JPH01217282A - Magnetic field detector - Google Patents
Magnetic field detectorInfo
- Publication number
- JPH01217282A JPH01217282A JP4388688A JP4388688A JPH01217282A JP H01217282 A JPH01217282 A JP H01217282A JP 4388688 A JP4388688 A JP 4388688A JP 4388688 A JP4388688 A JP 4388688A JP H01217282 A JPH01217282 A JP H01217282A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- current
- electrodes
- substrate
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims description 16
- 238000003860 storage Methods 0.000 claims description 6
- 230000001747 exhibiting effect Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 239000002887 superconductor Substances 0.000 abstract description 28
- 230000004907 flux Effects 0.000 abstract description 13
- 239000000919 ceramic Substances 0.000 abstract description 11
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 238000004663 powder metallurgy Methods 0.000 abstract description 3
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 abstract 2
- 238000013329 compounding Methods 0.000 abstract 1
- 230000008642 heat stress Effects 0.000 abstract 1
- 230000008859 change Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
Description
【発明の詳細な説明】 し産業上の利用分野] 本発明は、第2種超伝導体が磁界の影響を受け。[Detailed description of the invention] [Industrial application fields] In the present invention, a type 2 superconductor is influenced by a magnetic field.
て磁束流抵抗が増大する現象を応用して構成される小型
で軽量な超高感度磁気検出器に係り、超高感度が要求さ
れる心磁計はしめ各種磁気検出に広く用いることができ
る。The present invention relates to a small, lightweight, ultra-high-sensitivity magnetic detector constructed by applying the phenomenon in which magnetic flux flow resistance increases, and can be widely used in various magnetic detection applications such as magnetocardiograms that require ultra-high sensitivity.
[従来の技術]
超高感度型磁界検出器としては超伝導体を薄い絶縁膜を
界して互いに接合した、いわゆるジョセフソン接合を利
用した超伝導量子干渉装置(以−ド5QUIDと記す)
が実用化されている。このショセフソン接合を用いた5
QUIDは検出分解能が16瞥以下であり、現在最高の
検出分解能が得られている。しかしながらこの5QUI
Dに用いられているジョセフソン接合を形成するために
必要とされる絶縁膜の厚みは晶々数10nmてあり、又
、5QUIDは4にという低温で使用するのが一般的で
あり、そのため室温と低i’!(4K)との間をくり返
し往復させることによる熱的機械的ストレスを受けるか
ら、これにより、ばくり、クラックなとの破損を生し安
定な絶縁性を示す絶縁膜を超伝導体間に形成することは
困難を極めていた。一方、最近セラミック系材料を用い
た高温酸化物超伝導体が相次いで発見され、超伝導状態
を示すための臨界温度として77にあるいはl0f)K
前後を示すものが実現している。[Prior art] As an ultra-sensitive magnetic field detector, there is a superconducting quantum interference device (hereinafter referred to as 5QUID) that utilizes a so-called Josephson junction, in which superconductors are bonded to each other with a thin insulating film in between.
has been put into practical use. 5 using this Shosefson junction
QUID has a detection resolution of 16 degrees or less, which is currently the highest detection resolution. However, this 5QUI
The thickness of the insulating film required to form the Josephson junction used in D is typically several tens of nm, and 5QUID is generally used at a low temperature of 4 nm, so and low i'! (4K) and is subject to thermal and mechanical stress due to repeated back and forth between the superconductors and the superconductor. It was extremely difficult to do so. On the other hand, recently, high-temperature oxide superconductors using ceramic materials have been discovered one after another, and the critical temperature for exhibiting a superconducting state is 77 or 10K.
Something that shows the before and after has been realized.
このセラミック系超伝導体のつくり方としては、ビスマ
ス、イツトリウム、バリウム、カルシウム、アルミニウ
ム、銅等酸化物を均質に混ぜ成型加工したものを950
°C前後の高温て焼成する方法が一般的であり、表面に
は凹凸が生しやすく、数+nmの絶縁膜を均一に形成す
るために十分な滑らかな表面は得られにくいのが現状で
ある。従って、このセラミック系超伝導体は臨界温度が
100K以上と著しい特徴を有しながらも、安定な動作
特性を示すジョセフソン接合の形成が困難のため、SQ
[I[D等への応用の道が閉ざされている。This ceramic superconductor is made by homogeneously mixing and molding oxides such as bismuth, yttrium, barium, calcium, aluminum, and copper.
The common method is to bake at a high temperature of around °C, which tends to cause unevenness on the surface, making it difficult to obtain a surface sufficiently smooth to uniformly form an insulating film several nanometers thick. . Therefore, although this ceramic superconductor has a remarkable critical temperature of 100K or more, it is difficult to form a Josephson junction that exhibits stable operating characteristics, so SQ
The application to [I[D, etc.] is closed.
[発明が解決しようとする課題]
そこで、本発明では検出分解能が極めて高いという超伝
導体の、特にセラミック系酸化物超伝導体に見られる第
2種超伝導体の、特徴を生かした磁界検出器を提供する
ことにある。[Problems to be Solved by the Invention] Therefore, the present invention develops a magnetic field detection method that takes advantage of the characteristics of superconductors, particularly type 2 superconductors found in ceramic oxide superconductors, which have extremely high detection resolution. It is about providing the equipment.
ジョセフソン接合を用いた5QUIDは磁界検出器とし
ては超高分解能を有しながらも安定な動作特性を示すジ
ョセフソン接合が得られにくいという課題があった。又
、安定な動作は4に付近で得られるため、ヘリウムとい
う高価な冷媒を必要とした。一方、最近相欠いで発見さ
れている臨界温度が100Kを越すセラミック系酸化物
高温超伝導体は、焼結体なので滑らかな表面が得られに
くいと同時に、安定な極薄膜絶縁層を得るのか困難であ
り、従って、安定で再現性の良い5QUIDの形成は困
難を極めている。又、最近では、接合部を細くしたいわ
ゆる“マイクロブリッジ”型プレーナ素子の研究開発が
行なわれているか安定な動作は得られていないのが現状
である。Although the 5QUID using a Josephson junction has ultra-high resolution as a magnetic field detector, it is difficult to obtain a Josephson junction that exhibits stable operating characteristics. In addition, since stable operation was obtained at around 4 kHz, an expensive refrigerant called helium was required. On the other hand, ceramic-based oxide high-temperature superconductors whose critical temperature exceeds 100 K, which has recently been discovered as a phase-detachable material, are sintered bodies, so it is difficult to obtain a smooth surface, and at the same time, it is difficult to obtain a stable ultra-thin insulating layer. Therefore, it is extremely difficult to form 5QUID with stability and good reproducibility. Recently, research and development has been carried out on so-called "micro bridge" type planar elements with thinner joints, but stable operation has not yet been achieved.
従って本発明では、ヘリウムという高価な冷媒を必要と
しないセラミック系酸化物高温超伝導体の特徴を生かし
た、超高感度で、しかも、こわれにくい磁界検出装置を
提供することである。Therefore, an object of the present invention is to provide a magnetic field detection device that is ultra-highly sensitive and hard to break, taking advantage of the characteristics of a ceramic oxide high-temperature superconductor that does not require an expensive refrigerant called helium.
[課題を解決するための手段]
セラミ、り系酸化物超伝導体が第2超伝導体特有の磁束
流抵抗を示す現象に着目し、超伝導を呈する基体の一部
に電流通路狭少部を設けて、磁界により磁束流抵抗の大
きさが変化しやすい構造としておく。その電流通路狭少
部に電流通路と直角方向に磁界を印加すると、磁束流抵
抗が増大する現象(発明者らの発見した現象)を用いて
、印加磁界の大きさ、あるいはその変化を電位差測定に
よっておこなう。[Means for solving the problem] Focusing on the phenomenon in which ceramic and phosphorus-based oxide superconductors exhibit magnetic flux flow resistance peculiar to second superconductors, we created a current path narrow part in a part of the substrate that exhibits superconductivity. The structure is such that the magnitude of the magnetic flux flow resistance changes easily depending on the magnetic field. When a magnetic field is applied to the narrow part of the current path in a direction perpendicular to the current path, the magnetic flux flow resistance increases (a phenomenon discovered by the inventors), and the magnitude of the applied magnetic field or its change is measured by potential difference. This is done by
印加磁界による磁束流抵抗の増加は電位差測定が観測で
き、その対応関係は、高感度で、再現性もよい。The increase in magnetic flux flow resistance due to the applied magnetic field can be observed by potentiometric measurement, and the correspondence relationship is highly sensitive and reproducible.
超伝導体としては、第2種超伝導体であればよく、最近
相欠いて発見されている高臨界温度特性を示すYBaC
uO系あるいはB1BaCuCaO系、BIBaCuA
IO系等に代表されるセラミック系酸化物高温超伝導体
を用いるので、製造工程も容易で、小形化ができ、しか
も、破損などの障害が少い。The superconductor may be a type 2 superconductor, such as YBaC, which has recently been discovered and exhibits high critical temperature characteristics.
uO system or B1BaCuCaO system, BIBaCuA
Since a ceramic-based oxide high-temperature superconductor typified by IO-based superconductors is used, the manufacturing process is easy, miniaturization is possible, and there are fewer problems such as breakage.
[作用コ
この発明の基礎となった観測事実を、図を用いて説明す
る。[Operations] The observed facts that formed the basis of this invention will be explained using diagrams.
第1図は、この発明の装置用のおおよその構成と、その
特性を測定するための回路を示す。この発明の装置用は
第2種超伝導を呈する物質からなる基体部lがあって、
その一部は電流密度の高い部分2が備えられている。図
の実施例では、電流通過方向に対して垂直な断面積が小
さく作られている。すなわち、基体IはCu01.0g
1Y2030 、Gg1BaCO31,5gの配合で粉
末冶金法で形成した円板の中央に長窓3を開口し、長窓
と直角方向に円板を二分割した形状を呈し、長窓の頂上
部4付近には、基体の断面積が小さくなる部分2か形成
されている。この電流通路狭少部は、従来の超伝導素子
(ジョセフソン素子や5QUIDなと)のように、μm
程度の短いものである必要はない。実施例では、基体2
の直径はIOmmt長窓3の幅は2Illl11高さは
3闘程度である。FIG. 1 shows a general configuration for the device of the invention and a circuit for measuring its characteristics. The device for the present invention has a base portion l made of a substance exhibiting type 2 superconductivity,
A part of it is provided with a portion 2 having a high current density. In the illustrated embodiment, the cross-sectional area perpendicular to the current passing direction is made small. That is, the substrate I is Cu01.0g
A long window 3 is opened in the center of a disc formed by powder metallurgy with a blend of 1Y2030 and 1.5 g of Gg1BaCO3, and the disc is divided into two in a direction perpendicular to the long window. A portion 2 is formed in which the cross-sectional area of the base body becomes smaller. This narrow part of the current path is
It doesn't have to be very short. In the embodiment, the substrate 2
The diameter of the long window 3 is IOmm, the width of the long window 3 is 2Ill11, and the height is about 3mm.
第2種超伝導体で成る基体lの両端には電流流入用及び
電流流出用の一対の電極5,5′が設けられる。電極は
インジウム(In)を用いて超音波ハンダ法で形成され
た。A pair of electrodes 5, 5' for current inflow and current outflow are provided at both ends of the base 1 made of a second type superconductor. The electrodes were formed using indium (In) by ultrasonic soldering.
この電極はオーミック電極であるが、本質的にオーミッ
ク電極であることを要しない。Although this electrode is an ohmic electrode, it is not essentially required to be an ohmic electrode.
また基体1の電流通路狭少部2の両側に電圧検出用の一
対の電極6.6゛が設けられる。この作り方も、電極5
,5′と同しである。Further, a pair of voltage detection electrodes 6.6' are provided on both sides of the current path narrow portion 2 of the base body 1. This method also applies to electrode 5.
, 5'.
回路は、可変電圧直流電源11、安定抵抗器12(5Ω
程度)、電流検出要小抵抗13(IΩ程度)とこの発明
の装置IOとを直列に結んで構成される。The circuit consists of a variable voltage DC power supply 11, a stabilizer resistor 12 (5Ω
It is constructed by connecting in series a small current detection resistor 13 (about IΩ) and the device IO of the present invention.
第2図は、この発明の装置IOの電圧対電流特性を示す
図である。横軸は電極6,6′間の電位差V(mV)を
示し、縦軸は抵抗13を利用して測定した回路の全電流
I (mA)を示す。下側の電圧対電流特性が直線を示
す特性は、室温での測定結果であり、この領域は基体■
の常伝導状態(N−状態)を示している。つぎに、基体
璽を低温とし、超伝導状態とする。通過電流が小さい範
囲(80IIA以下)では、電流が流れても電位差を生
じない超伝導状態(S−状態)となる。しかし、通過電
流が大きくなると、すなわち臨界電流lc (80mA
)を越えると、基体1の伝導状態は変化し、臨界電流1
cよりいくらか大きな電流で増加する電流にほぼ比例し
た状態に近い電圧が生じる。この現象は第2種超伝導体
に見られる磁束流抵抗によるもので、この実験事実はセ
ラミ’7り系酸化物超伝導対は第2種超伝導体であるこ
とを示しており、一部が常伝導状態(partlall
y Normal、 p、N−状態)となっていること
を示している。FIG. 2 is a diagram showing the voltage versus current characteristics of the device IO of the invention. The horizontal axis shows the potential difference V (mV) between the electrodes 6 and 6', and the vertical axis shows the total current I (mA) of the circuit measured using the resistor 13. The characteristic where the voltage vs. current characteristic on the lower side shows a straight line is the measurement result at room temperature, and this region is
The normal conduction state (N-state) is shown. Next, the base plate is cooled to a superconducting state. In a range where the passing current is small (80 IIA or less), a superconducting state (S-state) occurs in which no potential difference occurs even when current flows. However, when the passing current increases, that is, the critical current lc (80mA
), the conduction state of the substrate 1 changes and the critical current 1
At a current somewhat greater than c, a voltage nearly proportional to the increasing current occurs. This phenomenon is due to the magnetic flux flow resistance observed in type 2 superconductors, and this experimental fact indicates that the ceramic oxide superconducting couple is a type 2 superconductor. is in a normal conducting state (partall
y Normal, p, N-state).
この発明の装置は、この第2種超伝導体特有の超伝導状
態と常伝導状態(p、N−状態)の混合領域において、
電流通過方向と直角方向に磁界を印加すると(第1図中
B矢印7)、超伝導、一部常伝導杖態か変化して、磁束
流抵抗が増す現象を利用する。この現象はセラミック系
酸化物高温超伝導体において発明者らが発見した現象で
ある。The device of the present invention has the following advantages: In the mixed region of the superconducting state and the normal conducting state (p, N-state) peculiar to the second type superconductor,
When a magnetic field is applied in a direction perpendicular to the current passing direction (arrow B in FIG. 1), the superconducting and partially normal conducting states change, and the phenomenon is utilized that the magnetic flux flow resistance increases. This phenomenon was discovered by the inventors in ceramic-based oxide high-temperature superconductors.
第3図はその現象を示すもので、永久磁石のS又はN極
を基体1に近すげたときの特性変化を示す。横軸は、永
久磁石と基体lとの距離x (ci+)を示し、縦軸は
、電極6−6′間の電位差の変化ΔV(mV)を示す。FIG. 3 shows this phenomenon, and shows the change in characteristics when the S or N pole of the permanent magnet is brought closer to the base 1. The horizontal axis shows the distance x (ci+) between the permanent magnet and the substrate l, and the vertical axis shows the change in potential difference ΔV (mV) between the electrodes 6-6'.
電流は200mA一定とした。距離Xとは別に、横軸と
して磁束密度Bを目盛っである。磁極の距離が十分大き
いとき(X :4c鵬)では、はとんと電位差の変化を
生じないが、Xを小さくするに従って、磁束流抵抗か増
大し、175XIQ’(T)ではGiVの電位差変化を
得ている。S極を近づけたときも、N極を近づけたとき
も結果は実験誤差の範囲内で一致している。また、再現
性も得られている。磁束密度と電位差の関係は、最も急
峻なところで0.4 (V/T )が得られ、この値は
従来のヘリウム温度4にでの5QUIDの検出分解能〜
10’(V/T )に較へて劣るものの、検出分解能が
最−9=
高100nTであるホール素子と比較してほぼ2桁以上
の感度向上が液体窒素温度以上で達成できた。The current was constant at 200 mA. Apart from the distance X, the horizontal axis is a scale of magnetic flux density B. When the distance between the magnetic poles is sufficiently large (X: 4c), there is no significant change in potential difference, but as X becomes smaller, the magnetic flux flow resistance increases, and at 175XIQ'(T), a change in potential difference of GiV is obtained. ing. Both when the south poles are brought closer together and when the north poles are brought closer together, the results are consistent within the experimental error range. Moreover, reproducibility was also obtained. The relationship between magnetic flux density and potential difference is 0.4 (V/T) at its steepest point, and this value is higher than the detection resolution of 5QUID at a conventional helium temperature of 4 ~
Although it is inferior to 10' (V/T), compared to a Hall element whose detection resolution is -9=high 100 nT, an improvement in sensitivity of approximately two orders of magnitude or more was achieved above the liquid nitrogen temperature.
また、別な実験により、次のような現象も発見された。In addition, the following phenomenon was discovered through another experiment.
すなわち、第4図は、第1図で使用した同じ装置IOに
ついて、それを低温とし、超伝導状態とした後に、強い
磁界(0,I57 )のN極を一度近づけて磁界を取り
除いたときの電圧・電流特性として曲線Aを得た。これ
と同じ特性は、同様の磁界を近づけて後に同し低温とし
て、磁界を取り除いたときにも得られる。この状態は、
第1図のp、N状態とは異なり、加えられた強い磁界が
、この装置IOに記憶されたことを意味する。すなわち
、この装置には磁界を記憶する特性がある。In other words, Fig. 4 shows the same device IO used in Fig. 1, when it is brought to a low temperature and brought into a superconducting state, and then the N pole of a strong magnetic field (0, I57) is brought close once and the magnetic field is removed. Curve A was obtained as voltage/current characteristics. The same properties are obtained when a similar magnetic field is applied, the temperature is then lowered, and the magnetic field is removed. This state is
Unlike the p,N state of FIG. 1, this means that the applied strong magnetic field is stored in this device IO. That is, this device has the property of memorizing magnetic fields.
つぎに第4図Aの状態の装置10に、弱い磁界を第1図
矢印7の方向に加えてみた。弱いN極を近づけると、特
性は破線Bとなり、磁界を取り除くと、再び特性曲線A
が得られる。今度は弱いS極を近づけると、特性は破線
Cとなり、磁界を取り除くと、再び特性曲線Aが得られ
る。Next, a weak magnetic field was applied in the direction of the arrow 7 in FIG. 1 to the device 10 in the state shown in FIG. 4A. When we bring the weak north pole closer together, the characteristic becomes a broken line B, and when we remove the magnetic field, we see the characteristic curve A again.
is obtained. This time, when the weak south pole is brought closer, the characteristic becomes a broken line C, and when the magnetic field is removed, the characteristic curve A is obtained again.
そのときの様子を、別な図で示したのが、第5図である
。横軸は装置lOと磁極までの距mx(crn)又は磁
界B (T )であり、縦軸は、電流200mAを装置
lOに流したときの電位差の変化ΔV CV )である
。Xを小さくする(磁極を近づける)ときが破線、Xを
大きくする(磁極を遠ざける)ときが実線である。FIG. 5 is a separate diagram showing the situation at that time. The horizontal axis is the distance mx (crn) from the device IO to the magnetic pole or the magnetic field B (T ), and the vertical axis is the change in potential difference ΔV CV ) when a current of 200 mA is passed through the device IO. The broken line indicates when X is decreased (the magnetic poles are brought closer together), and the solid line is indicated when X is increased (the magnetic poles are moved away).
すなわち、強い磁界にさらされたことのメモリは、少々
の磁界の印加によって消去されることはないことがわか
る。That is, it can be seen that the memory of exposure to a strong magnetic field is not erased by the application of a small magnetic field.
[実施例]
第1の実施例は第1図用に示した。またその作り方は、
[作用]の項で述へた通りである。[Example] A first example is shown in FIG. Also, how to make it
This is as described in the [Operation] section.
この発明の骨子は、セラミンク系酸化物高層超伝導体が
何する特徴、すなわち超伝導体中に一部常伝導状態が混
合した第2種超伝導体の磁束流抵抗が磁界の印加によっ
て増加する現象に着目している。従って、磁界にさらさ
れ易い、電流密度の高い部分を作り出せばよい。The essence of this invention is that the magnetic flux flow resistance of a type 2 superconductor in which a part of the normal conduction state is mixed in the superconductor increases by the application of a magnetic field. We are focusing on phenomena. Therefore, it is sufficient to create a portion with high current density that is easily exposed to the magnetic field.
第1図の実施例では作り易さを加味して1円盤状の基体
を加工したか、電流通路にくびれのある棒状の基体を用
いること、棒の断面形状も円に限らず、正方形、矩形で
よい。In the embodiment shown in Fig. 1, a disk-shaped base was processed for ease of manufacture, or a rod-shaped base with a constriction in the current path was used, and the cross-sectional shape of the rod was not limited to a circle, but could also be square or rectangular. That's fine.
前に掲げた第1図の装置IOは、そのまま、所定レベル
の強い磁界が印加されたことを記憶する磁界記憶装置と
なることは、第4図及び第5図の観測事実を用いて[作
用]の項で説明した。したがって、この磁界記憶装置の
電圧・電流特性を測定する手段、(たとえば、電流測定
器き電位差測定器と判定手段でよい)によって装置10
に使用された超伝導を呈する物質の伝導状態を観測する
ことにより、この装置IOに、所定レベル以上の強磁界
が加えられたか否かを検知することができる。Using the observational facts shown in Figures 4 and 5, it can be determined that the device IO shown in Figure 1 above can be used as a magnetic field storage device that stores the fact that a strong magnetic field of a predetermined level has been applied. ] was explained in the section. Therefore, the device 10 is controlled by means for measuring the voltage/current characteristics of the magnetic field storage device (for example, a current measuring device, a potential difference measuring device, and a determining device).
By observing the conduction state of the material exhibiting superconductivity used for this purpose, it is possible to detect whether or not a strong magnetic field of a predetermined level or higher has been applied to the device IO.
[発明の効果コ
この発明は、第2種超伝導体の一部に電流密度が他部よ
りも高くなる領域(電流通路狭少部)を相当長(たとえ
ば目視可能な程度)にわたって設け、その領域において
、電流と直角方向の磁界を印加すると、その磁束流抵抗
が顕著に変化するという現象をセラミック系酸化物高温
超伝導体において発見し利用している。従って、従来に
ない0゜1l−
4V/T以上という高感度の磁界検出を液体窒素温度以
上で可能とした。[Effects of the Invention] This invention provides a part of a type II superconductor with a region where the current density is higher than the other part (current path narrow part) over a considerable length (for example, visible to the naked eye), and We have discovered and utilized the phenomenon in ceramic-based oxide high-temperature superconductors that when a magnetic field is applied in a direction perpendicular to the current in a region, the magnetic flux flow resistance changes markedly. Therefore, it has become possible to detect a magnetic field with a high sensitivity of 0°1l-4V/T or higher, which is unprecedented in the past, at a temperature higher than liquid nitrogen temperature.
また、基体の作り方も、たとえば粉末冶金法が適用でき
、小形のものを大量に生産できる。Furthermore, the substrate can be made by, for example, powder metallurgy, and small pieces can be produced in large quantities.
加えて熱ストレスによる基体の損傷も少くできる。In addition, damage to the substrate due to thermal stress can be reduced.
よって従来のこの種の素子がもっていた欠点を改良し、
しかも高感度の弱磁界検出装置を実現した。(第1クレ
ーム)
また、この発明(第1クレーム)の装置10はそのまま
、所定レベルの強磁界が印加されたことを記憶できるこ
とが発見されたから、強磁界の印加の有無を検知する磁
界検出装置も実現できた。(第2クレーム)Therefore, we have improved the drawbacks of conventional elements of this type,
Moreover, we have realized a highly sensitive weak magnetic field detection device. (First claim) Furthermore, it has been discovered that the device 10 of the present invention (first claim) can memorize the fact that a strong magnetic field of a predetermined level has been applied. was also achieved. (Second claim)
第1図は本説明の一実施例と、それを用いた本発明の装
置の特性を測定するための回路図、第2図は本発明の一
実施例の特性を示す図、第3図、第4図、及び第5図は
本発明の一実施例が磁界に対してとのように反応するか
の特性を示す図である。
図中、■・・・基体、 2・・・電流通路狭少部。
5.5′・・・電流流入(流出)用の電極。
6.6゛・・・電位差検出用電極。
■ ・・・磁界記憶装置、を示す。FIG. 1 is an embodiment of the present invention and a circuit diagram for measuring the characteristics of the device of the present invention using the same, FIG. 2 is a diagram showing the characteristics of an embodiment of the present invention, FIG. FIGS. 4 and 5 are diagrams showing how an embodiment of the present invention reacts to a magnetic field. In the figure, ■...base, 2...current path narrow part. 5.5'...Electrode for current inflow (outflow). 6.6゛...Electrode for potential difference detection. ■...Indicates a magnetic field storage device.
Claims (2)
は電流通路狭少部があり、該電流通路狭少部を流れる電
流と、直角方向の磁界に露出可能な構造をもつ基体(1
)と; 該基体に電流を流入し、もしくは該基体から電流を流出
させる一対の電極(5,5’)と; 該基体の電流通路狭少部をはさんで設けられた一対の電
位差検出用電極(6,6’)とからなる磁界検出装置。(1) A substrate made of a material exhibiting superconductivity and having a structure in which a part of the current path has a narrow current path part and can be exposed to a magnetic field in a direction perpendicular to the current flowing through the narrow part of the current path ( 1
); a pair of electrodes (5, 5') that allow current to flow into or flow out of the base; a pair of potential difference detection electrodes provided across the narrow current path of the base; A magnetic field detection device consisting of electrodes (6, 6').
は電流通路狭少部があり、該電流通路狭少部を流れる電
流と直角方向の磁界に露出可能な構造をもつ基体(1)
と; 該基体に電流を流入し、もしくは該基体から電流を流出
させる一対の電極(5,5’)と; 該基体の電流通路狭少部をはさんで設けられた一対の電
位差検出用電極(6,6’)とからなり、所定レベルの
磁界印加をその電圧・電流特性として記憶する磁界記憶
装置(¥10¥)と; 該磁界記憶装置の電圧・電流特性測定手段とから成り、 該磁界記憶装置に印加された磁界の有無を検出する磁界
検出装置。(2) A substrate (1 )
A pair of electrodes (5, 5') that allow current to flow into or flow out of the base; A pair of potential difference detection electrodes provided across the narrow current path of the base. (6, 6'); a magnetic field storage device (¥10) that stores the applied magnetic field at a predetermined level as its voltage/current characteristics; and means for measuring the voltage/current characteristics of the magnetic field storage device; A magnetic field detection device that detects the presence or absence of a magnetic field applied to a magnetic field storage device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63043886A JP2561117B2 (en) | 1988-02-25 | 1988-02-25 | Magnetic field detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63043886A JP2561117B2 (en) | 1988-02-25 | 1988-02-25 | Magnetic field detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01217282A true JPH01217282A (en) | 1989-08-30 |
JP2561117B2 JP2561117B2 (en) | 1996-12-04 |
Family
ID=12676187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63043886A Expired - Lifetime JP2561117B2 (en) | 1988-02-25 | 1988-02-25 | Magnetic field detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2561117B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5223341U (en) * | 1975-08-08 | 1977-02-18 | ||
JPS5917175A (en) * | 1982-07-20 | 1984-01-28 | Aisin Seiki Co Ltd | Detecting element of magnetic field for extremely low temperature |
JPS59149326U (en) * | 1983-03-28 | 1984-10-05 | 日本電気株式会社 | conductive liquid contact switch |
JPS6067161U (en) * | 1983-10-17 | 1985-05-13 | 株式会社三谷バルブ | spray pump |
-
1988
- 1988-02-25 JP JP63043886A patent/JP2561117B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5223341U (en) * | 1975-08-08 | 1977-02-18 | ||
JPS5917175A (en) * | 1982-07-20 | 1984-01-28 | Aisin Seiki Co Ltd | Detecting element of magnetic field for extremely low temperature |
JPS59149326U (en) * | 1983-03-28 | 1984-10-05 | 日本電気株式会社 | conductive liquid contact switch |
JPS6067161U (en) * | 1983-10-17 | 1985-05-13 | 株式会社三谷バルブ | spray pump |
Also Published As
Publication number | Publication date |
---|---|
JP2561117B2 (en) | 1996-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Giaever | Electron tunneling between two superconductors | |
Xia et al. | Inverse proximity effect in superconductor-ferromagnet bilayer structures | |
US20020043974A1 (en) | Tunneling magnetoresistive element, and magnetic sensor using the same | |
Hansma et al. | Externally shunted Josephson junctions: Generalized weak links | |
JPH11274599A (en) | Thin film magnetic reluctance element | |
JPH01217282A (en) | Magnetic field detector | |
JPH0216475A (en) | Superconducting magnetism measuring instrument | |
JP4352118B2 (en) | High sensitivity magnetic field sensor | |
US9704551B2 (en) | Magnetic tunnel junction switching assisted by temperature-gradient induced spin torque | |
Hurd | The accurate determination of the Hall coefficient of a metal | |
Mahendiran et al. | Low temperature linear magnetic field sensor based on magnetoresistance of the perovskite oxide La–Sr–Co–O | |
JPH0227279A (en) | Superconductor magnetic measuring apparatus | |
JP2933681B2 (en) | Magnetic field measurement method | |
Kesternich | Magnetic breakdown in aluminium | |
Maiorov et al. | First-order phase transition of the vortex lattice in twinned YBa 2 Cu 3 O 7 single crystals in tilted magnetic fields | |
JPH02205784A (en) | Superconducting magnetoresistance element | |
Neumann et al. | Temperature dependence of the critical current in one-dimensional indium strips | |
Restorff et al. | Magnetic viscosity effects in the giant magnetoresistance of NiO/permalloy/Cu/permalloy exchange-biased films | |
Kartascheff | Equilibrium magnetization properties of irreversible superconducting niobium with peak effect | |
Ohta et al. | The anisotropy of the lower critical field in superconducting niobium and vanadium | |
Haller et al. | Temperature Dependence of Critical Current in Diffusion Processed Nb3Sn | |
Nishijima et al. | Three-dimensional flux-sensor composed of high-T/sub c/superconductor | |
JP2002525592A (en) | Magnetic field measurement sensor | |
Gatner et al. | Fermi level and phase transformations in GdCo $ _2$ | |
JPH0231397A (en) | Magnetic memory |