A.
Forced water cooling was performed for 4 to 5 see at a cooling water flow rate of 100 m3/hr to bring the temperature into the e1 point temperature range (cooling rate at the outermost surface: approximately 300°C/5eC). At this time, the center temperature of the rolled material at the start of finish rolling is approximately 650°C, the surface temperature is approximately 520°C, and the average temperature within one cross section is approximately 560°C. Subsequently, finish rolling was performed to produce a 30 mmφ steel bar. In this case, the untransformed structure (suitably cooled austenite structure) represented in the center of the rolled material is transformed during the finish rolling process,
The plate-like or rod-like carbides of the produced layered pearlite are divided by finish rolling and exhibit a granular structure, and the quenched structure in the surface layer of the rolled material easily forms a granular structure due to the increase in strain energy caused by rolling. It has become an organization. Immediately after this, the rolled material (30mmφ steel bar) was transferred to the heat treatment furnace 27.
The temperature range from this temperature to 680°C is approximately 150°C.
After cooling at a cooling rate of /hr, at this temperature about 40 m1
n and then air-cooled. The obtained tissues are shown in FIGS. 5 and 6. A spheroidized tissue of approximately Nα2 is obtained in the surface layer, and a structure of Nα2 is obtained in the center.
A spherical structure of approximately α3 was obtained. In this way, by appropriate temperature control after hot rolling, a directly spheroidized structure with a structure Nα3 or more can be obtained over the entire cross section of the rolled material, and
The hardness was also Hv180 or less in the entire cross section, and the same level of value as the conventional offline spheroidized annealed material was obtained by online processing. Example 2 As in Example 1, steel type S Cr420 (Ae,
After heating a 155 mm billet at 725° C.) to 930° C., it was continuously hot rolled, and the temperature of the surface layer of the rolled material (45 mmφ) was reduced to Ms points 1 and 5 in the intermediate cooling zone 24 before finish rolling.
380°C) or less, and after water cooling, the temperature at the center of the rolled material falls within the temperature range of the Ar□ point to the Ae□ point during the approximately 10 sec reheating process of the surface layer of the rolled material until it reaches the finish rolling mill Example 23. , 5,5 s at a cooling water flow rate of 90 m3/hr
Forced water cooling during ee (cooling rate of outermost surface: approx. 250°C)
ec). At this time, the center temperature of the rolled material at the start of finish rolling is about 660°C, the surface temperature is about 510°C, and the cross-sectional average temperature is about 560°C. Subsequently, it was finished into a 30mmφ steel bar. In this case as well, the untransformed structure (suitably cooled austenite structure) represented in the center of the rolled material is transformed during the second rolling process, and the plate-like or rod-like carbides of the formed layered pearlite structure take on a granular structure during finish rolling. In addition, the hardened structure in the surface layer of the rolled material has a structure in which it is easy to form a spheroidized structure due to an increase in strain energy caused by rolling. Immediately after this, the rolled material (30mmφ steel bar) was transferred to the heat treatment furnace 27.
After heating to 770°C above Ac1 point (725°C),
The temperature range up to 680° C. was slowly cooled at a cooling rate of approximately 150° C./hr, and approximately 40 ml was maintained at this temperature, followed by air cooling. The obtained tissues are shown in FIGS. 7 and 8. in this way,
Even in low-alloy steel, by proper temperature control after hot rolling, a spheroidized structure approximately equivalent to structure No. 2 can be obtained in the entire cross section, and the hardness is approximately Hv140 in the entire cross section, which is superior to conventional offline spheroidized annealed materials. The same level of value was obtained by online processing. Comparative Example 1 In the hot continuous rolling process of steel type 548G into a 30 mmφ steel bar with a 155 mm diameter similar to that in Example 1, the temperature range up to 680 °C was heated to 740°C immediately after finish rolling, and the temperature range up to 680°C was
Cooled at a cooling rate of 50℃/hr, and at this temperature 15ml
The temperature was maintained at constant temperature, and as in Example 1, the mixture was air-cooled to room temperature. In this case, the structure contained granular carbide and layered barley 1-, and a good spheroidizing machine could not be obtained. Comparative Example 2 155 mm of steel type 5Cr420 similar to Example 2
In the continuous hot rolling process of the billet into a 30 mmφ steel bar, it was heated to 770 ° C. immediately after finish rolling, cooled at a cooling rate of 150 ° C. / hr in the temperature range up to 680 ° C., and kept constant at this temperature for 15 m1n. As in Example 2, it was air cooled to room temperature. In this case, the structure contained granular carbide and layered pearlite, and a good spheroidized structure could not be obtained. Example 3 In the same manner as in Example 1, a 155 mm billet of steel type 548C was heated to 900°C, then continuously hot rolled, and rolled material (45
After water cooling, the temperature at the center of the rolled material increases during the approximately 12 sec reheating process of the surface layer of the rolled material until it reaches the Nα13 rolling mill of the finishing mill row 23. 4 to 5 sec at a cooling water flow rate of 20011Ia/hr to enter the temperature range from Ar□ point to Ae1
(Cooling rate of the outermost part: approx. 4.0°C)
/5ee). At this time, the center temperature of the rolled material at the start of finish rolling is about 600°C, the surface temperature is about 480°C, and the cross-sectional circle average temperature is about 510°C. Subsequently, finish rolling was performed to obtain a 30 mmφ steel bar. Immediately after this, the rolled material (30mmφ steel bar) was transferred to the heat treatment furnace 27.
heated to 740 °C above Ac1 point (z720 °C),
The temperature range from this temperature to 680℃ is approximately 150℃/
After cooling at a cooling rate of hr, at this temperature about 50ml1n
It was held and then air cooled. The obtained structure is shown in FIGS. 9 and 10. A spheroidized tissue with a texture of about Nα2 was obtained in the surface layer, and a spheroidized tissue with a texture of about Nα3 was obtained in the center. In this way, by appropriate temperature control after hot rolling, the temperature at the center of the rolled material before the start of finish rolling is approximately 600°C and Ar□
Even in the case of a low temperature range from point to Ae
The same level of value was obtained online as that of the conventional offline spheroidized annealed material. Example 4 As in Example 2, steel type S Cr420 (Ac□
After heating a 155 mm billet at 725° C.) to 930° C., it is continuously hot rolled, and the temperature of the surface layer of the rolled material (4.5 mmφ) is reduced to the point Ms (
z380℃) or less, and after water cooling, the rolling material center temperature is within the temperature range of Ar□ point to Ae1 point during the approximately 10 sec reheating process of the surface layer of the rolled material until it reaches the finish rolling mill row 23. /hr cooling water flow rate 5,5
forced water cooling between
°C/5ec). At this time, the center temperature of the rolled material at the start of finish rolling is about 610°C, the surface temperature is about 470°C, and the cross-sectional circle average temperature is about 520°C. Subsequently, it was finished into a 30mmφ steel bar. Immediately after this, the rolled material (30mmφ steel bar) was transferred to the heat treatment furnace 27.
After heating to 770°C, which is above the Ac1 point (z725°C), it was slowly cooled in the temperature range up to 680°C at a cooling rate of about 150°C/hr, and then air-cooled. The obtained structure is shown in FIGS. 11 and 12. A spheroidized structure of about Nn 2 was obtained in both the surface layer and the center. In this way, even with low-alloy steel, by proper temperature control after hot rolling, even when the center temperature of the rolled material is about 610°C before the start of finish rolling, which is a low temperature reduction in the range of Ar1 point to Ae□ point, A spheroidized structure with a structure of about Nα2 was obtained in the entire cross section of the rolled material, and the hardness was about Hv140 in the entire cross section, which was the same value as that of the conventional offline spheroidized annealed material. In the hot continuous rolling process of a 155 mm diameter billet of steel type 548G into a 30 mm diameter steel bar as in the case of Example 3, immediately after finishing rolling, the temperature at Ac1 point was 680 °C below 720 °C.
After maintaining the temperature at a constant temperature of about 15 ml, it was air-cooled to room temperature in the same manner as in Example 3. In this case, the hardness remained at about Hv195, which is higher than the hardness level of the conventional off-line spheroidized annealed material (Hv180 or less), and the structure had a five-grain structure. 155 m of steel type S Cr420 similar to that of Example 4
In the continuous hot rolling process of m-neck billets into 30mmφ steel bars, immediately after finishing rolling, the temperature is reduced to 680°C below the Ac1 point for about 5 seconds.
After maintaining the temperature at a constant temperature of 0 ml, it was air-cooled to room temperature in the same manner as in Example 4. In this case, the hardness is about Hv155, which is the level of hardness of the conventional off-line spheroidizing annealed material (Hv1
40 or less), and the structure exhibited a five-grain structure. The chemical composition of the test steel used on each side is shown in Table 1. Table 1 Chemical composition (wt%) (Continued) Although each side shows the case of a steel bar, the present invention can be implemented in exactly the same way for a wire rod that is wound into a coil after finishing rolling. be. Moreover, it is not limited to the steel types shown in Table 1, but can be similarly applied to other carbon steels and alloy steels containing 0.03 to 1.5% C. (Effects of the Invention) As detailed above, according to the present invention, a spheroidized structure can be obtained directly by appropriate temperature control online after finish rolling, which conventionally required a long time off-line. Since spheroidizing annealing can be omitted, this has an extremely large effect on process simplification and energy savings. Furthermore, according to the present temperature control method, particularly when the finish rolling start temperature is in the range of the Ar Since it is possible to directly obtain a spheroidized structure even if the processing temperature is low in the range from point z to point Ae1), it is extremely advantageous in terms of flexibility in actual operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は圧延材表層部及び中心部の温度パタ
ーンを模式化したCC7曲線を示す図、第3図は熱間圧
延直後の温度制御(恒温保持)により得られる圧延材の
硬さと保持時間の関係を示す図、 第4図は本発明により熱間圧延直後の温度制御により得
られる直接球状化組織を実現するための熱間連続圧延ラ
インの一例を示す図、 第5図乃至第12図は実施例で得られた圧延材の金属組
織を示す顕微鏡写真であって、第5図及び第6図は実施
例1の場合、第7図及び第8図は実施例2の場合、第9
図及び第10図は実施例3の場合、第11図及び第12
図は実施例4の場合をそれぞれ示している。 1〜16・−・圧延機、20・加熱炉、21・・粗圧延
機列、22・中間圧延機列、23・・仕上圧延機列、2
4・・・中間冷却帯、25・・後段冷却帯、26・・冷
却床、27・・・熱処理炉、29・・制御装置、30〜
32・・温度計。 I/腎  二1“ 第9図 第11図 7゛と’y−7−凸−・2−一つ5丁さ −l−1・第
10図 第12図
Figures 1 and 2 are diagrams showing CC7 curves schematically showing the temperature patterns of the surface layer and center of the rolled material, and Figure 3 shows the hardness of the rolled material obtained by temperature control (constant temperature maintenance) immediately after hot rolling. FIG. 4 is a diagram showing an example of a continuous hot rolling line for realizing a direct spheroidized structure obtained by temperature control immediately after hot rolling according to the present invention; FIG. FIG. 12 is a micrograph showing the metallographic structure of the rolled material obtained in the example, and FIGS. 5 and 6 are for Example 1, and FIGS. 7 and 8 are for Example 2. , No. 9
Figures 10 and 10 are for Example 3, Figures 11 and 12
The figures each show the case of Example 4. 1 to 16: Rolling mill, 20: Heating furnace, 21: Rough rolling mill row, 22: Intermediate rolling mill row, 23: Finishing rolling mill row, 2
4...Intermediate cooling zone, 25...Late stage cooling zone, 26...Cooling bed, 27...Heat treatment furnace, 29...Control device, 30-
32...Thermometer. I/Kidney 21" Figure 9 Figure 11 Figure 7 and'y-7-convex-2-one 5-cho-l-1 Figure 10 Figure 12

Claims (2)

【特許請求の範囲】[Claims] (1)0.03〜1.5%Cを含む炭素鋼又は合金鋼の
棒鋼又は線材の熱間連続圧延工程の途中で、圧延材表層
部をMs点以下に強冷し、該圧延材が次圧延機に到達す
るまでの間の強冷後の冷却条件を調節することにより、
復熱過程において圧延材中心部をAr_1点〜Ae_1
点間の温度域に降下させ、次いで仕上圧延を行って圧延
材全断面内で球状化の容易な前組織を得て、更に仕上圧
延直後にAc_1点〜Ac_3点の温度域に加熱した後
、Ac_1点以下600℃までの温度域に冷却して、該
温度域で20min〜5hrの範囲で恒温保持すること
により、直接球状化組織を得ることを特徴とする熱間連
続圧延による棒鋼及び線材の製造方法。
(1) During the hot continuous rolling process of carbon steel or alloy steel bars or wire rods containing 0.03 to 1.5% C, the surface layer of the rolled material is strongly cooled to below the Ms point, and the rolled material is By adjusting the cooling conditions after strong cooling until reaching the next rolling mill,
During the reheating process, the center of the rolled material is heated from point Ar_1 to Ae_1.
After lowering the temperature to a temperature range between points, then performing finish rolling to obtain a pre-structure that facilitates spheroidization within the entire cross section of the rolled material, and further heating to a temperature range of Ac_1 point to Ac_3 point immediately after finish rolling, A process for producing steel bars and wire rods by continuous hot rolling, characterized by directly obtaining a spheroidized structure by cooling to a temperature range of 600°C below the Ac_1 point and maintaining the temperature in this temperature range for 20 min to 5 hr. Production method.
(2)0.03〜1.5%Cを含む炭素鋼又は合金鋼の
棒鋼又は線材の熱間連続圧延工程の途中で、圧延材表層
部をMs点以下に強冷し、該圧延材が次圧延機に到達す
るまでの間の強冷後の復熱時間を調節することにより、
復熱過程において圧延材中心部をAr_1点以下の温度
に降下させてパーライト変態させ、次いで仕上圧延を行
って圧延材全断面内で球状化の容易な前組織を得て、更
に仕上圧延直後にAc_1点〜Ac_3点の温度域に加
熱した後、Ac_1点以下600℃までの温度域に冷却
して、該温度域で20min〜5hrの範囲で恒温保持
することにより、直接球状化組織を得ることを特徴とす
る熱間連続圧延による棒鋼及び線材の製造方法。
(2) During the hot continuous rolling process of carbon steel or alloy steel bars or wire rods containing 0.03 to 1.5% C, the surface layer of the rolled material is strongly cooled to below the Ms point. By adjusting the reheating time after strong cooling until reaching the next rolling mill,
In the reheating process, the center of the rolled material is lowered to a temperature of Ar_1 point or less to undergo pearlite transformation, and then finish rolling is performed to obtain a prestructure that is easy to spheroidize within the entire cross section of the rolled material, and immediately after finish rolling, After heating to a temperature range of Ac_1 point to Ac_3 point, cooling to a temperature range of below Ac_1 point to 600°C, and maintaining the temperature in the range of 20 min to 5 hr, directly obtaining a spheroidized structure. A method for manufacturing steel bars and wire rods by continuous hot rolling, characterized by:
JP8470088A 1988-04-06 1988-04-06 Manufacture of steel bar and wire rod by continuous hot rolling Pending JPH01259123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8470088A JPH01259123A (en) 1988-04-06 1988-04-06 Manufacture of steel bar and wire rod by continuous hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8470088A JPH01259123A (en) 1988-04-06 1988-04-06 Manufacture of steel bar and wire rod by continuous hot rolling

Publications (1)

Publication Number Publication Date
JPH01259123A true JPH01259123A (en) 1989-10-16

Family

ID=13837941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8470088A Pending JPH01259123A (en) 1988-04-06 1988-04-06 Manufacture of steel bar and wire rod by continuous hot rolling

Country Status (1)

Country Link
JP (1) JPH01259123A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275263A (en) * 2008-05-15 2009-11-26 Sumitomo Metal Ind Ltd Method for manufacturing steel material for bearing steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275263A (en) * 2008-05-15 2009-11-26 Sumitomo Metal Ind Ltd Method for manufacturing steel material for bearing steel

Similar Documents

Publication Publication Date Title
US4619714A (en) Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
US20040149362A1 (en) Cold-worked steels with packet-lath martensite/austenite microstructure
JP3031484B2 (en) Method for producing steel wire rod or steel bar having spheroidized structure
CN114686765B (en) 420 MPa-grade high-toughness extra-thick plate and manufacturing method thereof
JPH01259123A (en) Manufacture of steel bar and wire rod by continuous hot rolling
CN109487063A (en) A kind of cooling controlling and rolling controlling process of Ti-V-N combined microalloying nano-particle reinforcement mild steel
JPH0576524B2 (en)
JP2591234B2 (en) Manufacturing method of seamless steel pipe with ultrafine structure
JPH02213416A (en) Production of steel bar with high ductility
JPS63149316A (en) Production of bar steel and wire rod by hot continuous rolling mill
JPS59136422A (en) Preparation of rod steel and wire material having spheroidal structure
ZA200503080B (en) Cold-worked steels with packet-lath martensite/austenite microstructure
JPS63149317A (en) Production of bar steel and wire rod by temperature control during and just after hot continuous rolling
JPH01215924A (en) Manufacture of hot rolled steel bar
CN114686776B (en) 460 MPa-grade high-toughness extra-thick plate and manufacturing method thereof
WO2024113431A1 (en) Method for improving strength, toughness and uniformity of ultra-large-section non-quenched and tempered steel by cooperative regulation and control of multi-stage precipitation and controlled rolling and controlled cooling
JPS6386815A (en) Production of steel having excellent cold workability
JPH08246040A (en) Rapid continuous spheroidizing annealing method for steel
JPH02301516A (en) Method for producing ultra-fine-structured hot-worked steel materials
KR100973921B1 (en) Softened heat treatment shortened steel with ferrite produced by plastic organic transformation and its manufacturing method
KR101304670B1 (en) Steel without spheroidizing heat treatment and method for manufacturing the same
JPH0674453B2 (en) Manufacturing method of spheroidized steel
JPH10298641A (en) Production of steel excellent in spheroidize-annealing treatability
CN117025899A (en) Thermal processing method for refining grains of microalloy continuous casting roller blank
JPS6389617A (en) Production of steel having excellent cold workability