Nothing Special   »   [go: up one dir, main page]

JPH01208971A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH01208971A
JPH01208971A JP63032885A JP3288588A JPH01208971A JP H01208971 A JPH01208971 A JP H01208971A JP 63032885 A JP63032885 A JP 63032885A JP 3288588 A JP3288588 A JP 3288588A JP H01208971 A JPH01208971 A JP H01208971A
Authority
JP
Japan
Prior art keywords
signal
circuit
image pickup
lens
peak value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63032885A
Other languages
Japanese (ja)
Inventor
Yoshitaka Murata
村田 好孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63032885A priority Critical patent/JPH01208971A/en
Publication of JPH01208971A publication Critical patent/JPH01208971A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain an image pickup even when an object luminance is low at night by selecting for an autofocus either of a measurement means or a peak value detection means in accordance with a object condition. CONSTITUTION:A control circuit 10 obtains the extension position of an image pickup lens 1 through measurement information from a measurement circuit 12 and the present position information of the image pickup lens 1 from a lens position detection circuit 6 and drives the image pickup lens 1. On the other hand, a video signal which is photoelectric-converted in a CCD 3 and obtained is fetched into an AF signal processing circuit 9 and the detection of the peak value of the signal of a high frequency component is executed. When a peak detection failure signal from the AF signal processing circuit 9 is outputted or when a signal calling an attention to use a stroboscope is outputted from a photometry circuit 11, the control circuit 10 executes a driving control (AF control) from the beginning to the end of the image pickup lens 1 based on a signal from the measurement circuit 12.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、COD等の撮像素子よりの映像信号を用いて
オートフォーカス制御を行う電子カメラなどのいわゆる
撮像装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to improvements in so-called imaging devices such as electronic cameras that perform autofocus control using video signals from an imaging device such as a COD.

(発明の背景) 従来のこの種の装置においては、夜間撮影等低照度下に
おけるオートフォーカス(AF)制御が困難であるとい
う問題を有していた。以下にこの点について詳細に説明
する。
(Background of the Invention) Conventional devices of this type have a problem in that autofocus (AF) control is difficult under low illumination conditions such as night photography. This point will be explained in detail below.

AF検出信号は、通常撮像素子からの映像信号を高域通
過型のバンドパスフィルタを通した信号であるので、信
号レベルは画角内の空間周波数と被写体照度に比例する
。第3図はレンズのフォーカスリング位置とAF検出信
号である撮像素子からの高域成分出力の関係を示したも
ので、波形のピーク位置がフォーカスリングの、すなわ
ちレンズのピント位置となる。ここで、(a)を通常の
被写体の出力信号波形とすると、(b)は低照度で空間
周波数の低い被写体の出力信号波形であり、波形がなだ
らかとなり、ピーク検出が難しい。(c)は高照度で空
間周波数の高い被写体の出力信号波形であり、波形が飽
和を生じ、やはりピーク検出は難しく、AF副制御不可
能となる。
Since the AF detection signal is usually a signal obtained by passing a video signal from an image sensor through a high-pass bandpass filter, the signal level is proportional to the spatial frequency within the angle of view and the illuminance of the subject. FIG. 3 shows the relationship between the focus ring position of the lens and the high-frequency component output from the image sensor, which is an AF detection signal, and the peak position of the waveform is the focus position of the focus ring, that is, the focus position of the lens. Here, if (a) is the output signal waveform of a normal object, then (b) is the output signal waveform of an object with low illuminance and low spatial frequency, and the waveform is gentle and peak detection is difficult. (c) is an output signal waveform of a subject with high illuminance and high spatial frequency, the waveform is saturated, peak detection is difficult, and AF sub-control is impossible.

上記の対策として、出力信号のゲインコントロールを行
う方法があり、これはある程度被写体条件に依存しない
で波形をそろえることが可能であるが、信号の大部分が
飽和してしまう様な夜間撮影時等においては、やはりA
F副制御不可能となり、折角ストロボ等の補助光を用意
していてもこの種の撮影が行えないことになる。この場
合、ストロボ等に付属された赤外光照射部材等により赤
外光を照射して映像信号によりAF副制御行うことが考
えられるが、一般に撮像素子前面の光路中には赤外光カ
ットフィルタが設けられているため、この赤外領域の映
像信号でのAF副制御困難である。
As a countermeasure to the above problem, there is a method of controlling the gain of the output signal, which makes it possible to align the waveform to some extent without depending on the subject conditions. In this case, A
F sub-control becomes impossible, and this type of photography cannot be performed even if an auxiliary light such as a strobe is prepared. In this case, it is conceivable to irradiate infrared light with an infrared light irradiation member attached to a strobe etc. and perform AF sub-control based on the video signal, but generally there is an infrared light cut filter in the optical path in front of the image sensor. , it is difficult to perform AF sub-control using video signals in the infrared region.

(発明の目的) 本発明の目的は、上述した問題を解決し、夜間等の被写
体照度が低い場合であっても、撮影を行うことのできる
撮像装置を提供することである。
(Objective of the Invention) An object of the present invention is to provide an imaging device that solves the above-mentioned problems and is capable of photographing even when the subject illuminance is low, such as at night.

(発明の特徴) 上記目的を達成するために、本発明は、被写体へ向けて
信号波を投射し、該信号波の前記被写体よりの反射波を
検出して該被写体までの距離情報を検出する測距手段と
、該測距手段或はピーク値検出手段よりの信号に基づい
てオートフォーカス制御を行うオートフォーカス手段と
、その時の被写体条件に応じて、前記測距手段或はピー
ク値検出手段のいずれかをオートフォーカス用として選
択する選択手段とを設け、以て、ピーク値検出が不可能
となる夜間撮影時等にあっては、このような条件下でも
測距を可能とするアクティブタイプの測距手段よりの信
号に基づいてオートフォーカス制御を行うようにしたこ
とを特徴とする。
(Features of the Invention) In order to achieve the above object, the present invention projects a signal wave toward a subject, detects a reflected wave of the signal wave from the subject, and detects distance information to the subject. a distance measuring means; an autofocus means for performing autofocus control based on a signal from the distance measuring means or the peak value detecting means; A selection means for selecting either one for autofocus is provided, and when shooting at night, etc., when peak value detection is impossible, an active type that enables distance measurement even under such conditions is provided. The present invention is characterized in that autofocus control is performed based on a signal from a distance measuring means.

(発明の実施例) 第1図は本発明の一実施例を示すブロック図であり、1
は撮像レンズ、2は絞り及びシャッタ、3は撮像素子で
あるところのCCD、4は撮像信号処理回路、5は映像
信号を磁気ディスク等に記録する記録回路、6は前記撮
像レンズ1の現在位置を検出するレンズ位置検出回路、
7は前記撮像レンズ1をその光軸方向に駆動するレンズ
駆動回路、8は前記CCD3を駆動するCOD駆動回路
、9はAP信号処理回路、10は制御回路、11は測光
回路、12は、撮像レンズ1の初動方向判別の為、及び
前記AP信号処理回路9よりのピーク検出不能信号が出
力された場合や、測光回路11よりストロボ使用を促す
信号が出力された場合にAP信号処理回路9の代りに用
いられるアクティブタイプの測距回路、13はストロボ
、14はAF選択スイッチである。
(Embodiment of the invention) FIG. 1 is a block diagram showing an embodiment of the invention.
2 is an imaging lens, 2 is an aperture and a shutter, 3 is a CCD which is an imaging element, 4 is an imaging signal processing circuit, 5 is a recording circuit for recording video signals on a magnetic disk, etc., and 6 is the current position of the imaging lens 1. A lens position detection circuit that detects the
7 is a lens drive circuit that drives the imaging lens 1 in its optical axis direction, 8 is a COD drive circuit that drives the CCD 3, 9 is an AP signal processing circuit, 10 is a control circuit, 11 is a photometry circuit, and 12 is an imaging circuit. The AP signal processing circuit 9 is used to determine the initial movement direction of the lens 1, and when the AP signal processing circuit 9 outputs a peak detection impossible signal or when the photometry circuit 11 outputs a signal prompting the use of a strobe. An active type ranging circuit used instead, 13 is a strobe, and 14 is an AF selection switch.

第2図は前記測距回路12の構成を示すものであり、2
1は赤外光を投光レンズ22を介して投射する赤外発光
素子、23は被写体からの前記赤外光を受光レンズ24
を介して受光するラインセンサである。
FIG. 2 shows the configuration of the distance measuring circuit 12.
1 is an infrared light emitting element that projects infrared light through a projection lens 22; 23 is a light receiving lens 24 that receives the infrared light from a subject;
It is a line sensor that receives light through the

ここで、該測距回路12での動作を簡単に説明すると、
基線長しが既知であり、その後赤外発光素子21から赤
外光が投射され、この赤外光がラインセンサ23で受光
されることにより角度θが明かとなり、これらより被写
体距離Rは算出(R= L / tanθ)される。
Here, the operation of the distance measuring circuit 12 will be briefly explained.
The baseline length is known, and then infrared light is projected from the infrared light emitting element 21, and this infrared light is received by the line sensor 23, so that the angle θ becomes clear, and from these, the subject distance R is calculated ( R=L/tanθ).

次にAP動作について説明する。Next, AP operation will be explained.

上記アクティブタイプの測距回路12は前述のように三
角測距を利用して成るものであり、被写体までの測距情
報を得ることができる。カメラの各種動作を制御するた
めの制御回路10は、前記測距回路12からの測距情報
と前記レンズ位置検出回路6よりの撮像レンズ1の現在
位置情報より該撮像レンズ1の繰り出しく或は繰り込み
)位置を求め、この時点でフォーカシングのためのレン
ズ初動方向を決定し、レンズ駆動回路7を介して撮像レ
ンズ1を駆動する。一方CCD3で光電変換され、得ら
れた映像信号はAF信号処理回路9へ取り込まれ、ここ
で高周波成分の信号のピーク値の検出が行われており、
その後肢回路によりピーク値が検出されたことの確認を
したら制御回路10はレンズ駆動回路7を介して前記撮
像レンズ1の繰り出しを直ちに停止する。
The active type distance measuring circuit 12 uses triangular distance measurement as described above, and can obtain distance measurement information to the subject. A control circuit 10 for controlling various operations of the camera determines whether the imaging lens 1 should be extended or At this point, the initial movement direction of the lens for focusing is determined, and the imaging lens 1 is driven via the lens drive circuit 7. On the other hand, the image signal obtained by photoelectric conversion by the CCD 3 is taken into the AF signal processing circuit 9, where the peak value of the high frequency component signal is detected.
After confirming that the peak value has been detected by the rear limb circuit, the control circuit 10 immediately stops the extension of the imaging lens 1 via the lens drive circuit 7.

前記動作が終了すると、制御回路10はシャッタ及び絞
り2の制御、つまり露光制御を行う。
When the above operation is completed, the control circuit 10 controls the shutter and the aperture 2, that is, performs exposure control.

これにより、前記CCD3で光電変換され、シャッタ及
び絞り2にて露光制御された映像信号は撮像信号処理回
路4を通り、その後記録回路5により最終的に磁気ディ
スク等に記録される。
As a result, the video signal photoelectrically converted by the CCD 3 and subjected to exposure control by the shutter and diaphragm 2 passes through the imaging signal processing circuit 4, and is then finally recorded by the recording circuit 5 onto a magnetic disk or the like.

また、前記動作過程において、AF信号処理回路9より
のピーク検出不能信号が出力された場合や、測光回路1
1よりストロボ使用を促す信号が出力された場合は、制
御回路10は前記測距回路12からの信号に基づいて、
フォーカシングのためのレンズ初動方向のみならず、撮
像レンズ1の繰り出し量制御をも、つまり該撮像レンズ
1の最初から最後までの駆動制御(AP量制御をも行う
。その後ストロボ14を発光させ、以後同様の動作を行
わせる。
In addition, in the above operation process, if a peak detection impossible signal is output from the AF signal processing circuit 9, or if the photometry circuit 1
1 outputs a signal prompting the use of a strobe, the control circuit 10, based on the signal from the distance measuring circuit 12,
Not only the initial movement direction of the lens for focusing, but also the extension amount control of the imaging lens 1, that is, the driving control (AP amount control) of the imaging lens 1 from the beginning to the end.Then, the strobe 14 is made to emit light, and the following steps are performed. Have them do the same thing.

尚、上記のAP量制御切り換えは、AP選択スイッチ1
4を外部操作することによっても行える構成としている
。又通常撮影時に前記測距回路12よりの情報に基づい
て撮像レンズ1の最後までの駆動制御を行わないのは、
アクティブタイプのAPの場合、距離検出に限界があり
、焦点距離の大きいレンズを有するカメラにおいて、精
度上好ましくないからである。又ンビーク検出方式の場
合、測距視野の位置や大きさを自在に変えることが可能
等、インテリジェント化を図ることができるためである
The above AP amount control switching is performed using the AP selection switch 1.
4 can also be performed by external operation. Also, the reason why the drive control of the imaging lens 1 to the end is not performed based on the information from the distance measuring circuit 12 during normal shooting is as follows.
This is because an active type AP has a limit in distance detection, and is not preferable in terms of accuracy in a camera having a lens with a large focal length. In addition, in the case of the beak detection method, the position and size of the distance measurement field of view can be changed freely, making it possible to achieve intelligence.

また、測距回路12よりの情報に基づいて、撮像レンズ
1のレンズ初動方向を判別する方式にしているため、従
来のように撮像レンズ1を前ビン側或は後ビン側に動か
して見るといった動作を必要とするために、ハンチング
を生じたり、また撮像レンズ1を所望の位置まで駆動す
るのに時間を要するといったことが解消される。
In addition, since the system uses a method that determines the initial lens movement direction of the imaging lens 1 based on information from the distance measurement circuit 12, it is difficult to move the imaging lens 1 toward the front bin or the rear bin as in the conventional case. This eliminates the problem of hunting occurring due to the necessity of operation, and of the time required to drive the imaging lens 1 to a desired position.

(発明と実施例の対応) 本実施例において、AP信号処理回路9が本発明のピー
ク値検出手段に、測距回路12が測距手段に、レンズ駆
動回路7.COD駆動回路8及び制御回路10がオート
フォーカス手段に、制御回路10又はAF選択スイッチ
14が選択手段に、それぞれ相当する。
(Correspondence between the invention and the embodiments) In this embodiment, the AP signal processing circuit 9 serves as the peak value detection means of the present invention, the distance measuring circuit 12 serves as the distance measuring means, and the lens drive circuit 7. The COD drive circuit 8 and the control circuit 10 correspond to autofocus means, and the control circuit 10 or the AF selection switch 14 corresponds to selection means.

(発明の効果) 以上説明したように、本発明によれば、被写体へ向けて
信号波を投射し、該信号波の前記被写体よりの反射波を
検出して該被写体までの距離情報を検出する測距手段と
、該測距手段或はピーク値検出手段よりの信号に基づい
てオートフォーカス制御を行うオートフォーカス手段と
、その時の被写体条件に応じて、前記測距手段或はピー
ク値検出手段のいずれかをオートフォーカス用として選
択する選択手段とを設け、以て、ピーク値検出が不可能
となる夜間撮影時等にあっては、このような条件下でも
測距を可能とするアクティブタイプの測距手段よりの信
号に基づいてオートフォーカス制御を行うようにしたか
ら、夜間等の被写体照度が低い場合であっても、撮影を
行うことが可能となる。
(Effects of the Invention) As described above, according to the present invention, a signal wave is projected toward a subject, and a reflected wave of the signal wave from the subject is detected to detect distance information to the subject. a distance measuring means; an autofocus means for performing autofocus control based on a signal from the distance measuring means or the peak value detecting means; A selection means for selecting either one for autofocus is provided, and when shooting at night, etc., when peak value detection is impossible, an active type that enables distance measurement even under such conditions is provided. Since autofocus control is performed based on the signal from the distance measuring means, it is possible to take pictures even when the illuminance of the subject is low, such as at night.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図図示測距回路の構成を示す図、第3図はこの種の
装置におけるレンズのフォーカシング位置と映像信号の
高周波成分の出力の関係を示した図である。 1・・・・・・撮像レンズ、3・・・・・−CCD、6
・・・・・・レンズ位置検出回路、7・・・・・・レン
ズ駆動回路、8・・・・・・COD駆動回路、9−・・
・・・AF信号処理回路、1゜・・・・・・制御回路、
12・・・・・・測距回路、14・・・・・・AF選択
スイッチ。 特許出願人  キャノン株式会社
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the configuration of the distance measuring circuit shown in Fig. 1, and Fig. 3 shows the focusing position of the lens and the high frequency of the video signal in this type of device. FIG. 3 is a diagram showing the relationship between component outputs. 1...Imaging lens, 3...-CCD, 6
... Lens position detection circuit, 7... Lens drive circuit, 8... COD drive circuit, 9-...
...AF signal processing circuit, 1゜...control circuit,
12... Distance measurement circuit, 14... AF selection switch. Patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)撮像手段よりの映像信号中の高周波成分のピーク
値を検出するピーク値検出手段を備えた撮像装置におい
て、被写体へ向けて信号波を投射し、該信号波の前記被
写体よりの反射波を検出して該被写体までの測距情報を
検出する測距手段と、該測距手段或は前記ピーク値検出
手段よりの信号に基づいてオートフォーカス制御を行う
オートフォーカス手段と、その時の被写体条件に応じて
、前記測距手段或はピーク値検出手段のいずれかをオー
トフォーカス用として選択する選択手段とを設けたこと
を特徴とする撮像装置。
(1) In an imaging device equipped with a peak value detection means for detecting the peak value of a high frequency component in a video signal from an imaging means, a signal wave is projected toward a subject, and a reflected wave of the signal wave from the subject is detected. a distance measuring means for detecting distance measurement information to the subject, an autofocusing means for performing autofocus control based on a signal from the ranging means or the peak value detecting means, and subject conditions at that time. An imaging apparatus comprising: a selection means for selecting either the distance measuring means or the peak value detection means for autofocus according to the above.
JP63032885A 1988-02-17 1988-02-17 Image pickup device Pending JPH01208971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032885A JPH01208971A (en) 1988-02-17 1988-02-17 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032885A JPH01208971A (en) 1988-02-17 1988-02-17 Image pickup device

Publications (1)

Publication Number Publication Date
JPH01208971A true JPH01208971A (en) 1989-08-22

Family

ID=12371331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032885A Pending JPH01208971A (en) 1988-02-17 1988-02-17 Image pickup device

Country Status (1)

Country Link
JP (1) JPH01208971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597999A (en) * 1993-08-02 1997-01-28 Minolta Co., Ltd. Auto focus detecting device comprising both phase-difference detecting and contrast detecting methods
CN100365462C (en) * 2004-09-17 2008-01-30 佳能株式会社 Image capturing apparatus and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597999A (en) * 1993-08-02 1997-01-28 Minolta Co., Ltd. Auto focus detecting device comprising both phase-difference detecting and contrast detecting methods
CN100365462C (en) * 2004-09-17 2008-01-30 佳能株式会社 Image capturing apparatus and control method thereof

Similar Documents

Publication Publication Date Title
US7430367B2 (en) Image pickup apparatus, camera main body thereof and interchangeable lens
JP2004309866A (en) Automatic focusing device for camera
JP2008122534A (en) Imaging apparatus, control method and program therefor
WO2003001795A1 (en) Exposure control method for digital camera
JPH0767027A (en) Camera for still picture and moving picture
JPH09211308A (en) Mechanism for detecting object of automatic focusing image pickup unit
JPS61145971A (en) Image pickup device
JPH01208971A (en) Image pickup device
JP6544941B2 (en) Optical apparatus control method, lens apparatus, imaging apparatus and imaging system
JP4847352B2 (en) Imaging apparatus and control method thereof
JP2008298956A (en) Imaging apparatus
JP3411931B2 (en) Imaging device and imaging method
JPH0267529A (en) Camera with zoom function
JP3441931B2 (en) Automatic focus adjustment device, imaging device, imaging system, and recording medium
JPH01181287A (en) Range finding system for camera
JPH0694988A (en) Still image recorder
US5162837A (en) Electronic camera having a built-in strobe
JPH1013730A (en) Video camera
JPH07287160A (en) Electronic view finder unit and camera system including the same
JP3232566B2 (en) Automatic focusing device
JP2004309867A (en) Automatic focusing device for camera
KR200170178Y1 (en) Auto-distance measuring apparatus of passive type using added flash
JPH0528027B2 (en)
JPH02163715A (en) Automatic focus adjustor
JPH0275285A (en) Method for deciding shutter speed of camera