Nothing Special   »   [go: up one dir, main page]

JPH0125772B2 - - Google Patents

Info

Publication number
JPH0125772B2
JPH0125772B2 JP56051976A JP5197681A JPH0125772B2 JP H0125772 B2 JPH0125772 B2 JP H0125772B2 JP 56051976 A JP56051976 A JP 56051976A JP 5197681 A JP5197681 A JP 5197681A JP H0125772 B2 JPH0125772 B2 JP H0125772B2
Authority
JP
Japan
Prior art keywords
meth
acrylate
compound
urethane
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56051976A
Other languages
Japanese (ja)
Other versions
JPS57165422A (en
Inventor
Hiroshi Kobayashi
Jiro Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56051976A priority Critical patent/JPS57165422A/en
Publication of JPS57165422A publication Critical patent/JPS57165422A/en
Publication of JPH0125772B2 publication Critical patent/JPH0125772B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏なりレタンメタアクリレヌ
ト・プレポリマヌの補造方法に関し、曎に詳しく
述べるならば、ドヌブ䞭で盞分離を起こしにく
く、重合感床が高く、空気硬化性良奜で、硬床及
び匷靭性にすぐれた硬化膜を䞎え埗るりレタン
メタアクリレヌト・プレポリマヌの補造方法
に関するものである。 最近、むンキ、コヌテむング剀等は急速に熱硬
化型から光硬化型に倉換され぀぀ある。これは、
光硬化型の生産性、省゚ネルギヌ、省スペヌス等
の経枈的芳点における優䜍性ず共に、無溶媒型で
あるこずによる䜜業環境の改善、ひいおは公害防
止の芳点における明らかな優䜍性が認識されおき
たからである。 ずころで、光硬化性組成物に芁求される性質
は、光による硬化速床の倧なるこず、硬化膜
の物性がすぐれおいるこず、組成物溶液のレオ
ロゞヌ特性が適切なこず、酞玠阻害性の小であ
るこず等である。 珟圚、高分子量の䞍飜和化合物である所謂プレ
ポリマヌは、光硬化性組成物に䞊蚘〜の性質
を付䞎する鍵の圹割を荷う最も重芁な玠材であ
り、埓来その開発にしのぎが削られおいる。埓来
開発されおいるプレポリマヌには、倧別しお䞍飜
和ポリ゚ステル型、゚ポキシメタアクリレヌ
ト型、りレタンメタアクリレヌト型、各皮゚
ステルメタアクリレヌト型の皮があるが、
䞭でもむ゜シアネヌト基の反応性によ぀お倚様な
倉性が可胜で、りレタン基の分子間力による高い
膜匷床の実珟、゜フトセグメントの導入による可
撓性の付䞎が可胜な点で、りレタンメタアク
リレヌト型プレポリマヌが非垞に有望である。
尚、本発明においおメタアクリレヌトは、ア
クリレヌト及びメタクリレヌトを瀺すものずしお
䜿甚される。 これたで提案されおきた䞊蚘りレタンメタ
アクリレヌト型プレポリマヌは、次のようなグル
ヌプに倧別できる。 グルヌプポリ゚ステル、ポリ゚ヌテル、又
は氎玠化ポリブタゞ゚ンの末端氎酞基をゞむ゜シ
アネヌトで連結し、曎に末端に残るむ゜シアネヌ
ト基に、氎酞基を有する䞍飜和化合物を反応させ
お埗られるりレタンメタアクリレヌト。 グルヌプ半也性油ず倚䟡む゜シアネヌトず
の反応生成物の残䜙のむ゜シアネヌト基ず、氎酞
基を有する䞍飜和化合物ずを反応させお埗られる
りレタンメタアクリレヌト。 グルヌプ皮々の゚ポキシ基を有する化合物
ず䞍飜和塩基酞ずを反応させお埗られる゚ポキシ
メタアクリレヌトに、この反応によ぀お生成
する氎酞基に曎に倚䟡む゜シアネヌトを反応さ
せ、必芁に応じお曎に䞍飜和基で末端む゜シアネ
ヌト基を封鎖したりレタンメタアクリレヌト
特開昭50−151981号。 グルヌプ倚䟡む゜シアネヌトず―ヒドロ
キシ゚チルメタアクリレヌト或いは―ヒド
ロキシプロピルメタアクリレヌト等の䟡の
氎酞基を有する䞍飜和化合物ずの反応によ぀お埗
られるりレタンメタアクリレヌト。 䞊蚘グルヌプのりレタンメタアクリレヌ
トを抂評するず、及びグルヌプのものは光に
よる硬化速床が䞍十分で、埗られる硬化膜は軟質
で耐薬品性に劣る。グルヌプのものは硬床の高
い硬化膜が埗られるが、溶解性が䞍良で埗られる
組成物溶液の粘床が高く商品ずしお取扱い難い。
グルヌプのものは溶解性が悪く、しかも長時間
攟眮するず盞分離を起こし易く、又モノマヌの遞
択が限定される。 又、特開昭55−139468号公報には、プレポリマ
ヌずしおポリむ゜シアネヌト化合物ずアクリル酞
もしくはメタクリル酞ヒドロキシ゚ステルずのり
レタンアクリレヌト暹脂が瀺されおおり、具䜓䟋
ずしおペンタ゚リスリトヌルゞアクリレヌト及び
ペンタ゚リスリトヌルトリアクリレヌトが瀺され
おいるが、このりレタンアクリレヌト暹脂では䞊
蚘グルヌプ、グルヌプの問題点が解決されな
い。 叙述のように、りレタンメタアクリレヌト
は分子構造の倚様さから物性向䞊の倚くの可胜性
を秘めながら、硬化膜の物性、組成物溶液の物性
の点で満足すべき性胜を有するものはただ埗られ
おいない。 以䞊に鑑み、本発明者らは、光硬化速床、モノ
マヌに察する溶解性、埗られる溶液の䜎粘床化、
埗られる硬化膜の硬床等の点で、バランスのずれ
た高性胜を有するりレタンメタアクリレヌト
を埗る為に鋭意研究の結果、䞋蚘の特城を有する
新芏りレタンメタアクリレヌト・プレポリマ
ヌを芋出し、本発明をなすに至぀た。 即ち、本発明は、倚䟡む゜シアネヌトず、氎酞
基を有するメタアクリレヌトずを反応させる
りレタンメタアクリレヌトの補造方法におい
お、氎酞基を有するメタアクリレヌトずし
お、 䞋蚘䞀般匏(1) 䜆し、は氎玠又はメチル基、は〜の敎
数を衚す。 で瀺される化合物であ぀お、の化合物が
〜モル、の化合物が〜30モル、
の化合物が20〜60モル、の化合物が
〜79モルからなる混合物(A)、又は、混合物(A)
ず〜個の氎酞基ず少なくずも個の䞍飜和基
を有する䞀般匏(1)以倖の化合物(B)の皮又は皮
以䞊ずの混合物を甚いるこずを特城ずするりレタ
ンメタアクリレヌトの補造方法に関するもの
である。 以䞋本発明を詳现に説明する。 本発明の出発材料の䞀぀である倚䟡む゜シアネ
ヌトずしおは、―トリレンゞむ゜シアネヌ
ト、ゞプニルメタン―4′―ゞむ゜シアネヌ
ト、ヘキサメチレンゞむ゜シアネヌト、テトラメ
チレンゞむ゜シアネヌト、―プニレンゞむ゜
シアネヌト、―プニレンゞむ゜シアネヌト、
―ナフチレンゞむ゜シアネヌト、3′―
ゞメチル―4′―ビプニレンゞむ゜シアネヌ
ト、リゞンゞむ゜シアネヌト、む゜フオロンゞむ
゜シアネヌト等又はこれらず氎、トリメチロヌル
プロパン等ずのアダクト化合物が挙げられる。 本発明プレポリマヌの特城郚分をなす化合物(A)
は、テトラメチロヌルメタンずアクリル酞又はメ
タクリル酞ずの゚ステル化反応によ぀お埗られる
メタアクリル酞の導入数の異なる化合物の
混合物であるが、䞊蚘゚ステル化反応をできるだ
けの化合物を倚く生ずるような条件で行な
い、埗られる反応生成物を適床に加氎分解しお所
望の化合物組成の混合物ずするのが奜たしいやり
方である。その理由は、の化合物の
含有量ができるだけ少ないこずが奜たしいからで
ある。 本発明においおは、化合物(A)ずしお前蚘䞀般匏
(1)で衚わされる化合物が、、、、の
化合物の混合物ずしお甚いられる点に特城があ
り、埓぀お、そのの各敎数倀の化合物の成分組
成比は重芁である。即ち、の化合物は、前
述のずおりできるだけ少ない方が良く、〜モ
ルの範囲で甚いられる。モルをこえるず埗
られるプレポリマヌの溶解性に問題を生じるから
である。の化合物は、偎鎖に䞍飜和基を有
しおいるので光硬化速床を高め、曎に硬化膜に匷
靭さを䞎える機胜を有するが、同時に分子量調節
剀ずしお働くので、䜙り倚いず埗られるプレポリ
マヌが高分子量になりすぎ、その結果、モノマヌ
や他の溶媒ぞの溶解性が悪くなるので30モルが
䞊限であり、〜30モルの範囲にあるのが奜た
しく、20モル以䞋であるこずがより奜たしい。
の化合物は、䟡の䞍飜和基を含むため光
硬化速床を高め、曎に䟡の䞍飜和基に基づく立
䜓障害によ぀おりレタン基間の分子間匕力が匱め
られ、その結果モノマヌ又は他の溶媒ぞの溶解性
が増し、盞分離が抑えられる等の奜結果を生むも
のず掚定されるが、同時に倚䟡む゜シアネヌトの
末端封鎖剀ずしお機胜するので、䜙り倚くなるず
䜎分子量成分を増加し、曎に分子量分垃を広くす
る結果を生ずるので、その含有量に䞊限があり、
又少なすぎるず高分子量成分が増加しすぎるので
䞋限があり、20〜60モルの範囲が奜たしい。
の化合物は、(A)化合物ずしおの䞀般匏(1)の化
合物の混合物を合成する際の出発ずなるものでは
あるが、基本的には垌釈剀ずしお働くものである
から、他の化合物によ぀お代替可胜なものであ
る。 倚䟡む゜シアネヌトず䞀般匏(1)の、、
、の化合物の混合物(A)ず、必芁に応じお混合
しお甚いられる化合物(B)ずしおは、個の氎酞基
ず少なくずも個の䞍飜和基ずを有する化合物
B1があり、この化合物B1を甚いた堎合
は、より高分子量のりレタンメタアクリレヌ
トを補造するこずができる。 䞊蚘の、個の氎酞基ず少なくずも個の䞍飜
和基ずを有する化合物B1ずしおは、ビス
4′―ハむドロキシプニル―2′―プ
ロパン又はビス4′―ハむドロキシプニ
ルメタンず゚ピクロルヒドリンずの瞮合物、゚
チレングリコヌルゞグリシゞル゚ヌテル、ポリ゚
チレングリコヌルゞグリシゞル゚ヌテル、プロピ
レングリコヌルゞグリシゞル゚ヌテル、ポリプロ
ピレンゞグリシゞル゚ヌテル、ネオペンチルグリ
コヌルゞグリシゞル゚ヌテル、―ヘキサン
ゞオヌルゞグリシゞル゚ヌテル、―ゞグリ
シゞルアニリン、又は―ゞグリシゞルアニ
リンずアクリル酞或いはメタクリル酞の付加反応
物等が挙げられる。 化合物B1の添加の圹割は、倚䟡む゜シア
ネヌトず化合物(A)だけで調節できる以䞊に埗られ
るプレポリマヌの分子量や溶解性の調節を可胜ず
するこず、光硬化速床、溶解性、硬化膜の匷靭性
の向䞊を可胜ずする点にある。埓来プレポリマヌ
は高分子量になるず硬化膜の膜匷床は华぀おそれ
なりに䜎䞋しおいたが、倚䟡む゜シアネヌトず化
合物(A)及び化合物B1ずからなるりレタン
メタアクリレヌト・プレポリマヌにおいおは、
䞻鎖が長くなるにも拘らず、繰り返えし単䜍䞭に
䞍飜和基を含むので䞍飜和基密床が䜎䞋せず、良
奜な光硬化感床が保持され、曎に䞍飜和基の偎鎖
のために高分子量にも拘らずモノマヌぞの溶解性
が䜎䞋せず、硬化膜に匷靭さが付䞎される点に特
長がある。 尚、化合物B1の添加量は、化合物(A)の
化合物ずの和が30モル以䞋ずなるこずが望
たしい。 本発明は、曎にもう䞀぀の態様ずしお、倚䟡む
゜シアネヌトず反応せしめるに圓たり、化合物(A)
ず共に必芁に応じお甚いられる化合物(B)ずしお
個の氎酞基ず少なくずも個の䞍飜和基を有する
化合物B2を甚いおなるりレタンメタア
クリレヌトの補造方法を包含し、曎に他の態様ず
しお、倚䟡む゜シアネヌト、化合物(A)、個の氎
酞基ず少なくずも個の䞍飜和基ずを有する化合
物B1及び個の氎酞基ず少なくずも個の
䞍飜和基を有する化合物B2ずを反応せしめ
おなるりレタンメタアクリレヌトの補造方法
を包含する。 䞊蚘化合物B2ずしおは、―ヒドロキシ
゚チルメタアクリレヌト、―ヒドロキシプ
ロピルメタアクリレヌト、グリシゞルメ
タアクリレヌトず䞍飜和酞或いは䞍飜和アルコ
ヌルずの反応生成物、゚チレングリコヌルモノ
メタアクリレヌト、ポリ゚チレングリコヌル
モノメタアクリレヌト、プロピレングリコヌ
ルモノメタアクリレヌト、ポリプロピレング
リコヌルモノメタアクリレヌト等がある。 化合物B2は末端封鎖剀ずしおの圹割を果
すものであり、埗られるプレポリマヌの二重結合
密床、及び分子量を調敎する機胜を有する。埓぀
お、化合物(A)のの化合物に察しお20モル
以䞋の量が甚いられる。 本発明のりレタンメタアクリレヌト・プレ
ポリマヌの合成、即ち、倚䟡む゜シアネヌトず化
合物(A)、又は(A)(B)、即ち(A)B1、(A)
B2、もしくは(A)B1B2ずの反応は、
プレポリマヌ合成の通垞の方法を甚いお行なえば
よい。即ち、仕蟌み時の党氎酞基ずむ゜シアネヌ
ト基ずの比は±0.1以内であるこずが奜たしい。
甚いる溶媒は特に限定されないが、トリメチロヌ
ルプロパントリアクリレヌト、―ヘキサン
グリコヌルゞメタアクリレヌト、゚チレング
リコヌルゞメタアクリレヌト、ポリ゚チレン
グリコヌルゞメタアクリレヌト、スチレン、
メチルメタクリレヌト等のモノマヌを甚いるこず
が奜たしい。反応觊媒ずしお通垞ゞブチル錫ゞラ
りレヌトを䜿甚する。添加量は200ppmで十分で
ある。又重合犁止剀ずしお䟋えばハむドロキノン
メチル゚ヌテルを甚いる。その添加量は倧䜓
50ppm皋床で十分である。反応枩床は60〜80℃
で、反応時間は時間皋床が暙準である。反応は
空気開攟系で行なうのが奜たしい。 本発明のりレタンメタアクリレヌト・プレ
ポリマヌは、単独に或いは他のプレポリマヌず組
み合わせお䜿うこずもできるし、又曎にモノマヌ
で垌釈しお甚いるこずもできる。垌釈剀ずしおの
モノマヌずしおは、トリメチロヌルプロパントリ
アクリレヌト、―ヒドロキシ゚チルメタクリレ
ヌト、―ヘキサングリコヌルゞメタア
クリレヌト、゚チレングリコヌルゞメタアク
リレヌト、ポリ゚チレングリコヌルゞメタア
クリレヌト、スチレン、メチルメタクリレヌト等
及びそれらの混合物が挙げられる。 本発明のりレタンメタアクリレヌト・プレ
ポリマヌは、光重合開始剀を甚いお光硬化するの
に奜適に甚いられるが、勿論、適圓な熱重合開始
剀を甚いお熱硬化せしめるにも奜適である。 次に補造䟋、䜿甚䟋を瀺す。 補造䟋  ゞプニルメタン―4′―ゞむ゜シアネヌト
125ず䞀般匏(1)のの化合物4.2モル、
の化合物52.1モル、残りの化合物か
らなる混合物―480この䞭にテトラ
メチロヌルメタンテトラアクリレヌトが210含
たれおいるずからなる液䞭にゞブチル錫ゞラり
レヌトを200ppm添加しお70℃においお時間反
応を行な぀おりレタンメタアクリレヌト・プ
レポリマヌを埗た。赀倖スペクトルはむ゜シアネ
ヌト基のピヌクを有せず反応が行なわれたこずを
瀺しおいた。 埗られたプレポリマヌをトリメチロヌルプロパ
ントリアクリレヌト―ヒドロキシ゚チルメタ
クリレヌト4218重量比に溶かしお50重量
溶液ずしお枩床20℃で枬定した粘床は15ポむズで
あ぀た。 補造䟋 〜 補造䟋ず同様にしお第衚に瀺した仕蟌み成
分組成で反応を行ない、粘床を枬定した。仕蟌み
成分組成及び粘床を補造䟋ず共に第衚に瀺
す。 比范補造䟋  第衚に瀺した仕蟌み成分組成で補造䟋ず同
様にしお反応を行ない、粘床を枬定した。補造䟋
〜ず共に第衚に瀺す。
The present invention relates to a novel method for producing urethane (meth)acrylate prepolymers. More specifically, the present invention relates to a novel method for producing urethane (meth)acrylate prepolymers, which are less likely to cause phase separation in a dove, have high polymerization sensitivity, have good air curability, and have excellent hardness and toughness. The present invention relates to a method for producing a urethane (meth)acrylate prepolymer that can provide a cured film with a high temperature. Recently, inks, coating agents, and the like are rapidly being converted from thermosetting types to photocuring types. this is,
This is because it has been recognized that the light-curing type has advantages from an economic perspective such as productivity, energy saving, and space saving, as well as the clear advantage in terms of improving the working environment and preventing pollution due to being solvent-free. . By the way, the properties required of a photocurable composition are a high curing speed by light, excellent physical properties of the cured film, appropriate rheological properties of the composition solution, and low oxygen inhibition. There are certain things, etc. Currently, so-called prepolymers, which are high molecular weight unsaturated compounds, are the most important materials that play a key role in imparting the above properties to photocurable compositions, and there has been a fierce competition to develop them. There is. Conventionally developed prepolymers can be roughly divided into four types: unsaturated polyester types, epoxy (meth)acrylate types, urethane (meth)acrylate types, and various ester (meth)acrylate types.
Among them, urethane (meth)acrylates can be modified in a variety of ways depending on the reactivity of the isocyanate group, high film strength can be achieved through the intermolecular force of the urethane group, and flexibility can be imparted by introducing soft segments. type prepolymers are very promising.
In the present invention, (meth)acrylate is used to indicate acrylate and methacrylate. The above urethane (meth) that has been proposed so far
Acrylate prepolymers can be roughly divided into the following groups. Group A: Urethane (meth)acrylate obtained by linking the terminal hydroxyl groups of polyester, polyether, or hydrogenated polybutadiene with diisocyanate, and then reacting the isocyanate group remaining at the terminal with an unsaturated compound having a hydroxyl group. Group B: Urethane (meth)acrylates obtained by reacting the remaining isocyanate groups of the reaction product of a semi-drying oil and a polyvalent isocyanate with an unsaturated compound having a hydroxyl group. Group C: Epoxy (meth)acrylates obtained by reacting compounds having various epoxy groups with unsaturated basic acids, and the hydroxyl groups produced by this reaction are further reacted with a polyvalent isocyanate, and if necessary, Further, urethane (meth)acrylate in which the terminal isocyanate group is blocked with an unsaturated group (Japanese Patent Application Laid-open No. 151981/1983). Group D: Urethane (meth)acrylate obtained by reacting a polyvalent isocyanate with an unsaturated compound having a monovalent hydroxyl group such as 2-hydroxyethyl (meth)acrylate or 2-hydroxypropyl (meth)acrylate. A general review of the above four groups of urethane (meth)acrylates shows that those in Groups A and B have insufficient curing speed with light, and the resulting cured films are soft and have poor chemical resistance. Those in Group C produce a cured film with high hardness, but the solubility is poor and the resulting composition solution has a high viscosity, making it difficult to handle as a commercial product.
Those of group D have poor solubility, and moreover, phase separation tends to occur when left for a long time, and the selection of monomers is limited. Furthermore, JP-A-55-139468 discloses a urethane acrylate resin of a polyisocyanate compound and acrylic acid or methacrylic acid hydroxyester as a prepolymer, and specific examples include pentaerythritol diacrylate and pentaerythritol triacrylate. However, this urethane acrylate resin does not solve the problems of Groups C and D mentioned above. As mentioned above, urethane (meth)acrylates have many possibilities for improving physical properties due to their diverse molecular structures, but there are still none that have satisfactory performance in terms of physical properties of cured films and physical properties of composition solutions. Not obtained. In view of the above, the present inventors have focused on improving photocuring speed, solubility in monomers, lowering the viscosity of the resulting solution,
In order to obtain a urethane (meth)acrylate with well-balanced high performance in terms of the hardness of the cured film obtained, as a result of intensive research, we discovered a new urethane (meth)acrylate prepolymer with the following characteristics. The present invention has been accomplished. That is, the present invention provides a method for producing urethane (meth)acrylate in which a polyvalent isocyanate and a (meth)acrylate having a hydroxyl group are reacted, in which the (meth)acrylate having a hydroxyl group is represented by the following general formula (1). (However, R represents hydrogen or a methyl group, and n represents an integer of 1 to 4.) A compound represented by the formula, where n = 1 is 0
~5 mol%, n=2 compounds 1-30 mol%, n
A mixture (A) consisting of 20 to 60 mol% of the compound of = 3 and 5 to 79 mol% of the compound of n = 4, or mixture (A)
and a mixture of one or more compounds (B) other than general formula (1) having one to two hydroxyl groups and at least one unsaturated group. The present invention relates to a manufacturing method. The present invention will be explained in detail below. Examples of the polyvalent isocyanate which is one of the starting materials of the present invention include 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, m-phenylene diisocyanate, and p-phenylene diisocyanate. nylene diisocyanate,
1,5-naphthylene diisocyanate, 3,3'-
Examples include dimethyl-4,4'-biphenylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, and adduct compounds of these with water, trimethylolpropane, and the like. Compound (A) forming a characteristic part of the prepolymer of the present invention
is a mixture of compounds in which the number n of (meth)acrylic acids introduced is obtained by an esterification reaction between tetramethylolmethane and acrylic acid or methacrylic acid. A preferred method is to carry out the reaction under conditions that produce a large amount of , and to moderately hydrolyze the resulting reaction product to obtain a mixture with the desired compound composition. The reason for this is that it is preferable that the content of the compounds where n=0 and n=1 be as small as possible. In the present invention, the compound (A) has the general formula
The compound represented by (1) is characterized in that it is used as a mixture of compounds with n=1, 2, 3, and 4, and therefore, the component composition ratio of the compounds with each integer value of n is important. . That is, as mentioned above, it is better to have as little as possible of the compound where n=1, and it is used in a range of 0 to 5 mol%. This is because if the amount exceeds 5 mol %, problems will arise in the solubility of the prepolymer obtained. Since the compound with n=2 has an unsaturated group in the side chain, it has the function of increasing the photocuring speed and further imparting toughness to the cured film, but at the same time it acts as a molecular weight regulator, so if it is present in too large a quantity, it will not be beneficial. The upper limit is 30 mol%, and it is preferably in the range of 1 to 30 mol%, and 20 mol%. It is more preferable that it is below.
The compound with n=3 increases the photocuring rate because it contains a trivalent unsaturated group, and furthermore, the intermolecular attraction between the urethane groups is weakened by steric hindrance based on the trivalent unsaturated group, and as a result, the monomer It is presumed that it increases solubility in other solvents and produces good results such as suppressing phase separation, but at the same time it functions as an end-blocking agent for polyvalent isocyanate, so if it is too large, it increases the low molecular weight components. However, since it further widens the molecular weight distribution, there is an upper limit to its content.
Moreover, if it is too small, the high molecular weight component will increase too much, so there is a lower limit, and the range of 20 to 60 mol% is preferable. n
Although the compound of =4 is the starting point for synthesizing the mixture of the compound of general formula (1) as the compound (A), it basically works as a diluent, so it cannot be used with other compounds. can be replaced by Polyvalent isocyanate and general formula (1) n = 1, 2,
The mixture (A) of compounds 3 and 4, and the compound (B) used by mixing as necessary, include a compound (B1) having two hydroxyl groups and at least one unsaturated group, When this compound (B1) is used, urethane (meth)acrylate with a higher molecular weight can be produced. The above compound (B1) having two hydroxyl groups and at least one unsaturated group may be bis(4,4'-hydroxyphenyl)-2,2'-propane or bis(4,4' - Hydroxyphenyl) methane and epichlorohydrin condensate, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexane diol di Examples include glycidyl ether, N,N-diglycidylaniline, and addition reaction products of N,N-diglycidylaniline and acrylic acid or methacrylic acid. The role of addition of compound (B1) is to enable control of the molecular weight and solubility of the prepolymer obtained beyond that which can be controlled by polyvalent isocyanate and compound (A) alone, and to improve photocuring speed, solubility, and cured film. The point is that it makes it possible to improve the toughness of the steel. Conventionally, as the molecular weight of prepolymers increases, the strength of the cured film decreases to a certain degree, but in urethane (meth)acrylate prepolymers made of polyvalent isocyanate, compound (A), and compound (B1), ,
Even though the main chain becomes longer, the density of unsaturated groups does not decrease because the repeating units contain unsaturated groups, and good photocuring sensitivity is maintained. Despite its high molecular weight, its solubility in monomers does not decrease, and it has the advantage of imparting toughness to the cured film. The amount of compound (B1) added is n of compound (A).
It is desirable that the sum of the two compounds be 30 mol% or less. In yet another embodiment of the present invention, the compound (A) is reacted with a polyvalent isocyanate.
1 as a compound (B) used as necessary with
The present invention includes a method for producing a urethane (meth)acrylate using a compound (B2) having at least one hydroxyl group and at least one unsaturated group, and as another embodiment, polyvalent isocyanate, compound (A), two A method for producing urethane (meth)acrylate by reacting a compound (B1) having a hydroxyl group and at least one unsaturated group and a compound (B2) having one hydroxyl group and at least one unsaturated group. includes. The above compound (B2) includes 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, a reaction product of glycidyl (meth)acrylate and an unsaturated acid or unsaturated alcohol, and ethylene glycol mono(meth)acrylate. ) acrylate, polyethylene glycol mono(meth)acrylate, propylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, etc. Compound (B2) serves as an end-capping agent and has the function of adjusting the double bond density and molecular weight of the obtained prepolymer. Therefore, 20 mol% of compound (A) with respect to the compound where n=3
The following quantities are used: Synthesis of the urethane (meth)acrylate prepolymer of the present invention, i.e., polyvalent isocyanate and compound (A), or (A) + (B), i.e. (A) + (B1), (A) +
The reaction with (B2) or (A) + (B1) + (B2) is
This may be carried out using a conventional method for prepolymer synthesis. That is, the ratio of total hydroxyl groups to isocyanate groups during charging is preferably within 1±0.1.
The solvent used is not particularly limited, but includes trimethylolpropane triacrylate, 1,6-hexane glycol di(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, styrene,
Preferably, monomers such as methyl methacrylate are used. Dibutyltin dilaurate is usually used as a reaction catalyst. Addition amount of 200 ppm is sufficient. Further, as a polymerization inhibitor, for example, hydroquinone methyl ether is used. The amount added is approximately
About 50ppm is sufficient. Reaction temperature is 60~80℃
The standard reaction time is about 4 hours. Preferably, the reaction is carried out in an open air system. The urethane (meth)acrylate prepolymer of the present invention can be used alone or in combination with other prepolymers, or can be further diluted with a monomer. Monomers used as diluents include trimethylolpropane triacrylate, 2-hydroxyethyl methacrylate, 1,6-hexane glycol di(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, styrene, Examples include methyl methacrylate and mixtures thereof. The urethane (meth)acrylate prepolymer of the present invention is suitably used for photocuring using a photopolymerization initiator, but of course it is also suitable for thermosetting using a suitable thermal polymerization initiator. . Next, manufacturing examples and usage examples will be shown. Production example 1 Diphenylmethane-4,4'-diisocyanate
125 g and 4.2 mol% of the compound of general formula (1) where n = 2, n
200 ppm of dibutyltin dilaurate was added to a liquid consisting of 480 g of a mixture (A-1) consisting of 52.1 mol% of the compound of = 3 and the remaining compound of n = 4 (which contained 210 g of tetramethylolmethanetetraacrylate). The mixture was added and reacted at 70°C for 4 hours to obtain a urethane (meth)acrylate prepolymer. The infrared spectrum had no peaks for isocyanate groups, indicating that the reaction had taken place. The obtained prepolymer was dissolved in trimethylolpropane triacrylate/2-hydroxyethyl methacrylate (42/18 weight ratio) to give 50% by weight.
The viscosity measured as a solution at a temperature of 20°C was 15 poise. Production Examples 2 to 7 Reactions were carried out in the same manner as in Production Example 1 using the ingredients shown in Table 1, and the viscosity was measured. The ingredients composition and viscosity are shown in Table 1 together with Production Example 1. Comparative Production Example 1 A reaction was carried out in the same manner as in Production Example 1 using the ingredients shown in Table 1, and the viscosity was measured. It is shown in Table 1 together with Production Examples 1 to 7.

【衚】 䜿甚䟋  第衚の補造䟋のプレポリマヌ40PHR暹脂
100重量郚に察する重量郚を瀺すを、トリメチ
ロヌルプロパントリアクリレヌトTMPTA
45PHR、―ヒドロキシ゚チルメタクリレヌト
2HEMA15PHRの混合モノマヌに溶解し、曎
に光重合開始剀ずしおむルガキナアヌ651 チ
バガむギヌ瀟補、ベンゞルメチルケタヌル、以䞋
同じ1.5PHRを加えお完党に溶解させた。埗ら
れた溶液は宀枩で長期間カ月以䞊攟眮した
が盞分離は起こらなか぀た。 この溶液をスペヌサヌを甚いお40Όの厚みにガ
ラス・゚ポキシ基板銅箔なし䞊に塗垃した。 この塗垃板を120Wcm出力の高圧氎銀灯10cm
盎䞋に10秒静止しお露光させた1400mJ盞圓。
露光埌JISD02028―10にの぀ずり鉛筆硬床を枬定
したずころ、8Hの高硬床であ぀た。 䜿甚䟋 〜 第衚に瀺すように、第衚所茉のプレポリマ
ヌ各40PHRを、トリメチロヌルプロパントリア
クリレヌトTMPTA45PHR、及び―ヒド
ロキシ゚チルメタクリレヌト2HEMA
15PHRの混合モノマヌに溶解し、曎に光重合開
始剀ずしおむルガキナアヌ651 1.5PHRを加え
お完党に溶解させた。この溶液をスペヌサヌを䜿
぀お40Όの厚みにガラス・゚ポキシ基板銅箔な
し䞊に塗垃した。 䜿甚䟋ず同様に露光し、鉛筆硬床を枬定し
た。結果を第衚に瀺す。
[Table] Usage example 1 Prepolymer 40PHR (resin
(parts by weight relative to 100 parts by weight) is trimethylolpropane triacrylate (TMPTA)
45 PHR, 2-hydroxyethyl methacrylate (2HEMA) was dissolved in a mixed monomer mixture of 15 PHR, and 1.5 PHR of Irgakyure 651 (manufactured by Ciba Geigy, benzyl methyl ketal, the same hereinafter) was added as a photopolymerization initiator and completely dissolved. The obtained solution was left at room temperature for a long period of time (more than 3 months), but no phase separation occurred. This solution was applied onto a glass epoxy substrate (without copper foil) to a thickness of 40 ÎŒm using a spacer. Apply this coating plate to a 10cm high-pressure mercury lamp with an output of 120W/cm.
I stood still for 10 seconds directly under the light and exposed it to light (equivalent to 1400mJ).
After exposure, the pencil hardness was measured according to JISD02028-10, and the hardness was as high as 8H. Usage Examples 2 to 7 As shown in Table 2, 40 PHR of each of the prepolymers listed in Table 1 were combined with 45 PHR of trimethylolpropane triacrylate (TMPTA) and 2-hydroxyethyl methacrylate (2HEMA).
It was dissolved in 15 PHR of mixed monomer, and 1.5 PHR of IRGAKURE 651 was added as a photopolymerization initiator to completely dissolve it. This solution was applied to a glass epoxy substrate (without copper foil) to a thickness of 40 ÎŒm using a spacer. It was exposed to light in the same manner as in Use Example 1, and the pencil hardness was measured. The results are shown in Table 2.

【衚】【table】

【衚】 比范䜿甚䟋 〜 比范䜿甚䟋ずしお、第衚に瀺す条件で、硬化
塗膜を埗た。諞デヌタを第衚に瀺す。
[Table] Comparative Use Examples 1 to 4 As comparative use examples, cured coating films were obtained under the conditions shown in Table 3. Various data are shown in Table 3.

【衚】 ○
アロニツクス8030 〓東亜合成(瀟)補、ポリ゚ステ
ル系プレポリマヌ
[Table] ○R
Aronix 8030 〓Manufactured by Toagosei Co., Ltd., polyester prepolymer

Claims (1)

【特蚱請求の範囲】  倚䟡む゜シアネヌトず、氎酞基を有するメ
タアクリレヌトずを反応させるりレタンメ
タアクリレヌトの補造方法においお、氎酞基を
有するメタアクリレヌトずしお、 䞋蚘䞀般匏(1) 䜆し、は氎玠又はメチル基、は〜の敎
数を衚す。 で瀺される化合物であ぀お、の化合物が
〜モル、の化合物が〜30モル、
の化合物が20〜60モル、の化合物が
〜79モルからなる混合物(A)、又は、混合物(A)
ず〜個の氎酞基ず少なくずも個の䞍飜和基
を有する䞀般匏(1)以倖の化合物(B)の皮又は皮
以䞊ずの混合物を甚いるこずを特城ずするりレタ
ンメタアクリレヌトの補造方法。
[Claims] 1. In a method for producing urethane (meth)acrylate in which a polyvalent isocyanate and a (meth)acrylate having a hydroxyl group are reacted, the (meth)acrylate having a hydroxyl group is represented by the following general formula (1). (However, R represents hydrogen or a methyl group, and n represents an integer of 1 to 4.) A compound represented by the formula, where n = 1 is 0
~5 mol%, n=2 compounds 1-30 mol%, n
A mixture (A) consisting of 20 to 60 mol% of the compound of = 3 and 5 to 79 mol% of the compound of n = 4, or mixture (A)
and a mixture of one or more compounds (B) other than general formula (1) having one to two hydroxyl groups and at least one unsaturated group. manufacturing method.
JP56051976A 1981-04-07 1981-04-07 Urethane prepolymer Granted JPS57165422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56051976A JPS57165422A (en) 1981-04-07 1981-04-07 Urethane prepolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56051976A JPS57165422A (en) 1981-04-07 1981-04-07 Urethane prepolymer

Publications (2)

Publication Number Publication Date
JPS57165422A JPS57165422A (en) 1982-10-12
JPH0125772B2 true JPH0125772B2 (en) 1989-05-19

Family

ID=12901890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56051976A Granted JPS57165422A (en) 1981-04-07 1981-04-07 Urethane prepolymer

Country Status (1)

Country Link
JP (1) JPS57165422A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971048A (en) * 1982-10-18 1984-04-21 Mitsubishi Chem Ind Ltd Photopolymerizable photosensitive composition
WO2014156423A1 (en) * 2013-03-29 2014-10-02 Dic株匏䌚瀟 Urethane resin composition, coating agent, and article
WO2016002615A1 (en) * 2014-06-30 2016-01-07 Dic株匏䌚瀟 Ultraviolet curable composition
JP6398535B2 (en) * 2014-09-26 2018-10-03 Dic株匏䌚瀟 Aqueous resin composition, coating agent and article
JP7109186B2 (en) * 2017-12-27 2022-07-29 株匏䌚瀟ファむンケミカル Urethane (meth)acrylate composition, active energy ray-polymerizable composition, and laminate

Also Published As

Publication number Publication date
JPS57165422A (en) 1982-10-12

Similar Documents

Publication Publication Date Title
US4255243A (en) Unsaturated poly-(carbonate-urethanes) and their applications to photocrosslinking
JP2873482B2 (en) Photocrosslinkable resin composition
JPS61271306A (en) Low molecular weight hydroxy functional (meth)acrylate polymer
EP0086051B1 (en) Production of photocurable compositions
US4512910A (en) Photocurable compositions
JPH03247618A (en) Ultraviolet-curable heat-resistant urethane acrylate
JPH0125772B2 (en)
US4672080A (en) Photocurable resin composition prepared from urethane acrylate oligomer containing bisphenols
JPH0149370B2 (en)
JPS6385031A (en) Coating agent for optical glass fiber
JPH02274713A (en) Photocurable resin
EP0277813A2 (en) Photosetting resin composition
JPH03199217A (en) Liquid curable resin composition
EP0435211A2 (en) Photo-curable, urethane-containing compositions
JP3058749B2 (en) Resin composition, transmission screen ultraviolet curable resin composition and cured product thereof
JPS62227916A (en) Production of curable composition
JPH01242613A (en) Urethane (meth)acrylate mixture and resin composition and coating agent for optical fiber using this mixture
JPS63130611A (en) Polyurethane-(meth)acrylate mixture, resin composition and coating agent
JPS61145268A (en) Moisture-curing self-adhesive composition
JPH028279A (en) Adhesive composition
JPH0144730B2 (en)
JPS63312309A (en) Liquid curable resin composition
JPS5974116A (en) Production of radical-polymerizable prepolymer
JPH028272A (en) Coating composition for optical fiber
JPS63168417A (en) Liquid curable resin composition