Nothing Special   »   [go: up one dir, main page]

JPH01227869A - Ignition timing controller - Google Patents

Ignition timing controller

Info

Publication number
JPH01227869A
JPH01227869A JP63054303A JP5430388A JPH01227869A JP H01227869 A JPH01227869 A JP H01227869A JP 63054303 A JP63054303 A JP 63054303A JP 5430388 A JP5430388 A JP 5430388A JP H01227869 A JPH01227869 A JP H01227869A
Authority
JP
Japan
Prior art keywords
ignition
energization
time
reference position
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63054303A
Other languages
Japanese (ja)
Other versions
JPH07101028B2 (en
Inventor
Masahei Akasu
雅平 赤須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63054303A priority Critical patent/JPH07101028B2/en
Priority to KR1019890002669A priority patent/KR930005035B1/en
Priority to US07/320,128 priority patent/US5007397A/en
Publication of JPH01227869A publication Critical patent/JPH01227869A/en
Publication of JPH07101028B2 publication Critical patent/JPH07101028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To solve the problem of insufficiency of both electricity supply period and the secondary output voltage at the time of acceleration and prevent reduction in performance of an engine by compensatingly increasing the electricity supply period required for an ignition coil to generate the specified secondary output voltage according to the revolution cycle of an engine. CONSTITUTION:A plurality of means 4C and 4D generates the reference position signals at the different angular positions of a plurality of cranks. A means 6 counts the revolution cycle of an engine according to one of these reference position signals. A means 20 arithmetically operates the reference supply period for an ignition coil 42 and a means 23 compensates the reference supply period according to the revolution cycle of the engine. On the other hand a means 9 calculates the ignition timing, a means 21 calculates the supply starting timing and a means 22 generates a supply command. And responding to the supply command from a means 22, an ignition coil 42 is electrified and a means 40 controls the cut-off of the supply for the ignition coil 42 in response to the preceeding ignition command of the means 30 or 31.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はエンジンの点火時期を電子的に制御する点火
時期制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ignition timing control device that electronically controls the ignition timing of an engine.

〔従来の技術〕[Conventional technology]

f45図乃至第7図は、従来の点火時期制御装置を示す
ものである。図において(1)は1サイクル4気筒エン
ジンのクランク軸、(2)はこのクランク軸に固定され
軸回転とともに回転する円板と、この円板の円周上には
180°の間隔で離間した位置に磁性体(3A)、 (
3B)が固定装着されている。(4C)、(4D)は上
記円板(2)の外周に近接し互いに所定の角度差を持っ
て配設され、上記磁性体(3A )、あるいは(3B)
と対向した時に基準位置パルスP6. Pdをそれぞれ
発するxiピックアップで、電磁ピックアップ(4D)
はエンジンの点火時期制御角度範囲の中で最も遅れた点
火時期に相当するクランク角度位置を検出するように設
けられ、電磁ピックアップ(4C)は電磁ピックアップ
(4D)の位置から円板2の外周方向に沿って90°回
転した位置に設けられており、クランク軸1が90°回
転する毎に基準位置パルスPcとPd  が交互に送出
されるよう構成されている。(5)はクロックパルスC
Pを出力する発振器、(6)は上記発振器(5)のクロ
ックパルスCPに基づいて上記基準位置パルスP60時
間間隔T6  を計測する周期計測手段、(9)はエン
ジンの回転数やマニホールド圧力等の情報Sに基づいて
!lE&ピックアップ(4D)が検出すべきクランクの
基準位置を基準とした点火進角度値θを算出する点火時
期演算手段、cAはバッテリ電圧Uより点火コイル輪の
一次電流が所定の値に達するのに必要な基本通電時間T
lを演算する基本通電時間演算手段、00は上記時間間
隔Ta 、及び点大進角〃を入力し、基準位置パルスP
aが送出された後点火までの時間T11を基準位置パル
スPaに同期して後述する方法で演算し出力する点火時
間演算手段である。この時間Taと点火コイル−の基本
通電時間Tlとから通電開始時間演算手段(2)は基準
位置パルスPa 発生から点火コイル(転)の通電開始
までの時間TofTを求め1通電指令出力手段(2)は
クロックパルスcp、基準位置パルスPa 、通電開始
時間Toffを入力し、基準位置パルスP6発生から開
始時間Ton経過後に点大コイル(6)に通電を開始さ
せる通電指令信号Ponを出力する。上記点火時間演算
手段α0から出力される時間Ts、クロックパルスCP
Figures f45 to 7 show conventional ignition timing control devices. In the figure, (1) is the crankshaft of a 1-cycle 4-cylinder engine, (2) is a disk fixed to this crankshaft and rotating as the shaft rotates, and the disks are spaced at 180° intervals on the circumference of this disk. Magnetic material (3A) at the position (
3B) is fixedly attached. (4C) and (4D) are arranged close to the outer periphery of the disk (2) with a predetermined angle difference from each other, and the magnetic bodies (3A) or (3B)
When facing the reference position pulse P6. Electromagnetic pickup (4D) with xi pickup that emits Pd respectively.
is provided to detect the crank angle position corresponding to the latest ignition timing within the ignition timing control angle range of the engine, and the electromagnetic pickup (4C) is located in the direction of the outer circumference of the disc 2 from the position of the electromagnetic pickup (4D). The reference position pulses Pc and Pd are alternately sent out each time the crankshaft 1 rotates 90 degrees. (5) is the clock pulse C
(6) is a period measuring means for measuring the reference position pulse P60 time interval T6 based on the clock pulse CP of the oscillator (5); (9) is a period measuring means for measuring the time interval T6 of the reference position pulse P60 based on the clock pulse CP of the oscillator (5); Based on information S! Ignition timing calculation means calculates the ignition advance angle value θ based on the crank reference position to be detected by lE & pickup (4D). Required basic energization time T
The basic energization time calculation means for calculating l, 00 inputs the above-mentioned time interval Ta and point large advance angle, and calculates the reference position pulse P.
This is an ignition time calculation means that calculates and outputs the time T11 from when pulse a is sent until ignition in synchronization with the reference position pulse Pa using a method described later. From this time Ta and the basic energization time Tl of the ignition coil, the energization start time calculation means (2) calculates the time TofT from the generation of the reference position pulse Pa to the start of energization of the ignition coil (turn). ) inputs the clock pulse cp, the reference position pulse Pa, and the energization start time Toff, and outputs the energization command signal Pon to start energizing the point large coil (6) after the start time Ton has elapsed since the generation of the reference position pulse P6. Time Ts output from the ignition time calculation means α0, clock pulse CP
.

及び基準位置パルスPaを入力する第1の点火指令出力
手段(至)は、基準位置パルスPI+が入力された時点
から時間T8が経過した時に点火コイルに)の電流を遮
断する点火指令信号P spkを発生する。
and the first ignition command output means (to) which inputs the reference position pulse Pa outputs an ignition command signal P spk which cuts off the current to the ignition coil when a time T8 has elapsed from the time when the reference position pulse PI+ was input. occurs.

−刃用2の点火指令出力手段(ロ)は基準位置パルスP
d入力に同期して第2の点火指令信号Pmd+、を発生
する。点火制御信号出力手段−は通電指令信号Ponに
同期して電気的状態をt′”レベルから”l(IIレベ
ルに反転し、第1の点火指令信号Pmpkあるいは第2
の点火指令信号Psdのいずれか時間的に先に発生した
信号に同期して電気的状態を”H”レベルから′L”レ
ベルに反転する点火制御信号P3を送出する点火制御信
号出力手段−より構成され。
- The ignition command output means (b) for blade 2 is the reference position pulse P
A second ignition command signal Pmd+ is generated in synchronization with the d input. The ignition control signal output means synchronizes with the energization command signal Pon, inverts the electrical state from the t''' level to the ``l (II level), and outputs the first ignition command signal Pmpk or the second ignition command signal Pmpk.
ignition control signal output means for transmitting an ignition control signal P3 that inverts the electrical state from the "H" level to the 'L' level in synchronization with whichever of the ignition command signals Psd is generated earlier in time; configured.

この点火制御信号Psによって点火装置θつが作動し点
火コイル四を駆動してエンジンに点火する。
This ignition control signal Ps activates the ignition devices θ, drives the ignition coil 4, and ignites the engine.

いま上記電磁ピックアップ(4C)から、送出される基
準位置パルスPaを順次P旬1 、 Po2、Pa3.
 Pa4(第6図a)とした場合1.上記周期計測手段
(6)は基準発振器(5)のクロックパルスCPに基づ
いて基準位置パルスPo2人力時にPalとPo2  
とのパルス周期Te2を時間計測する。
Now, the reference position pulses Pa sent out from the electromagnetic pickup (4C) are sequentially set as P1, Po2, Pa3, .
In the case of Pa4 (Figure 6a) 1. The period measuring means (6) uses the reference position pulse Po2 based on the clock pulse CP of the reference oscillator (5) to output the reference position pulses Po2 and Pal during the manual operation.
The pulse period Te2 is time-measured.

基準位置パルスPe2が送出さnると1点火時間演算手
段0Qは時間間隔T6と点火進角度値θから次回の点火
時刻までの時間Ts2 (第2図0)を次式によって求
める。
When the reference position pulse Pe2 is sent n, the one ignition time calculating means 0Q calculates the time Ts2 (FIG. 2 0) from the time interval T6 and the ignition advance angle value θ to the next ignition time using the following equation.

さきに述べたように、基準位&パルスPe2発生からこ
の(1)式で求めた時間Ts2経過後に第1の点火指令
出力手段−は点火コイル輪の電流遮断時期である点火指
令信号Pspk2を発生する。
As mentioned earlier, after the time Ts2 determined by this equation (1) has elapsed since the reference position and the generation of the pulse Pe2, the first ignition command output means generates the ignition command signal Pspk2, which is the timing for cutting off the current in the ignition coil ring. do.

この点火に対応する点火周期における点火コイル(6)
の通電開始は、通電開始時間演算手段(2)により、基
準位置パルスPo2発生から通電開始までの時間Tof
fとして求められる。すなわち通電開始時間演算手段■
では、先に点火時間演算手段α0で求めた基準位置パル
スP6から点火までの時間T3より基本通電時間演算手
段(7)で求めた基本通電時間Tlを差し引き通電開始
時間ToHを演算する。
Ignition coil (6) in the ignition cycle corresponding to this ignition
The start of energization is determined by the energization start time calculation means (2) based on the time Tof from the generation of the reference position pulse Po2 to the start of energization.
It is found as f. In other words, energization start time calculation means ■
Now, the energization start time ToH is calculated by subtracting the basic energization time Tl obtained by the basic energization time calculation means (7) from the time T3 from the reference position pulse P6 to ignition, which was previously obtained by the ignition time calculation means α0.

Torf=TS−Tl・・・・(2) 通電指令出力手段は基準位置パルスPa発生時点に起動
さn、上記通電開始時間Toff経過後に通電指令信号
(第6図a)を発生する1点火制御信号出力手段−は、
この通電指令信号Pon入力時に点火コイル劫に通電を
開始し、上記第1の点火指令信号Pspkあるいは基準
位置パルスPd (第6図b)に同期した第2の点火指
令信号Psd (第6図e)のいずれか時間的に先に発
生した方の点火指令信号で点火コイルに)の電流を遮断
しエンジンに点火させる点火制御信号Ps(fi6図f
)を発生する。
Torf=TS-Tl (2) 1 ignition control in which the energization command output means is activated at the time of generation of the reference position pulse Pa, and generates the energization command signal (Fig. 6a) after the lapse of the energization start time Toff. The signal output means is
When this energization command signal Pon is input, energization of the ignition coil is started, and the second ignition command signal Psd (Fig. 6e) is synchronized with the first ignition command signal Pspk or reference position pulse Pd (Fig. 6b). ), the ignition control signal Ps (fi6 Figure f
) occurs.

第5図の点火時期制御装置はこのように構成され、エン
ジン回転が一定の時に基準位置パルスPaの時間間隔T
Cが一定であり、上記第1の点火指令信号Papkが第
2の点火指令信号Psdより先に発生するので点火は第
1の点火指令信号Ps pkにより行なわれる。また第
7図に示すような加速時にはエンジン回転が点火毎に上
昇し、基準位置パルスPCの時間間隔T6が点火毎に縮
小するので上記(1)式により点火時間Tsを求めると
きに使用する時間TCより実1の基準位置パルスpcの
時間間隔は短くなる。したがって、点火進角度値θが0
に近いときには、j@1の点火指令信号Pspk (第
7図C)より第2の点火指令信号Psd (第7図・)
The ignition timing control device shown in FIG. 5 is configured in this way, and when the engine rotation is constant, the time interval T of the reference position pulse Pa is
Since C is constant and the first ignition command signal Papk is generated before the second ignition command signal Psd, ignition is performed by the first ignition command signal Ps pk. Furthermore, during acceleration as shown in Fig. 7, the engine rotation increases with each ignition, and the time interval T6 of the reference position pulse PC decreases with each ignition. The time interval between the actual reference position pulses pc is shorter than TC. Therefore, the ignition advance angle value θ is 0
, the second ignition command signal Psd (Fig. 7) is determined from the ignition command signal Pspk of j@1 (Fig. 7C).
.

が先に発生し、点火を発2の点火指令Psdすなわち基
準位置パルスPdに同期して行なうよう点火制御信号P
8が構成される。(第7図f)。これにより加速状態に
おいても点火が基準位置パルスPdより遅れることが防
止される。
is generated first, and the ignition control signal P is set so that the ignition is performed in synchronization with the ignition command Psd of ignition 2, that is, the reference position pulse Pd.
8 is composed. (Fig. 7f). This prevents ignition from being delayed from the reference position pulse Pd even in an accelerated state.

もしこの第2の点火指令信号Psdによる点火がなく[
1の点火指令信号Pspkのみで点火を行なえば、加速
時1こは点火指令信号Pspkが第2の基準位置パルス
Pdよりも時間的に相当遅れた時点で発生することとな
り、異常に遅角した位置でエンジンに点火がなされエン
ジンの出力紙下等の問題が発生する。
If there is no ignition caused by this second ignition command signal Psd, [
If ignition is performed using only the first ignition command signal Pspk, the first ignition command signal Pspk will occur at a time considerably later than the second reference position pulse Pd during acceleration, resulting in an abnormally delayed ignition. The engine is ignited at this position, causing problems such as low engine output.

このように、この種の点火時期制御装置において加速時
にも応答性の良い点火制御を実現するためには、この第
2の点火指令信@ Padによる点火制限は適した方法
といえよう。
As described above, in order to realize ignition control with good responsiveness even during acceleration in this type of ignition timing control device, ignition restriction using the second ignition command signal @Pad can be said to be an appropriate method.

〔発明が解決しようとする課題〕 ところで、第5図の点火時期制御装置は、加速時に第2
の点火指令信号Psdにより異常な遅角を防止している
が、点火コイル彎の通電開始はそのまま第1の点火指令
信号Pspkより基本通電時間Tl以前に行なっている
。(第7図d)したがって、通電指令信号Ponによる
通電開始後、第1の点火指令信号Pspkでなく時間的
に先に発生する第2の点火指令信号Psdにより点火す
る条件下では、実質的な通電時間は基本通電時間Tlよ
り短くなる。 (f@7図fのPa2) 例えば1通常の運転状態で最も回転数変化の激しいのは
アイドル状態からのレーシング時で。
[Problem to be solved by the invention] By the way, the ignition timing control device shown in FIG.
Although abnormal retardation is prevented by the ignition command signal Psd, the energization of the ignition coil is started before the basic energization time Tl from the first ignition command signal Pspk. (Fig. 7d) Therefore, after the start of energization by the energization command signal Pon, under the condition that ignition is performed not by the first ignition command signal Pspk but by the second ignition command signal Psd that occurs temporally earlier, the substantial The energization time is shorter than the basic energization time Tl. (f @ Pa2 in Fig. 7 f) For example, 1. Under normal driving conditions, the most rapid change in rotational speed occurs when racing from an idle condition.

1000 rpm 付近で1点火周期で約1100rp
程間の回転数上昇をする。!@5図の点火時期制御装置
で通電時間の不足が最も顕著に現われるのは点火進角度
値θが0の場合であり、上記レーシング状態では110
00rp時(To=15ms )の点火時間Taは(1
)式よりTs=15(ms)と演算される。一方エンジ
ンの回転が上記1点火周期で1100rpの割合チー様
に上昇するとすれば基準位亀パルスpc発生から第2の
点火指令信号Psdまでの時間Todは約14 、3(
ms)であり、 Tad−Tsl−IO,7(ms)の
時間差が生じ通電時間は0.7(ms)不足することに
なる。
Approximately 1100 rpm in one ignition cycle at around 1000 rpm
Increase the rotation speed by a certain amount. ! @ In the ignition timing control device shown in Figure 5, the shortage of energization time is most noticeable when the ignition advance angle value θ is 0, and in the racing condition described above, the shortage of energization time is most noticeable.
The ignition time Ta at 00 rpm (To=15ms) is (1
) is calculated as Ts=15 (ms). On the other hand, if the engine speed increases at a rate of 1100 rpm in one ignition cycle, the time Tod from the generation of the reference position pulse pc to the second ignition command signal Psd is approximately 14,3 (
ms), and a time difference of Tad-Tsl-IO, 7 (ms) occurs, resulting in a shortage of 0.7 (ms) in the energization time.

特に、最近のDOHCエンジンのように最高回転数を高
く設定されたエンジンでは、高回転域での出力電圧を確
保するため、短い通電時間で所定の二次出力が得られる
よう一次電流立上りの速い点火コイルが使用される0例
えば、基本通電時間Tlが3(ms)の点火コイルでは
、上記わずか0.7(m、 )の通電時間の不足でも二
次出力電圧は25%はど低下し、エンジンの性能低下や
失火による息つき等を発生することがある。
In particular, in engines with a high maximum rotation speed, such as recent DOHC engines, in order to ensure output voltage in the high rotation range, the primary current rises quickly so that the specified secondary output can be obtained in a short energization time. For example, in an ignition coil with a basic energization time Tl of 3 (ms), the secondary output voltage will drop by 25% even if the energization time is short by only 0.7 (m, ). Engine performance may deteriorate or engine misfire may cause suffocation.

基本通電時間演算手段四で所定の二次出力を得るために
必要な基本通電時間Tlをいかに精度良く演算しても加
速時に縮小されてしまうため点火コイル通電時間不足は
免れない。
No matter how accurately the basic energization time Tl required to obtain a predetermined secondary output is calculated by the basic energization time calculation means 4, the ignition coil energization time is inevitably short because it is reduced during acceleration.

この発明は上述のような問題点を解消するためになされ
たものであり、加速によるエンジン回転上昇時に点火時
期の異常な遅角の発生を防止し、かつ点火コイルの通電
時間不足による点火コイル二次出力電圧の不足も防止す
る点火時期制御装置を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and it prevents the occurrence of abnormal retardation of the ignition timing when the engine speed increases due to acceleration, and also prevents the ignition coil from being retarded due to insufficient energization time of the ignition coil. It is an object of the present invention to provide an ignition timing control device that also prevents insufficient output voltage.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る点火時期制御手段はエンジンの回転周期
に応じて点火コイル−次電流の通電時間を補正する通電
時間補正手段を備えたものである。
The ignition timing control means according to the present invention includes an energization time correction means for correcting the energization time of the ignition coil-secondary current according to the rotation period of the engine.

〔作用〕[Effect]

この発明においてはエンジンの回転周期に応じて点火コ
イル−次電流の通電時間が補正されるので、常に充分な
二次電圧を得ることができる。
In this invention, since the ignition coil-secondary current conduction time is corrected in accordance with the rotation period of the engine, a sufficient secondary voltage can always be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を第1図乃至第4図に基づい
て説明する。第5図と同一部分は同一符号を附して示す
第1図において、(至)は基本通電時間演算手段(1)
で演算された点火コイルに)の基本通電時間Tlを周期
計測手段(6)の計測周期Toに応じて補正して点火コ
イル−の通電時間を決定する通電時間補正手段である。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. In FIG. 1, parts that are the same as those in FIG. 5 are given the same reference numerals.
The energization time correction means determines the energization time of the ignition coil by correcting the basic energization time Tl of the ignition coil calculated in accordance with the measurement period To of the period measurement means (6).

この通電時間補正手段(至)で演算される通電時間不足
員ΔTは、上述の1点火周期で1100rpの回転数上
昇の加速に対して点火コイルの通電時間が不足なく応答
するよう設定され、また必要以上に補正量を大きくして
点火装置の消費先カや点火コイルの発熱を増大させない
よう下記(3)式により求める。
The energization time shortage ΔT calculated by the energization time correction means (to) is set so that the ignition coil's energization time responds without shortage to the acceleration of the rotation speed increase of 1100 rpm in one ignition cycle, and The amount of correction is calculated using the following equation (3) so as not to increase the amount of correction more than necessary and increase the consumption power of the ignition device and the heat generation of the ignition coil.

ΔT=−X(To)2     ・・・・ (3)に の演算式(3)は1通を時間設定時の周期Taより求め
たエンジン回転数をNo(rpm) としたとき、エン
ジンが90’回転した後の点火時にはN e + 50
(rpm )相当に回転数が上昇するとして、通電時間
補正がないときの不足時間Δtを下記のようにして求め
、この不足時間を補償するよう補正量JTを設定したも
のである。
ΔT=-X(To)2... Equation (3) in (3) is when the engine speed determined from the period Ta at the time of time setting is No (rpm), the engine is 90 'When igniting after rotating, N e + 50
Assuming that the rotational speed increases by a considerable amount (rpm), the insufficient time Δt when there is no energization time correction is determined as follows, and the correction amount JT is set to compensate for this insufficient time.

No =□より 2XT。No = □ 2XT.

上記通電時間補正RATを1点火周期Toに対する時間
の率で表わせば第3図のようになる。高回転域はど補正
の率は小さく、逆に低回点滅では補正の率が大きくなる
If the energization time correction RAT is expressed as a ratio of time to one ignition period To, it will be as shown in FIG. 3. The rate of correction is small in the high rotation range, and conversely, the rate of correction is large in the low rotation range.

この補正量ΔTにより基本通電時間Tlを補正して実際
の通w1時間制御値はTl+ΔTとなる。
The basic energization time Tl is corrected by this correction amount ΔT, and the actual energization w1 time control value becomes Tl+ΔT.

したがって、点火コイル(6)の通電開始時期を決める
通電開始時間は下記(42式で表わされる。
Therefore, the energization start time that determines the energization start time of the ignition coil (6) is expressed by the following equation (42).

Toff=Ts−(TII+/lT)    @ a 
@ @  (4)第2図は本実施例の加速時の動作を示
したものである。通電開始時間がΔTだけ早くなるため
(第2図C)点火制御信号P8は点火がPsdで行なわ
れても十分な通電時間を確保できる。(第2図f) この補正により、上述の(1000rpm付近で1点火
周期で1100rpの回転数上昇状態を考えれば(3)
式より過電時間の補正量」Tは0.7(ms)となり前
記0.7(ms)の通電時間不足を補える。
Toff=Ts-(TII+/lT) @ a
@ @ (4) Figure 2 shows the operation of this embodiment during acceleration. Since the energization start time is earlier by ΔT (FIG. 2C), the ignition control signal P8 can ensure a sufficient energization time even if ignition is performed at Psd. (Fig. 2 f) With this correction, considering the above-mentioned condition where the rotational speed increases by 1100 rpm in one ignition cycle at around 1000 rpm, (3)
From the formula, the overcurrent time correction amount T is 0.7 (ms), which can compensate for the 0.7 (ms) shortage of current application time.

このように(3)式によればエンジン回転全域において
通電時間の不足を補え、二次出力電圧の不足によるエン
ジン不調を未然に防止できる。
As described above, according to the formula (3), it is possible to compensate for the lack of energization time throughout the entire engine rotation range, and prevent engine malfunctions due to insufficient secondary output voltage.

さて−上記補正式(3)は式としては簡単であるが。Now, although the above correction formula (3) is simple as a formula.

この演算を低レベルのマイクロコンピュータで行なおう
とすると乗算の実行に処理時間を要しS/W構成、E問
題となることもある。
If this operation is attempted to be performed by a low-level microcomputer, processing time is required to execute the multiplication, which may lead to problems with the S/W configuration.

そこで(3)式をより演算し易い式で近似しても良い1
例えば下記(5)式を用いればエンジン回転数50Or
pmから220Orpmの範囲で上述の加速条件に対し
て通電時間の不足を補正できる。
Therefore, equation (3) may be approximated by an equation that is easier to calculate.
For example, if the following formula (5) is used, the engine rotation speed is 50 Or
Insufficient energization time can be corrected for the above acceleration conditions in the range from pm to 220 rpm.

上記通電時間補正fiATを(3)式に関する第3図と
同様、1点火周期Toに対する時間の率で表わせば第4
図となる。
If the above-mentioned energization time correction fiAT is expressed as a ratio of time to one ignition period To, as in FIG.
It becomes a diagram.

これらの式の以外にもエンジンの加速に対する通電時間
不足をエンジン回転周期により補正する式は考えられる
。エンジン機種によって加速の程度にも差があり個々の
エンジンに対して最適な通電時間補正式を設けても本発
明の本質には伺等影噂を与えるものではない。またこの
通電時間補正に使用するエンジン回転周期は、エンジン
の相異なる所定回転角度間の周期を測定し、その増加、
減少により予測した回転周期としてもよい。
In addition to these equations, other equations can be considered that correct the insufficient energization time for engine acceleration based on the engine rotation period. The degree of acceleration varies depending on the engine model, and even if an optimal energization time correction formula is provided for each engine, it will not affect the essence of the present invention. In addition, the engine rotation period used for this energization time correction is determined by measuring the period between different predetermined rotation angles of the engine,
The rotation period may be predicted by decreasing the rotation period.

さらにクランク基準角度位置を検出するのに上記実施例
ではマグネチックピックアップ(4C) 、 (4D)
の2つの検出器を用いたが、これは例えば基準位置Pa
で低レベルから高レベルに変化し基準位置Pdで高レベ
ルから低レベルに変化するような角度検出器を用いて2
つのクランク基準位置を検出してもよいし、1つのマグ
ネチックピックアップでPa、Pdの両基準位置を時系
列的に袂出しこれとは別の検出器でPc、Pdの判別を
するように構成してもよい。
Furthermore, in the above embodiment, magnetic pickups (4C) and (4D) are used to detect the crank reference angular position.
For example, two detectors were used at the reference position Pa.
2 using an angle detector that changes from a low level to a high level at the reference position Pd and from a high level to a low level at the reference position Pd.
Alternatively, one magnetic pickup may be used to detect both Pa and Pd reference positions in chronological order, and a separate detector may be used to determine Pc and Pd. You may.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、予め演算された点火コイ
ルが所定の二次出力電圧を発生するのに必要な通電時間
を、エンジンの回転周期に応じて増量補正したので、加
速時の回転周期縮小時にも通電時間の不足が発生するこ
とがなく、シたがって点火コイルの二次出力電圧不足に
よるエンジンの性能低下や息つき現象等の発生を未然に
防止できる効果がある。
As described above, according to the present invention, the energization time required for the ignition coil to generate a predetermined secondary output voltage, calculated in advance, is increased in accordance with the rotation period of the engine. Even when the cycle is shortened, there is no shortage of energization time, which has the effect of preventing engine performance deterioration and suffocating phenomena due to insufficient secondary output voltage of the ignition coil.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である点火時期制御装置のブ
ロック図、#42図は用1図の動作を説明する波形図、
第3図と1′R4図とは第1図の動作を説明する持性図
、第5図は従来例である点火時期制御装置のブロック図
、第6因と第7図とは第S図の動作を説明する波形図で
ある。 l・・・クランク軸、2・・・円板、3A、33・・・
磁性体。 4C,4D・・・電磁ピックアップ、5・・・発振器、
6・・・周期計測手段、9・・・点火時期演算手段、1
0・・・点火時間演算手段、20・・・基本通電時間演
算手段。 21・・・通電開始時間演算手段、22通電指令出力手
段、23・・・通電時間補正手段、30・・・鳴1の点
火指令出力手段、31・・・f42の点火指令出力手段
、40・・・点火制御信号出力手段、41・・・点火装
置、42・・・点火コイル
Fig. 1 is a block diagram of an ignition timing control device which is an embodiment of the present invention, Fig. #42 is a waveform diagram explaining the operation of Fig. 1,
Figure 3 and Figure 1'R4 are characteristic diagrams that explain the operation of Figure 1, Figure 5 is a block diagram of a conventional ignition timing control device, and Factor 6 and Figure 7 are Figure S. FIG. 2 is a waveform diagram illustrating the operation of FIG. l...Crankshaft, 2...Disc, 3A, 33...
magnetic material. 4C, 4D... Electromagnetic pickup, 5... Oscillator,
6... Period measuring means, 9... Ignition timing calculating means, 1
0... Ignition time calculation means, 20... Basic energization time calculation means. 21... Energization start time calculation means, 22 Energization command output means, 23... Energization time correction means, 30... Ignition command output means for ring 1, 31... Ignition command output means for f42, 40. ...Ignition control signal output means, 41...Ignition device, 42...Ignition coil

Claims (1)

【特許請求の範囲】[Claims] エンジンの所定のクランク角度位置で第1の基準位置信
号を発生する第1の基準位置検出手段と、上記クランク
角度とは異なる所定のクランク角度位置で第2の基準位
置信号を発生する第2の基準位置検出手段と、少なくと
も上記第1または第2の基準位置信号からエンジンの回
転周期を求める回転周期計測手段と、点火コイルの一次
電流が所定の値に達するのに要する基本通電時間を求め
る基本通電時間演算手段と、この基本通電時間をエンジ
ンの回転周期に応じて補正して点火コイルの通電時間を
決定する通電時間補正手段と、エンジンの運転状態に応
じた点火時期を演算する点火時期演算手段と、上記回転
周期と点火時期とから上記第1の基準位置から点火時期
までの点火時間を演算する点火時間演算手段と、上記点
火時間と点火コイルの通電時間から上記第1の基準位置
から点火コイルの通電開始時期までの通電開始時間を演
算する通電開始時間演算手段と、上記第1の基準位置信
号発生時点から上記通電開始時間経過後に点火コイルの
通電を開始する通電指令信号を発生する通電指令出力手
段と、上記第1の基準位置信号発生時点から上記点火時
間経過後に点火コイルの通電を遮断する第1の点火指令
信号を発生する第1の点火指令出力手段と、上記第2の
基準位置信号発生時に点火コイルの通電を遮断する第2
の点火指令信号を出力する第2の点火指令出力手段と、
上記通電指令信号により点火コイルに通電を開始し上記
第1の点火指令信号あるいは第2の点火指令信号のいず
れか時間的に先に発生した点火指令信号により点火コイ
ルの通電を遮断する点火制御信号を点火装置に出力する
点火制御信号出力手段を備えた点火時期制御装置。
a first reference position detection means that generates a first reference position signal at a predetermined crank angle position of the engine; and a second reference position detection means that generates a second reference position signal at a predetermined crank angle position different from the crank angle. a reference position detection means, a rotation period measurement means for determining the rotation period of the engine from at least the first or second reference position signal, and a basic energization time for determining the basic energization time required for the primary current of the ignition coil to reach a predetermined value. energization time calculation means; energization time correction means that corrects the basic energization time according to the rotational cycle of the engine to determine the energization time of the ignition coil; and ignition timing calculation means that calculates the ignition timing according to the operating state of the engine. means for calculating the ignition time from the first reference position to the ignition timing from the rotation period and the ignition timing; energization start time calculating means for calculating the energization start time up to the energization start time of the ignition coil; and generating an energization command signal that starts energization of the ignition coil after the energization start time has elapsed from the time when the first reference position signal is generated. energization command output means; first ignition command output means for generating a first ignition command signal for cutting off the energization of the ignition coil after the ignition time has elapsed from the generation of the first reference position signal; A second part that cuts off the energization of the ignition coil when the reference position signal is generated.
a second ignition command output means for outputting an ignition command signal;
An ignition control signal that starts energizing the ignition coil in response to the energization command signal and cuts off energization to the ignition coil in response to the ignition command signal, whichever occurs earlier in time, such as the first ignition command signal or the second ignition command signal. An ignition timing control device comprising an ignition control signal output means for outputting an ignition control signal to an ignition device.
JP63054303A 1988-03-07 1988-03-07 Ignition timing control device Expired - Lifetime JPH07101028B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63054303A JPH07101028B2 (en) 1988-03-07 1988-03-07 Ignition timing control device
KR1019890002669A KR930005035B1 (en) 1988-03-07 1989-03-03 Ignition timing control apparatus
US07/320,128 US5007397A (en) 1988-03-07 1989-03-07 Ignition timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63054303A JPH07101028B2 (en) 1988-03-07 1988-03-07 Ignition timing control device

Publications (2)

Publication Number Publication Date
JPH01227869A true JPH01227869A (en) 1989-09-12
JPH07101028B2 JPH07101028B2 (en) 1995-11-01

Family

ID=12966804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63054303A Expired - Lifetime JPH07101028B2 (en) 1988-03-07 1988-03-07 Ignition timing control device

Country Status (1)

Country Link
JP (1) JPH07101028B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111166A (en) * 1985-11-08 1987-05-22 Hitachi Ltd Contactless ignitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111166A (en) * 1985-11-08 1987-05-22 Hitachi Ltd Contactless ignitor

Also Published As

Publication number Publication date
JPH07101028B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
JPS5949430B2 (en) Tenkajiki Setsuteisouchi
US4649888A (en) Ignition control apparatus for internal combustion engines
KR930005035B1 (en) Ignition timing control apparatus
JP2813210B2 (en) Cylinder identification device for internal combustion engines
JPH0494440A (en) Igniti0n timing control device of internal combustion engine
JPH01227869A (en) Ignition timing controller
JPH03145571A (en) Ignition control method for internal combustion engine
JPS5851155B2 (en) Electronic ignition control device for internal combustion engines
JPH0786345B2 (en) Ignition timing control device
US4351307A (en) Ignition timing controller for an internal combustion engine
JPH01227870A (en) Ignition timing controller
JP2878028B2 (en) Internal combustion engine control device
JPH01219342A (en) Crank angle sensor with cylinder discriminating signal
JPH07259711A (en) Ignition device for two-cylinder internal combustion engine
JPH04362275A (en) Ignition controller for internal combustion engine
JP2667531B2 (en) Ignition control method for internal combustion engine
JP3133313B2 (en) Engine ignition timing control device
JPS62101883A (en) Starter also serving as ac generator
JPS6252143B2 (en)
JPS6232280A (en) Ignition device for internal combustion engine
JPH06207570A (en) Ignition control device for internal combustion engine
JPH10141193A (en) Ignition method and ignition device for internal combustion engine
JPH02264155A (en) Ignition timing control device for internal combustion engine
JPH0754747A (en) Control method for ignition device of internal combustion engine
JPS63295863A (en) Ignition timing control device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 13