JPH01231412A - Method for adjusting frequency characteristic of surface acoustic wave device - Google Patents
Method for adjusting frequency characteristic of surface acoustic wave deviceInfo
- Publication number
- JPH01231412A JPH01231412A JP5631288A JP5631288A JPH01231412A JP H01231412 A JPH01231412 A JP H01231412A JP 5631288 A JP5631288 A JP 5631288A JP 5631288 A JP5631288 A JP 5631288A JP H01231412 A JPH01231412 A JP H01231412A
- Authority
- JP
- Japan
- Prior art keywords
- surface acoustic
- acoustic wave
- etching
- electrode
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000010897 surface acoustic wave method Methods 0.000 title claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000000992 sputter etching Methods 0.000 claims abstract description 12
- 238000005530 etching Methods 0.000 abstract description 23
- 230000008569 process Effects 0.000 abstract description 9
- 238000012805 post-processing Methods 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 230000006866 deterioration Effects 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 230000000087 stabilizing effect Effects 0.000 abstract 1
- 238000001312 dry etching Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000001039 wet etching Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
圧電性基板とその表面に形成された所望の周波数特性に
応じた形状のパターン電極とを備えた弾性表面波ディバ
イスの周波数特性調整方法に関し、周波数特性の調整作
業及びその後の後処理を短時間で容易に行うことができ
、しかも、従来のパターン電極のドライエツチング法の
欠点であるパターン電極上への保g!膜の形成工程を不
要にできるとともに、周波数調整に伴う弾性表面波の伝
搬効率の低下を防止できるSAWディバイスの周波数特
性調整方法を提供することを目的とし、パターン電極を
マスクとして圧電性基板の表面をスパッタエツチングす
ることにより、弾性表面波ディバイスの周波数特性を低
周波側に変位させる構成とする。[Detailed Description of the Invention] [Summary] This invention relates to a method for adjusting the frequency characteristics of a surface acoustic wave device including a piezoelectric substrate and a patterned electrode formed on the surface thereof and having a shape corresponding to a desired frequency characteristic. Adjustment work and subsequent post-processing can be carried out easily in a short time, and moreover, it eliminates the problem of retaining adhesive on the pattern electrode, which is a disadvantage of the conventional dry etching method for pattern electrodes. The purpose of the present invention is to provide a method for adjusting the frequency characteristics of a SAW device that can eliminate the need for a film formation process and prevent a decrease in the propagation efficiency of surface acoustic waves due to frequency adjustment. By sputter etching the surface acoustic wave device, the frequency characteristics of the surface acoustic wave device are shifted to the lower frequency side.
本発明は弾性表面波ディバイス(以下、SAWディバイ
スという)の周波数特性調整方法に関し、更に詳しくは
、圧電性基板とその表面に形成された所望の周波数特性
に応じた形状のパターン電極とを備えた弾性表面波ディ
バイスの周波数特性調整方法に関する。The present invention relates to a method for adjusting frequency characteristics of a surface acoustic wave device (hereinafter referred to as a SAW device), and more specifically, the present invention relates to a method for adjusting frequency characteristics of a surface acoustic wave device (hereinafter referred to as a SAW device), and more specifically, the present invention relates to a method of adjusting frequency characteristics of a surface acoustic wave device (hereinafter referred to as a SAW device), and more specifically, the present invention relates to a method of adjusting frequency characteristics of a surface acoustic wave device (hereinafter referred to as a SAW device). This invention relates to a method for adjusting frequency characteristics of surface acoustic wave devices.
−Mに、V HF生成いはU HF生角のフィルタや発
振器等として用いられるSAWディバイスは、二酸化ケ
イ素(SiO2)等からなる圧電性基板上に電極となる
アルミニウム(AI)膜等の導体膜を蒸着形成した後、
フォトリソグラフィ法等によって導体膜のエツチングを
行い圧電性基板上に所望の周波数特性に応じたパターン
電極を形成す□ ることによって作られる。しかしなが
ら、共通の圧電性基板上に複数組のパターン電極を形成
した後に圧電性基板を切断して複数個のSAWディバイ
スを同時に作成した場合、パターン電極には加工精度の
ばらつきが生じ易いため、その後、個々のSAWディバ
イスの周波数特性を微調整することが必要となる。-M, SAW devices used as filters and oscillators for V HF generation or U HF generation are made of a conductor film such as an aluminum (AI) film that serves as an electrode on a piezoelectric substrate made of silicon dioxide (SiO2), etc. After forming by vapor deposition,
It is made by etching a conductive film using photolithography or the like to form a patterned electrode according to desired frequency characteristics on a piezoelectric substrate. However, if multiple sets of pattern electrodes are formed on a common piezoelectric substrate and then the piezoelectric substrate is cut to create multiple SAW devices at the same time, variations in processing accuracy tend to occur in the pattern electrodes. , it is necessary to fine-tune the frequency characteristics of individual SAW devices.
〔従来の技術及び発明が解決しようとする課題〕 ′従
来より、SAWディバイスの周波数特性調整方法として
、ウェットエツチング又はドライエツチングにより圧電
性基板上のパターン電極をエツチングする方法が用いら
れている。[Prior Art and Problems to be Solved by the Invention] 'Conventionally, as a method for adjusting the frequency characteristics of a SAW device, a method has been used in which a pattern electrode on a piezoelectric substrate is etched by wet etching or dry etching.
ウェットエツチング法による場合、パターン電極を形成
した圧電性基板を水酸化ナトリウム(NaOH)希釈液
等の弱アルカリ性溶液或いはリン酸希釈液等の弱酸性溶
液に浸漬することにより、電極パターンをエツチングし
、浸漬時間の調整によって電極パターンの厚みの調整が
行われる。In the case of wet etching, the piezoelectric substrate on which patterned electrodes are formed is immersed in a weakly alkaline solution such as a diluted sodium hydroxide (NaOH) solution or a weakly acidic solution such as a diluted phosphoric acid solution to etch the electrode pattern. The thickness of the electrode pattern is adjusted by adjusting the dipping time.
しかしながら、このウェットエツチングによる調整方法
では、エツチング液の濃度、温度等のバラツキやエツチ
ング液の使用による劣化等によってエツチング速度が大
きく異なってしまうので、浸漬時間の調整が困難である
。However, in this adjustment method using wet etching, it is difficult to adjust the immersion time because the etching rate varies greatly due to variations in the concentration and temperature of the etching solution and deterioration due to the use of the etching solution.
特に、へ2膜のパターン電極を有する圧電性基板をエツ
チング液に浸漬した場合、Al膜の表面の安定なアルミ
ナ(Aj’zO,l)膜がエツチング液で破壊されるま
ではエツチング速度が遅く、且つ、Affiffi03
膜が破壊されて純Al膜が表出した後は急速にエツチン
グが進むこととなり、エツチング量が浸漬時間に比例し
ないため、浸漬時間の調整が困難である。In particular, when a piezoelectric substrate having a two-layer pattern electrode is immersed in an etching solution, the etching rate is slow until the stable alumina (Aj'zO,l) film on the surface of the Al film is destroyed by the etching solution. , and Afiffi03
After the film is destroyed and the pure Al film is exposed, etching proceeds rapidly and the amount of etching is not proportional to the immersion time, making it difficult to adjust the immersion time.
また、エツチング処理後に水洗等の洗浄が必要であるた
め、作業工数が増加する。しかも、洗浄の程度によりS
AWディバイスの表面への不純物の付着状態が異なるた
め、後工程での安定化処理に時間がかかることとなる。Further, since cleaning such as water washing is required after the etching process, the number of work steps increases. Moreover, depending on the degree of cleaning, S
Since the adhesion state of impurities to the surface of the AW device is different, the stabilization treatment in the post-process takes time.
更に、エツチング液によるエツチングによってパターン
電極の厚みだけでなく、パターン幅も狭くなってしまう
ため、弾性表面波の伝搬特性が低下することとなる。Furthermore, etching with an etching solution reduces not only the thickness of the patterned electrode but also the pattern width, which deteriorates the propagation characteristics of surface acoustic waves.
一方、パターン電極のドライエツチングによるSAWデ
ィバイスの周波数特性調整方法は本出願人による特開昭
56−154814号公報に開示されている。この方法
においては、圧電性基板上に形成されたパターン電極の
上にSin、やAltos等からなる保護膜を形成し、
この保護膜をマスクとしてパターン電極のドライエツチ
ング(サイドエツチング)を行うことにより、パターン
電極の幅の調整が行われる。On the other hand, a method for adjusting the frequency characteristics of a SAW device by dry etching patterned electrodes is disclosed in Japanese Patent Application Laid-Open No. 154814/1983 by the present applicant. In this method, a protective film made of Sin, Altos, etc. is formed on a patterned electrode formed on a piezoelectric substrate,
By dry etching (side etching) the pattern electrode using this protective film as a mask, the width of the pattern electrode is adjusted.
このドライエツチング法によれば上述したウェットエツ
チング法の欠点を解消できるが、パターン電極上に保護
膜を形成する工程が必要であるため、作業工数が増える
という欠点がある。また、エツチングのばらつきによっ
て電極指幅が不揃いとなったり、各電極指幅が不均一と
なったりすることにより、弾性表面波の乱反射等が起こ
って弾性表面波の伝搬効率が低下するという問題が生じ
る。Although this dry etching method can overcome the drawbacks of the wet etching method described above, it requires a step of forming a protective film on the patterned electrodes, resulting in an increase in the number of work steps. In addition, due to variations in etching, the width of the electrode fingers becomes uneven, or the width of each electrode finger becomes uneven, which causes diffuse reflection of surface acoustic waves and reduces the propagation efficiency of surface acoustic waves. arise.
従って、本発明は、周波数特性の調整作業及びその後の
後処理を短時間で容易に行うことができ、しかも、従来
のパターン電極のドライエツチング法の欠点であるパタ
ーン電極上への保護膜の形成工程を不要にできるととも
に、周波数調整に伴う弾性表面波の伝搬効率の低下を防
止できるSAWディバイスの周波数特性調整方法を提供
することを目的とする。Therefore, the present invention allows frequency characteristic adjustment work and subsequent post-processing to be easily performed in a short time, and also eliminates the disadvantage of forming a protective film on the pattern electrode, which is a disadvantage of the conventional dry etching method for pattern electrodes. It is an object of the present invention to provide a method for adjusting the frequency characteristics of a SAW device that can eliminate the need for a process and prevent a decrease in the propagation efficiency of surface acoustic waves due to frequency adjustment.
本発明に従うSAWディバイスの周波数特性調整方法は
、圧電性基板とその表面に形成された所望の周波数特性
に応じた形状のパターン電極とを備えた弾性表面波ディ
バイスのパターン電極をマスクとして圧電性基板の表面
をスパッタエツチングすることにより、弾性表面波ディ
バイスの周波数行性を低周波側に変位させるように構成
される。A method for adjusting the frequency characteristics of a SAW device according to the present invention includes using a piezoelectric substrate as a mask using a pattern electrode of a surface acoustic wave device comprising a piezoelectric substrate and a pattern electrode formed on the surface thereof and having a shape corresponding to a desired frequency characteristic. By sputter etching the surface of the surface acoustic wave device, the frequency behavior of the surface acoustic wave device is shifted to the lower frequency side.
上記構成を有するSAWディバイスの周波数特性調整方
法によれば、パターン電極上にマスクとしての保護膜を
前工程で形成する必要がないので、パターン電極をサイ
ドエツチングする従来のドライエツチング法に比べて作
業工数を削減することができる。また、パターン電極自
体のサイドエツチングは実質的に行われないので、パタ
ーン電極の電極指幅の不揃いや各電極指の線幅の不均一
化による弾性表面波伝搬効率の低下を防止できることと
なる。According to the method for adjusting the frequency characteristics of a SAW device having the above configuration, there is no need to form a protective film as a mask on the pattern electrode in the previous process, so it requires less work than the conventional dry etching method in which the pattern electrode is side-etched. Man-hours can be reduced. Furthermore, since side etching of the pattern electrode itself is not substantially performed, it is possible to prevent a decrease in surface acoustic wave propagation efficiency due to uneven electrode finger widths of the pattern electrode or non-uniform line width of each electrode finger.
勿論、従来のウェットエツチング法に比べれば、エツチ
ング時間の調整やエツチング速度の微調整等が容易であ
るとともに、後処理としての水洗が不要であるためその
後の安定化処理を短時間で行うことができる等の利点が
ある。Of course, compared to the conventional wet etching method, it is easier to adjust the etching time and finely adjust the etching speed, and since rinsing with water is not required as a post-treatment, the subsequent stabilization treatment can be carried out in a short time. There are advantages such as being able to
以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図は本発明方法によりSAWディバイスの周波数特
性を調整した状態を示すものであり、第2図は本発明方
法を実施するための周波数特性調整装置及び周波数測定
装置の構成を示したものである。はじめに第2図を参照
して周波数特性調整装置及び周波数測定装置の構成を説
明する。Fig. 1 shows the frequency characteristics of a SAW device adjusted by the method of the present invention, and Fig. 2 shows the configuration of a frequency characteristic adjusting device and a frequency measuring device for carrying out the method of the present invention. be. First, the configurations of the frequency characteristic adjustment device and frequency measurement device will be explained with reference to FIG.
第2図において、11は真空チャンバ、12゜13は真
空排気ポンプ、14は真空度調整用バルブ、15.16
はそれぞれガス導入バルブ、17はアースされた下部電
極、18は高周波(RF)マツチングボックス19を介
してRF電源装置20に接続された上部電極、21は上
部電極18にシールリング22を介して保持された製品
ホルダ、24はシールリング23を介して製品ホルダ2
1に保持されたSAWディバイスである。In Fig. 2, 11 is a vacuum chamber, 12, 13 is a vacuum pump, 14 is a vacuum adjustment valve, and 15.16.
are gas introduction valves, 17 is a grounded lower electrode, 18 is an upper electrode connected to an RF power supply 20 via a radio frequency (RF) matching box 19, and 21 is connected to the upper electrode 18 via a seal ring 22. The held product holder 24 is connected to the product holder 2 through the seal ring 23.
This is a SAW device held at 1.
第1図に示すように、SΔWディバイス24は例えばS
iO□単結晶からなる圧電性)!i、板25と、この圧
電性基板25を支持する金属ベース26と、圧電性基板
24上に形成された例えばA1膜からなるくし形電極(
IDT電極)等のパターン電極27とを備えている。こ
のパターン電極27は所望の周波数特性が得られるよう
に周知の方法で形成されている。As shown in FIG. 1, the SΔW device 24 is, for example, S
iO□Piezoelectricity made of single crystal)! i, a plate 25, a metal base 26 supporting this piezoelectric substrate 25, and a comb-shaped electrode (for example, made of an A1 film) formed on the piezoelectric substrate 24;
A pattern electrode 27 such as an IDT electrode) is provided. This pattern electrode 27 is formed by a well-known method so as to obtain desired frequency characteristics.
再び第2図を参照すると、28.29はSAWディバイ
ス24のパターン電極27に対し接続された一方の平面
圧接形コンタクトであり、両コンタクト28.29は筐
体30に固定されている。Referring again to FIG. 2, reference numerals 28 and 29 indicate one plane pressure contact type contact connected to the pattern electrode 27 of the SAW device 24, and both contacts 28 and 29 are fixed to the housing 30.
周波数測定装置31に接続された他方の平面圧接形コン
タクト32.33はコンタクト駆動装置34によってコ
ンタクト28.29に対し接続及び切乱し可能とされて
いる。The other flat pressure contact 32, 33 connected to the frequency measuring device 31 can be connected and disconnected to the contact 28, 29 by a contact drive device 34.
次に、上記周波数特性調整装置及び周波数測定装置を用
いたSAWディバイスの周波数特性調整方法について述
べる。Next, a method for adjusting the frequency characteristics of a SAW device using the frequency characteristic adjusting device and frequency measuring device described above will be described.
第2図に示すように、SAWディバイス24は製品ホル
ダ20に保持した状態で上部電極18の開口部に装着す
る。次に、真空排気ポンプ12゜13によって真空チャ
ンバ12内を真空排気した後、ガス導入バルブ15.1
6の一方又は双方を介して適量のガスを真空チャンバ1
2内に導入し、真空度調整用バルブ14の調整によって
真空チャンバ12内を所望の真空度に維持する。As shown in FIG. 2, the SAW device 24 is attached to the opening of the upper electrode 18 while being held in the product holder 20. Next, after evacuating the inside of the vacuum chamber 12 using the vacuum pump 12.13, the gas introduction valve 15.1
A suitable amount of gas is supplied to the vacuum chamber 1 through one or both of the
The inside of the vacuum chamber 12 is maintained at a desired degree of vacuum by adjusting the vacuum degree adjusting valve 14.
次に、RF電源装置20を作動させて上部電極18と下
部電極17との間にRF雷電圧印加する。Next, the RF power supply device 20 is activated to apply an RF lightning voltage between the upper electrode 18 and the lower electrode 17.
このとき、RF電源装置20のパワーを適宜に設定し、
RFマツチングボックス19によって同調させることに
より、スパッタリングを効率よく行うようにする。この
間、コンタクト32.33を駆動装置34によってコン
タクト28.29から切り離しておくことにより、RF
パワーによる測定装置31の破損を防止する。At this time, set the power of the RF power supply device 20 appropriately,
By synchronizing with the RF matching box 19, sputtering can be performed efficiently. During this time, contacts 32, 33 are separated from contacts 28, 29 by drive device 34, so that the RF
This prevents damage to the measuring device 31 due to power.
RF雷電圧印加により、真空チャンバ12内で圧電性基
板25のスパッタエツチングが行われる。Sputter etching of the piezoelectric substrate 25 is performed within the vacuum chamber 12 by applying an RF lightning voltage.
第1図は圧電性基板25の表面がスパッタエツチングに
よって削り取られた状態を示している。圧電性基板26
のスパッタエツチングによってSAWディバイス24の
パターン電極25の膜厚が疑似的に増大することとなる
ので、SAWディバイス24の周波数特性は低周波側に
変位することとなる。FIG. 1 shows a state in which the surface of the piezoelectric substrate 25 has been scraped off by sputter etching. Piezoelectric substrate 26
As a result of this sputter etching, the film thickness of the pattern electrode 25 of the SAW device 24 is artificially increased, so that the frequency characteristics of the SAW device 24 are shifted to the lower frequency side.
本発明においては、パターン電極27をマスクとして圧
電性基板25の表面のスパッタエツチングを行うので、
真空チャンバ12内に導入するガスとしては、アルゴン
(Ar)、窒素(N2)。In the present invention, since the surface of the piezoelectric substrate 25 is sputter etched using the pattern electrode 27 as a mask,
The gases introduced into the vacuum chamber 12 are argon (Ar) and nitrogen (N2).
ヘリウム(He)等の不活性ガスを使用する必要がある
。It is necessary to use an inert gas such as helium (He).
真空チャンバ12内には不活性ガスのみを導入してもよ
いが、特に、Arガスを用いる場合にはマスクとしての
パターン電極(AI膜)27もスパンタリング作用を若
干受けるので、それを抑制するために、不活性ガスと共
に酸素(0りを真空チャンバ12内に導入することが好
ましい。Only inert gas may be introduced into the vacuum chamber 12, but especially when Ar gas is used, the pattern electrode (AI film) 27 as a mask is also subject to some sputtering action, so this should be suppressed. Therefore, it is preferable to introduce oxygen into the vacuum chamber 12 together with an inert gas.
0、の導入により、AI膜の表面には安定なAltos
膜が生成されてAl1p14が保護されることとなる。0, stable Altos is added to the surface of the AI film.
A film is formed to protect Al1p14.
また、A1膜の表面が安定なAltos膜で保護される
ので、周波数特性調整後にSAWディバイス24が空気
中に晒されたときに、へl膜の酸化による周波数特性の
変動を防止できることとなる。Furthermore, since the surface of the A1 film is protected by the stable Altos film, when the SAW device 24 is exposed to the air after adjusting the frequency characteristics, it is possible to prevent fluctuations in the frequency characteristics due to oxidation of the Altos film.
任意の時間RF雷電圧印加した後、RF電源装置20を
消勢し、次に駆動装置34によってコンタクト32.3
3をコンタクト28.29に接続し、スパッタエツチン
グ処理後のSAWディバイス24の周波数特性を測定装
置31によって測定する。この間、真空チャンバ12内
ガス雰囲気をスパッタリング処理時と同一に保っておく
ことができる。After applying the RF lightning voltage for a given period of time, the RF power supply 20 is de-energized and the contact 32.3 is then activated by the driver 34.
3 are connected to the contacts 28 and 29, and the frequency characteristics of the SAW device 24 after the sputter etching process are measured by the measuring device 31. During this time, the gas atmosphere within the vacuum chamber 12 can be kept the same as during the sputtering process.
SへWディバイス24の周波数特性が目標値よりも高い
ときは再度RF雷電圧印加して圧電性基板25のスパッ
タエツチングを行う。When the frequency characteristic of the W device 24 is higher than the target value, the RF lightning voltage is applied again to perform sputter etching of the piezoelectric substrate 25.
上述した調整方法によれば、RFパワー、ガス圧、RF
電圧印加時間等の調整によってエツチング速度の微調整
が可能であり、また、調整作業及び測定作業の自動化を
容易に実現できることとなる。According to the adjustment method described above, RF power, gas pressure, RF
The etching speed can be finely adjusted by adjusting the voltage application time, etc., and the adjustment work and measurement work can be easily automated.
第3図は周波数特性調整装置の変形例を示したものであ
る。この図において、上述した第2図の調整装置と同一
の構成要素には同一の参照符号が付されている。第3図
に示す調整装置においては、下部電極17がRFマツチ
ングボックス19を介してRF電源装置20に接続され
ており、上部電極18がアースされている。また、SA
Wディバイス24を支持する製品ホルダ21が下部電極
17上に設けられているので、製品ホルダ21と下部電
極17との間の密封構造が不要であり、構造が簡素化さ
れている。なお、この調整装置の場合、上部電極18を
有する容器を固定とし、下部電極17を昇降装置によっ
て上下させることにより、SAWディバイス24の取出
しゃ製品ホルダ21上への装着等を容易に行うことがで
きる。FIG. 3 shows a modification of the frequency characteristic adjustment device. In this figure, the same components as those of the adjusting device of FIG. 2 described above are given the same reference numerals. In the adjustment device shown in FIG. 3, the lower electrode 17 is connected to the RF power supply device 20 via the RF matching box 19, and the upper electrode 18 is grounded. Also, SA
Since the product holder 21 supporting the W device 24 is provided on the lower electrode 17, there is no need for a sealing structure between the product holder 21 and the lower electrode 17, and the structure is simplified. In the case of this adjustment device, by fixing the container having the upper electrode 18 and moving the lower electrode 17 up and down using the lifting device, it is possible to easily take out the SAW device 24 and mount it on the product holder 21. can.
第3図に示す調整装置を用いた場合においても、上述し
た調整方法及び周波数測定方法と同一の方法でSAWデ
ィバイスの周波数特性の調整及び測定を行うことができ
る。Even when the adjustment device shown in FIG. 3 is used, the frequency characteristics of the SAW device can be adjusted and measured using the same adjustment method and frequency measurement method described above.
第4図及び第5図は本発明による周波数特性調整方法を
用いて1.8GIIz帯用SAWディバイスのスパッタ
エツチングを行った場合のRFパワー印加時間(min
)とSAWディバイスの周波数特性の変化量Δfo
(MH2)との関係を示したものである。使用したSA
Wディバイスは圧電性基板としてSiO□単結晶を用い
、また、I’ D T T1.極膜としてAN膜(膜厚
約300人)を用いた。また、スパッタエツチング時の
ガス雰囲気としてはA「とOXとを同比率の流量とし、
真空容器内の真空度を0. I Torrとした。FIGS. 4 and 5 show the RF power application time (min.
) and the amount of change Δfo in the frequency characteristics of the SAW device
(MH2). SA used
The W device uses SiO□ single crystal as the piezoelectric substrate, and I' D T T1. An AN film (film thickness of approximately 300 mm) was used as the polar film. In addition, the gas atmosphere during sputter etching is set to have the flow rates of A and OX at the same ratio.
The degree of vacuum in the vacuum container is set to 0. I Torr.
第4図から、印加するRFパワーを30W。From Figure 4, the applied RF power is 30W.
60W、90W等で一定とした場合に、それぞれRFパ
ワーの印加時間に対してSAWディバイスの励起周波数
が略比例的に変化(減少)することが判る。第4図では
RFパワーを60Wとした場合の特性曲線が2つ示され
ているが、これはSAWディバイスに形成されているパ
ターン電極のばらつきが生じていたためである。It can be seen that when the power is kept constant at 60 W, 90 W, etc., the excitation frequency of the SAW device changes (decreases) approximately proportionally to the application time of the RF power. In FIG. 4, two characteristic curves are shown when the RF power is 60 W, but this is because there were variations in the patterned electrodes formed in the SAW device.
第5図においては、3つの特性曲線の符号Pl。In FIG. 5, the symbol Pl of the three characteristic curves.
P、、P!で示す時点でRFパワーが60Wから30W
に切り換えられている。第5図から判るように、RFパ
ワーを途中で切り換えることによって、SAWディバイ
スの周波数の変化(減少)速度(すなわちエツチング速
度)を遅くすることができるので、周波数特性の微調整
が一層容易となる。P,,P! At the time indicated by , the RF power changes from 60W to 30W.
has been switched to. As can be seen from Figure 5, by switching the RF power midway, it is possible to slow down the rate of change (decrease) in the frequency of the SAW device (i.e., the etching rate), making it easier to fine-tune the frequency characteristics. .
上述した本発明による周波数特性調整方法によれば、従
来のウェットエツチング法で約45分を要していたもの
が約10分で調整可能となる。また、従来のウェットエ
ツチング法では周波数特性調整後の後の安定化処理に約
48時間を要していたが、本発明方法により周波数特性
の調整を行ったSAWディバイスではその後の安定化処
理を約20時間で完了できることとなる。According to the above-described frequency characteristic adjustment method according to the present invention, the adjustment that required approximately 45 minutes using the conventional wet etching method can now be performed in approximately 10 minutes. In addition, with the conventional wet etching method, it took about 48 hours to perform the stabilization process after adjusting the frequency characteristics, but with the SAW device whose frequency characteristics were adjusted by the method of the present invention, the subsequent stabilization process took about 48 hours. It can be completed in 20 hours.
以上の説明から明らかなように、本発明方法によれば、
SAWディバイスの圧電性基板」二に形成されているパ
ターン電極をマスクとして圧電性基板の表面をスパッタ
エツチングすることにより、SAWディバイスの周波数
特性を低周波側に変位させるので、従来のウェットエツ
チング法に比べると周波数特性の調整作業及びその後の
後処理を大幅に短縮化及び容易化することができる。し
かも、パターン電極をマスクとしてスパッタリングを行
うから、従来のパターン電極のドライエツチング法の欠
点であるパターン電極上への保護膜の形成工程を不要に
できるとともに、周波数調整に伴う弾性表面波の伝搬効
率の低下を防止できるという効果が得られる。As is clear from the above explanation, according to the method of the present invention,
By sputter etching the surface of the piezoelectric substrate using the patterned electrode formed on the piezoelectric substrate of the SAW device as a mask, the frequency characteristics of the SAW device are shifted to the lower frequency side, making it easier to perform etching than the conventional wet etching method. In comparison, frequency characteristic adjustment work and subsequent post-processing can be significantly shortened and facilitated. Moreover, since sputtering is performed using the pattern electrode as a mask, it is possible to eliminate the step of forming a protective film on the pattern electrode, which is a disadvantage of the conventional dry etching method for pattern electrodes, and to improve the propagation efficiency of surface acoustic waves due to frequency adjustment. This has the effect of preventing a decrease in .
第1図は本発明方法で周波数特性の調整を行ったSAW
ディバイスの要部断面図、
第2図は本発明方法を実施するための周波数特性調整装
置及び周波数測定装置の一部断面側面図、第3図は本発
明方法を実施するための周波数特性調整装置及び周波数
測定装置の変形例を示す一部断面構成図、
第4図及び第5図はそれぞれ本発明方法によるRFパワ
ー印加時間とSAWディバイスの周波数変化量との関係
を示すグラフである。
図において、24はSAWディバイス、25は圧電性基
板、27はパターン電極をそれぞれ示す。Figure 1 shows a SAW whose frequency characteristics have been adjusted using the method of the present invention.
A cross-sectional view of the main parts of the device; FIG. 2 is a partial cross-sectional side view of a frequency characteristic adjusting device and a frequency measuring device for carrying out the method of the present invention; and FIG. 3 is a side view of a frequency characteristic adjusting device for carrying out the method of the present invention. FIGS. 4 and 5 are graphs showing the relationship between the RF power application time and the frequency change amount of the SAW device according to the method of the present invention, respectively. In the figure, 24 represents a SAW device, 25 represents a piezoelectric substrate, and 27 represents a pattern electrode.
Claims (1)
周波数特性に応じた形状のパターン電極(27)とを備
えた弾性表面波ディバイス(24)の周波数特性調整方
法であって、 パターン電極(27)をマスクとして圧電性基板(25
)の表面をスパッタエッチングすることにより、弾性表
面波ディバイス(24)の周波数特性を低周波側に変位
させることを特徴とする弾性表面波ディバイスの周波数
特性調整方法。1. A method for adjusting frequency characteristics of a surface acoustic wave device (24) comprising a piezoelectric substrate (25) and a patterned electrode (27) formed on the surface thereof and having a shape according to desired frequency characteristics, the method comprising: Using the piezoelectric substrate (27) as a mask,
1. A method for adjusting frequency characteristics of a surface acoustic wave device, comprising displacing the frequency characteristics of the surface acoustic wave device (24) to a lower frequency side by sputter etching the surface of the surface acoustic wave device (24).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5631288A JPH01231412A (en) | 1988-03-11 | 1988-03-11 | Method for adjusting frequency characteristic of surface acoustic wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5631288A JPH01231412A (en) | 1988-03-11 | 1988-03-11 | Method for adjusting frequency characteristic of surface acoustic wave device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01231412A true JPH01231412A (en) | 1989-09-14 |
Family
ID=13023634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5631288A Pending JPH01231412A (en) | 1988-03-11 | 1988-03-11 | Method for adjusting frequency characteristic of surface acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01231412A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03284009A (en) * | 1990-03-30 | 1991-12-13 | Fujitsu Ltd | Surface acoustic wave element |
US6810566B2 (en) * | 1999-04-28 | 2004-11-02 | Murata Manufacturing Co., Ltd | Method of manufacturing a surface acoustic wave element |
JP2009225420A (en) * | 2008-02-20 | 2009-10-01 | Epson Toyocom Corp | Surface acoustic wave device and surface acoustic wave oscillator |
JP2010088141A (en) * | 2008-02-20 | 2010-04-15 | Epson Toyocom Corp | Surface acoustic wave device and surface acoustic wave oscillator |
US8305162B2 (en) | 2009-02-27 | 2012-11-06 | Seiko Epson Corporation | Surface acoustic wave resonator and surface acoustic wave oscillator |
US8471434B2 (en) | 2010-08-26 | 2013-06-25 | Seiko Epson Corporation | Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus |
US8476984B2 (en) | 2010-12-07 | 2013-07-02 | Seiko Epson Corporation | Vibration device, oscillator, and electronic apparatus |
US8598766B2 (en) | 2010-12-03 | 2013-12-03 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
US8692439B2 (en) | 2010-08-26 | 2014-04-08 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device |
US8723395B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8723394B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8723396B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8723393B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8928432B2 (en) | 2010-08-26 | 2015-01-06 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
US8933612B2 (en) | 2009-02-27 | 2015-01-13 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument |
US9048806B2 (en) | 2010-09-09 | 2015-06-02 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US9088263B2 (en) | 2010-06-17 | 2015-07-21 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
-
1988
- 1988-03-11 JP JP5631288A patent/JPH01231412A/en active Pending
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03284009A (en) * | 1990-03-30 | 1991-12-13 | Fujitsu Ltd | Surface acoustic wave element |
JP2982208B2 (en) * | 1990-03-30 | 1999-11-22 | 富士通株式会社 | Surface acoustic wave device |
US6810566B2 (en) * | 1999-04-28 | 2004-11-02 | Murata Manufacturing Co., Ltd | Method of manufacturing a surface acoustic wave element |
JP2009225420A (en) * | 2008-02-20 | 2009-10-01 | Epson Toyocom Corp | Surface acoustic wave device and surface acoustic wave oscillator |
JP2010088141A (en) * | 2008-02-20 | 2010-04-15 | Epson Toyocom Corp | Surface acoustic wave device and surface acoustic wave oscillator |
JP4591800B2 (en) * | 2008-02-20 | 2010-12-01 | エプソントヨコム株式会社 | Surface acoustic wave device and surface acoustic wave oscillator |
US8063534B2 (en) | 2008-02-20 | 2011-11-22 | Seiko Epson Corporation | Surface acoustic wave device and surface acoustic wave oscillator |
US8084918B2 (en) | 2008-02-20 | 2011-12-27 | Seiko Epson Corporation | Surface acoustic wave device and surface acoustic wave oscillator |
US8237326B2 (en) | 2008-02-20 | 2012-08-07 | Seiko Epson Corporation | Surface acoustic wave device and surface acoustic wave oscillator |
US8502625B2 (en) | 2009-02-27 | 2013-08-06 | Seiko Epson Corporation | Surface acoustic wave resonator and surface acoustic wave oscillator |
US8933612B2 (en) | 2009-02-27 | 2015-01-13 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument |
US9762207B2 (en) | 2009-02-27 | 2017-09-12 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument |
US8305162B2 (en) | 2009-02-27 | 2012-11-06 | Seiko Epson Corporation | Surface acoustic wave resonator and surface acoustic wave oscillator |
US8952596B2 (en) | 2009-02-27 | 2015-02-10 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument |
US9537464B2 (en) | 2010-06-17 | 2017-01-03 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
US9088263B2 (en) | 2010-06-17 | 2015-07-21 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
US8692439B2 (en) | 2010-08-26 | 2014-04-08 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device |
US8928432B2 (en) | 2010-08-26 | 2015-01-06 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
US8471434B2 (en) | 2010-08-26 | 2013-06-25 | Seiko Epson Corporation | Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus |
US8723396B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8723393B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8723394B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8723395B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US9048806B2 (en) | 2010-09-09 | 2015-06-02 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8791621B2 (en) | 2010-12-03 | 2014-07-29 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
US8598766B2 (en) | 2010-12-03 | 2013-12-03 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
US8476984B2 (en) | 2010-12-07 | 2013-07-02 | Seiko Epson Corporation | Vibration device, oscillator, and electronic apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01231412A (en) | Method for adjusting frequency characteristic of surface acoustic wave device | |
JP4153606B2 (en) | Plasma etching method and plasma etching apparatus | |
JP2024152739A (en) | Transducer structures for single-port resonators with suppressed transverse modes. | |
JPH08321491A (en) | Wafer cleaning sputtering process | |
CN100384086C (en) | Method for manufacturing surface acoustic wave device | |
US6214740B1 (en) | Semiconductor manufacturing apparatus | |
JP3345779B2 (en) | SAW chip and method of manufacturing SAW device using the same | |
JPH01225371A (en) | Manufacture of semiconductor device | |
JPH07201822A (en) | Dry etching device | |
JP2000156620A (en) | Center frequency adjustment method for surface acoustic wave device and production of the device | |
JP2024000433A (en) | Deposition method and elastic wave device | |
JPH0758083A (en) | Semiconductor manufacturing apparatus | |
JPH10189535A (en) | Manufacture of semiconductor device | |
JPS63182884A (en) | Manufacture of resonator of semiconductor laser | |
JPH07263406A (en) | Method of manufacturing semiconductor device | |
JP3157969B2 (en) | Manufacturing method of surface acoustic wave device | |
JPH02228036A (en) | Ion etching processing | |
JP2001244247A (en) | Method of manufacturing semiconductor device | |
JP3409357B2 (en) | Etching method | |
JP2001267870A (en) | Method and device for manufacturing saw device having lithium piezoelectric substrate | |
JPH04196803A (en) | Piezoelectric substrate for surface acoustic wave device, manufacture of same, and surface acoustic wave device using same | |
JPH06169230A (en) | Surface acoustic wave resonator | |
JPH01286330A (en) | Manufacture of semiconductor device | |
CN114203546A (en) | Semiconductor device and method for manufacturing the same | |
JPH0774573A (en) | Method for adjusting frequency of surface acoustic wave element |