JPH01197020A - Manufacture of formed product having required wall thickness by superplastic blow forming method - Google Patents
Manufacture of formed product having required wall thickness by superplastic blow forming methodInfo
- Publication number
- JPH01197020A JPH01197020A JP63023431A JP2343188A JPH01197020A JP H01197020 A JPH01197020 A JP H01197020A JP 63023431 A JP63023431 A JP 63023431A JP 2343188 A JP2343188 A JP 2343188A JP H01197020 A JPH01197020 A JP H01197020A
- Authority
- JP
- Japan
- Prior art keywords
- workpiece
- superplastic
- chamber
- wall thickness
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000071 blow moulding Methods 0.000 title claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000000034 method Methods 0.000 title description 13
- 238000000465 moulding Methods 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 7
- 239000000047 product Substances 0.000 claims 2
- 239000012467 final product Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野:
本発明は、被加工物を、その材料が超塑性を示す温度に
加熱してプロー成形を行う超塑性ブロー成形性に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application: The present invention relates to superplastic blow moldability, in which blow molding is performed by heating a workpiece to a temperature at which the material exhibits superplasticity.
従来の技術:
超塑性とは、ある種の材料、例えばアルミニウムおよび
その合金、銅およびその合金、ステンレススチール、チ
タンおよびその合金などが、固有の融点より低い特定の
温度範囲(アルミニウム:400〜600℃、チタンお
よびその合金:約850℃、ステンレススチール=90
0〜1050°C)で、非常に大きい伸び(400〜6
000 % )を与えても破損しない性質をいう。この
性質を利用して、複雑な形状の製品、深絞り状製品など
を、普通1回の操作で成形加工することを超塑性加工と
いい、被加工物の一面からガス(例えばアルゴン)圧を
作用させて他面を雌型に押し付けて成形する方法を超塑
性ブロー成形性という。BACKGROUND TECHNOLOGY: Superplasticity is the property of certain materials, such as aluminum and its alloys, copper and its alloys, stainless steel, titanium and its alloys, in a certain temperature range below its inherent melting point (aluminum: 400-600°C). °C, titanium and its alloys: approx. 850 °C, stainless steel = 90
0-1050°C) with very high elongation (400-6
000%) without being damaged. Utilizing this property to form products with complex shapes, deep-drawn products, etc. in a single operation is called superplastic processing, in which gas (e.g. argon) pressure is applied from one side of the workpiece. The method of forming by pressing the other side against the female mold is called superplastic blow molding.
超塑性ブロー成形性は、現在では、良く知られた方法で
、例えば、米国特許8840101号、同893444
0号、同4181000号各明細書、特開昭58−28
520号公報、特開昭58−173031号公報などが
開示されている。Superplastic blow moldability is currently measured by well-known methods, for example, U.S. Pat.
No. 0, 4181000 specifications, JP-A-58-28
No. 520, Japanese Unexamined Patent Publication No. 58-173031, and the like are disclosed.
本発明の課題:
超塑性ブロー成形性の最大の問題点は製品の肉厚の均一
化が困難なことである。この問題は大変重要かつ深刻で
あるので、有底中空円筒の場合について、第3図に示し
た超塑性材料の、超塑性ブロー加工中の形状変化の代表
的な例について具体的に説明する(形状が複雑になると
肉厚不均一度が増す。)。Problems of the present invention: The biggest problem with superplastic blow moldability is that it is difficult to make the wall thickness of the product uniform. Since this problem is very important and serious, we will specifically explain a typical example of shape change during superplastic blowing of a superplastic material shown in Fig. 3 in the case of a hollow cylinder with a bottom. As the shape becomes more complex, the degree of non-uniformity in wall thickness increases.)
図中の(イ)図は、被加工物(普通板)が上部椀形型2
と下部椀形型8とにより気密に挾持された状態を示す(
椀形とは、広く、8次元凹部を持つ開放箱体形状を意味
し、球、だ円球などの形状の凹部を含む)。上部椀形型
2が内蔵する加圧室4のガス圧を作用させると、被加工
物1は、その表面張力により、はぼ中空球の形状(断面
円弧状)となる(重力を無視する。(ロ)図)。被加工
物の一端が、下部椀形型8の成形室5に接触すると、そ
の接触面では、立体弧を保つ表面張力依存形クリープが
抑制され、かつ、成形室5の内壁と被加工物lと間の摩
擦が大きいため、壁面に平行な方向へのクリープも抑制
されて、被加工物lの薄肉化はほとんど起こらない。こ
の現象が、被加工物lの中央(A室)から近い部分から
順次起こシ、結局(ハ)図のように、A点から最も遠い
、成形室5の底角部の肉厚が他部に比べて小になシ、例
えば底部中央の肉厚は大である。In the figure (a), the workpiece (ordinary plate) is the upper bowl-shaped mold 2.
It shows a state where it is airtightly held by the lower bowl-shaped mold 8 (
Bowl-shaped broadly refers to an open box shape with an eight-dimensional recess, and includes recesses in the shape of a sphere, an ellipsoid, etc.). When the gas pressure in the pressurized chamber 4 built into the upper bowl-shaped mold 2 is applied, the workpiece 1 assumes the shape of a hollow sphere (arc-shaped cross section) due to its surface tension (ignoring gravity). (b) Figure). When one end of the workpiece contacts the molding chamber 5 of the lower bowl-shaped mold 8, surface tension-dependent creep that maintains a three-dimensional arc is suppressed on the contact surface, and the inner wall of the molding chamber 5 and the workpiece l Since the friction between the two is large, creep in the direction parallel to the wall surface is also suppressed, and thinning of the workpiece l hardly occurs. This phenomenon occurs sequentially from the part closest to the center (chamber A) of the workpiece l, and as shown in Figure (c), the wall thickness of the bottom corner of the molding chamber 5, which is farthest from point A, For example, the wall thickness at the center of the bottom is large.
この現象は、従来の超塑性プロー成形の本質的欠陥とい
える。This phenomenon can be said to be an essential defect of conventional superplastic blow molding.
解決法:
上記課題の解決法として、本発明では、超塑性ブロー加
工を行って生ずる成形体(製品)の好ましい肉厚分布を
基にして、ブロー加工の結果、該肉厚分布を与えそうな
、場所的に肉厚の異なる予備成形体を作シ、このものを
超塑性ブロー加工する。Solution: As a solution to the above problem, in the present invention, based on the preferable wall thickness distribution of a molded article (product) produced by performing superplastic blow processing, a method that is likely to provide the wall thickness distribution as a result of blow processing is provided. , a preformed body with different wall thicknesses is made at different locations, and this is subjected to superplastic blow processing.
すなわち、本発明は、
相係合して、超塑性状態にある被加工物の外縁を気密に
保持する上部椀形型上下部椀形型の、該被加工物と上部
椀形型とにより形成される加圧室に、加圧ガスを供給し
、被加工物を、下部椀形型内部成形室の所望形状を持つ
内面に押圧して成形する超塑性ブロー成形性において:
被加工物を、予め、超塑性プロー成形した際に、各部分
が所望の厚さになるように、肉厚に変化を持たせ予備成
形する;
ことを特徴とする超塑性ブロー成形性による所望肉厚の
製品の製造法である。That is, the present invention provides a method of forming a workpiece and an upper bowl-shaped die, which are in mutual engagement with each other to airtightly hold the outer edge of the workpiece in a superplastic state. In superplastic blow molding, pressurized gas is supplied to a pressurized chamber in which the workpiece is molded by pressing it against the inner surface of the lower bowl-shaped inner molding chamber having a desired shape. In advance, when superplastic blow molding is performed, the wall thickness is preformed with variations so that each part has the desired thickness; It is a manufacturing method.
予備成形には超塑性プロー成形性以外の方法を用い得る
ことは言うまでもない。It goes without saying that methods other than superplastic blow formability can be used for preforming.
作用:
平均半径R1肉厚tの薄肉円筒、または薄肉球に、内圧
Pが印加された場合の、接線方向の単位面積めたシに働
く力(応力)は、
(例えば、Chemical Engineers’
Handbqok 3rdEdition、 Perr
y 著、第1238頁、式(1)を参照されたい。)
(1)式は圧力と応力との関係を表わす最も簡単な式で
あるが、幾何学的形状の変化によυ開式となる(例えば
薄肉円筒の軸方向の応力は(1)式の右辺の1/2にな
る。中空円筒は軸方向に裂目を生じることはあっても、
周方向の裂目を生じないことはよく知られている。)。Effect: When an internal pressure P is applied to a thin cylinder or a thin sphere with an average radius R1 and a wall thickness t, the force (stress) acting on a unit area in the tangential direction is (For example, Chemical Engineers'
Handbqok 3rd Edition, Perr
y, page 1238, formula (1). ) Equation (1) is the simplest equation that expresses the relationship between pressure and stress, but due to changes in the geometrical shape, the equation changes to υ (for example, the stress in the axial direction of a thin-walled cylinder is expressed by Equation (1)). It becomes 1/2 of the right side.Although a hollow cylinder may have cracks in the axial direction,
It is well known that circumferential cracks do not occur. ).
圧力は面に直角に働く力、応力は面と平行に働く力で、
仮に圧力が一定であっても、上側から明らかなように、
応力の値は種種異なる。Pressure is a force acting perpendicular to a surface, and stress is a force acting parallel to a surface.
Even if the pressure is constant, as can be seen from the top,
The stress values vary.
なお、内圧を受ける薄肉体塑性体は、表面張力のため球
状化する傾向を持つ。Note that a thin plastic body subjected to internal pressure tends to become spherical due to surface tension.
また、超塑性プ°ロー加工では、応力は伸び速度の0.
8〜.1乗に比例するが、0.5〜1乗が好ましい0
超塑性物が低温雰囲気に置かれると、薄肉の部分が先に
冷却して、塑性が減少し、厚肉部は高温を維持し、さら
にクリープを続ける。冷却温度を適当に選び、必要な、
場合経時変化されると、球状ではなくなるが、肉厚をほ
とんど一定にすることができる。例えば、米国特許第4
181000号明細書では、一定温度で数式にしたがう
制御をすることにより肉厚制御を行う方法が提案されて
いるが、超塑性プロー成形機のキャビティ内を定温に保
つことは極めて困難である。そして、温度を操作変数と
して付加すると、4次元(位置2次元、温度1次元、時
間1次元)または5次元(位置8次元、温度1次元、時
間1次元)となシ数式制御は極めて不経済になる。In addition, in superplastic blowing, the stress is 0.0% of the elongation rate.
8~. It is proportional to the first power, but preferably 0.5 to the first power.0 When a superplastic material is placed in a low-temperature atmosphere, the thin-walled part cools first and its plasticity decreases, while the thick-walled part maintains a high temperature. , and the creep continues. Select the cooling temperature appropriately, and
If it changes over time, it will no longer be spherical, but the wall thickness can be kept almost constant. For example, U.S. Pat.
No. 181000 proposes a method of controlling wall thickness by controlling a constant temperature according to a mathematical formula, but it is extremely difficult to maintain a constant temperature inside the cavity of a superplastic blow molding machine. When temperature is added as a manipulated variable, it becomes 4-dimensional (2-dimensional position, 1-dimensional temperature, 1-dimensional time) or 5-dimensional (8-dimensional position, 1-dimensional temperature, 1-dimensional time). Mathematical control is extremely uneconomical. become.
本発明の方法は、被加工物(ブランクともいう。)をそ
れぞれの成形品(製品)に応じて、最終的に、肉厚が一
定(広義には所望値)になるように予備加工しておくの
で、所望成形品を得ることが極めて容易になる。In the method of the present invention, a workpiece (also referred to as a blank) is pre-processed according to each molded article (product) so that the wall thickness is finally constant (desired value in a broad sense). This makes it extremely easy to obtain a desired molded product.
なお、超塑性物質に及ぼす表面張力の作用は、その表面
積(したがって表面エネルギー)を最小にしようとする
ものであることに注意する必要がある。It should be noted that the effect of surface tension on a superplastic material is to minimize its surface area (and therefore its surface energy).
実施例:
簡単のため、筒軸(2軸)に対して対称な有底中空円筒
型成形品(製品)の場合について述べる。他の複雑な形
状のものについては、さらに幾何学的考慮が必要である
が、本発明のポイントには関係がない。Example: For the sake of simplicity, a case of a bottomed hollow cylindrical molded product (product) that is symmetrical about the cylinder axis (two axes) will be described. For other complex shapes, further geometrical considerations are required, but are not relevant to the point of the invention.
第1図において、被加工物予備成形品1aは、点A(被
加工物を平板と仮定した場合の中点)を原点にとった場
合の線内φに依存する厚みを持つ。これらの厚みは、そ
れぞれの立体角(線内の特定範囲および経内の特定範囲
により決定される立体角。第1図の場合、z軸について
対称であるから経内について考慮する必要はない。)の
中忙含まれる成形品の全量に一致するように、数値計算
して決定される。例えば、φ1とφ2とで囲まれる立体
角内には、製品の底角部が含まれるので肉厚が犬で、φ
8とφ4とで囲まれる立体角では、筒壁の小部分のみが
含まれるので、肉厚が小であるや各立体角での肉厚の計
算は、製品の立体形状が決められると、解析的に、また
は数値計算的に、極めて容易に求めることが可能で、線
内φと経内θとを細かく層別することにより、計算値の
精密度は向上する。In FIG. 1, the workpiece preform 1a has a thickness that depends on the line φ when the origin is point A (the midpoint when the workpiece is assumed to be a flat plate). These thicknesses are determined by their respective solid angles (solid angles determined by a specific range within the line and a specific range within the meridian. In the case of FIG. 1, there is no need to consider the inward direction since it is symmetrical about the z-axis. ) is determined by numerical calculations to match the total amount of molded products included. For example, the solid angle surrounded by φ1 and φ2 includes the bottom corner of the product, so the wall thickness is a dog, and φ
In the solid angle surrounded by 8 and φ4, only a small part of the cylinder wall is included, so if the wall thickness is small, calculation of the wall thickness at each solid angle can be done by analysis once the three-dimensional shape of the product is determined. It can be very easily determined visually or numerically, and the accuracy of the calculated value can be improved by finely stratifying the inner line φ and the inner line θ.
予備成形した被加工物の形を、球の一部(立体弧)、に
近づけることが、一般的に、有利であるが、同一形状の
製品を量産する場合には、試行錯誤法により最適形状を
決める方が良い(理由:局部温度が塑性加工に影響を与
える。)。It is generally advantageous to make the shape of a preformed workpiece approximate to a part of a sphere (3D arc), but when mass producing products with the same shape, the optimal shape can be determined by trial and error. (Reason: Local temperature affects plastic working.)
予備成形した被加工物を超塑性加工する操作の実質的部
分は従来法と変らない。The substantial part of the operation for superplastically forming a preformed workpiece is the same as in the conventional method.
しかしながら、超塑性温度にある被加工物が変形する恐
れのある場合には、加工初期において、加圧室4のみな
らず、成形室5にも加圧ガスを導入して、両室の圧差を
小さくすることが望ましい場合がある。However, if there is a risk that the workpiece at the superplastic temperature may deform, pressurized gas is introduced not only into the pressurizing chamber 4 but also into the forming chamber 5 in the early stage of processing to reduce the pressure difference between the two chambers. It may be desirable to make it smaller.
なお、線内、経内の層別については、等角にとる必要は
なく、製品の形状に即して、変化させなければならない
。Note that the stratification within the line and within the warp does not have to be equiangular, but must be changed according to the shape of the product.
被加工物の予備成形については、超塑性ブロー加工法の
みでなく、熱間、冷間鍛造法、切削、研削などの加工法
を用い得ることは言うまでもない。Regarding the preforming of the workpiece, it goes without saying that not only the superplastic blowing method but also processing methods such as hot forging, cold forging, cutting, and grinding can be used.
しかしながら、成形体の形状が簡単な場合、例えば上記
有底中空円筒体の場合には、第2図に示すように、超塑
性ブロー加工のみで、成形品の肉厚分布の調整を行うこ
とができる。However, when the shape of the molded product is simple, for example, in the case of the above-mentioned hollow cylinder with a bottom, it is not possible to adjust the thickness distribution of the molded product using only superplastic blow processing, as shown in Figure 2. can.
この場合、上部椀形型2は、図に示すような特殊形状の
内壁を持つ加圧室4を内蔵し、同図の0)図のように上
、下腕形型で挾持された被加工物lは、(ロ)図に示す
ように、先づ、成形室5側からのガス圧により、加圧室
4の内壁に押圧される。次に成形室5側を放圧して、加
圧室4側からガス圧を印加して、(ハ)図のように、ク
リープさせ、結局(4図のように成形する。結局、←)
図に示したように予備成形するプロセスを付加すること
にょシ、成形品の肉厚が均一化する。この現象の起こる
理由は、現状では明らかでないが、極めて経済性の高い
方法である。In this case, the upper bowl-shaped die 2 has a built-in pressurizing chamber 4 having a special-shaped inner wall as shown in the figure, and the workpiece is held between the upper and lower arm-shaped dies as shown in figure 0). The object 1 is first pressed against the inner wall of the pressurizing chamber 4 by gas pressure from the molding chamber 5 side, as shown in FIG. Next, the pressure is released from the molding chamber 5 side, and gas pressure is applied from the pressurized chamber 4 side to cause creep as shown in Fig.
By adding the preforming process as shown in the figure, the thickness of the molded product becomes uniform. The reason why this phenomenon occurs is not clear at present, but it is an extremely economical method.
発明の効果
本発明は、超塑性ブロー成形性に、被加工物を予備成形
するという極めて簡単容易な工程を追加することにより
、成形品(製品)の局部肉厚を調節可能とするもので、
これにより、成形品の機械強度を増加し得ることは言う
までもない。Effects of the Invention The present invention makes it possible to adjust the local wall thickness of a molded article (product) by adding an extremely simple and easy step of preforming the workpiece to superplastic blow moldability.
It goes without saying that this can increase the mechanical strength of the molded product.
第1図は、本発明において、被加工物を予備成形する場
合に、その極部肉厚を決定する方法を示す説明図である
(成形品を実線で示しである点に注意されたい。)。
第2図は、上部椀形室の加圧室内部を予備成形に利用し
、超塑性ブロー加工のみで、成形品の肉厚均一化を行う
実施例の工程の説明図である。
第3図は、従来の超塑性ブロー加工の場合に、成形品の
肉厚が一定にならないことを説明する図面である。
l・・・i加工物、la・・・被加工物予備成形品、l
b・・・被加工物成形品、2・・・上部椀形型、3・・
・下部椀形型、 4・・・加圧室、5・・・成形室
第2図
J
(ニ)FIG. 1 is an explanatory diagram showing a method for determining the extreme wall thickness of a workpiece when preforming the workpiece in the present invention (please note that the molded product is shown by a solid line). . FIG. 2 is an explanatory diagram of the process of an embodiment in which the inside of the pressurized chamber of the upper bowl-shaped chamber is used for preforming, and the thickness of the molded product is made uniform by only superplastic blow processing. FIG. 3 is a diagram illustrating that the thickness of a molded product is not constant in conventional superplastic blow processing. l...i workpiece, la...workpiece preform, l
b...Workpiece molded product, 2...Upper bowl-shaped mold, 3...
・Lower bowl-shaped mold, 4...pressurizing chamber, 5...molding chamber Figure 2 J (d)
Claims (1)
密に挾持する上部椀形型と下部椀形型の、該被加工物と
上部椀形型とにより形成される加圧室に、加圧ガスを供
給し、被加工物を、下部椀形型の所望形状を持つ内面に
押圧して成形する超塑性ブロー成形性において被加工物
を、予め、予備成形して、超塑性 ブロー成形した後の、成形品の局部的肉厚が所望値にな
るようにした後、超塑性ブロー加工する; を特徴とする超塑性ブロー成形性による所 望肉厚の成形品の製造法。 2 上部椀形型内の加圧室の内面が、予備成形体の雌型
を形成し、被加工物が、下部椀形室をガス加圧すること
により、加圧室の内面に押圧されて、予備成形体を形成
し、その後で、加圧室側にガス圧を働かせて、超塑性ブ
ロー加工を行う特許請求の範囲第1項に記載の製造方法
。 3 予備成形した被加工物が、立体弧形であつて、最初
の被加工物の中心を原点(A)、原点(A)を通り立体
弧の中心を通るクリープ方向をZ軸にとり、緯角をm分
角、経角をn分角に層別して生じる各立体角エレメント
に含まれる最終製品の量を、該予備成形した被加工物が
含むように、前記予備成形の肉厚を変化させたものであ
る特許請求の範囲第1項に記載の製造方法。 4 被加工物と下部椀形型とで形成される成形室側の圧
力を、加圧室側の圧力より若干大に保ち、予備成形体の
初期変形を防止した特許請求の範囲第1項または第3項
に記載の製造方法。[Claims] 1. An upper bowl-shaped mold and a lower bowl-shaped mold that engage with each other to airtightly sandwich the outer edge of the workpiece in a superplastic state, by the workpiece and the upper bowl-shaped mold. In superplastic blow molding, a pressurized gas is supplied to the pressurized chamber to be formed, and the workpiece is pressed against the inner surface of the lower bowl-shaped mold to form the desired shape. After molding and superplastic blow molding, the local wall thickness of the molded product is made to a desired value, and then superplastic blow processing is performed; Molding to a desired wall thickness by superplastic blow moldability. method of manufacturing the product. 2. The inner surface of the pressure chamber in the upper bowl-shaped mold forms a female mold of the preform, and the workpiece is pressed against the inner surface of the pressure chamber by pressurizing the lower bowl-shaped chamber with gas, 2. The manufacturing method according to claim 1, wherein a preform is formed, and then gas pressure is applied to the pressurizing chamber to perform superplastic blow processing. 3 If the preformed workpiece is in the shape of a three-dimensional arc, the center of the first workpiece is the origin (A), the creep direction passing through the origin (A) and the center of the three-dimensional arc is taken as the Z axis, and the latitude angle is The wall thickness of the preform was changed so that the preformed workpiece contained the amount of the final product contained in each solid angle element produced by stratifying the solid angle into m arc minutes and long angle into n arc minutes. The manufacturing method according to claim 1, wherein the manufacturing method is: 4. The pressure in the molding chamber formed by the workpiece and the lower bowl-shaped die is maintained slightly higher than the pressure in the pressurizing chamber to prevent initial deformation of the preform, or The manufacturing method according to item 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63023431A JPH01197020A (en) | 1988-02-02 | 1988-02-02 | Manufacture of formed product having required wall thickness by superplastic blow forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63023431A JPH01197020A (en) | 1988-02-02 | 1988-02-02 | Manufacture of formed product having required wall thickness by superplastic blow forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01197020A true JPH01197020A (en) | 1989-08-08 |
Family
ID=12110315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63023431A Pending JPH01197020A (en) | 1988-02-02 | 1988-02-02 | Manufacture of formed product having required wall thickness by superplastic blow forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01197020A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998046381A1 (en) * | 1997-04-11 | 1998-10-22 | Rolf Haberstock | Fluid forming press |
WO2001019546A1 (en) * | 1999-09-16 | 2001-03-22 | Sintokogio, Ltd. | Blow molding method for superplastic materials and system |
JP2002292435A (en) * | 2001-03-30 | 2002-10-08 | Japan Aircraft Mfg Co Ltd | Superelastic molding method |
US7318333B2 (en) | 2005-05-18 | 2008-01-15 | Ford Global Technologies, L.L.C. | Superplastic forming tool |
US7827840B2 (en) | 2006-11-30 | 2010-11-09 | Ford Global Technologies, Llc | Multistage superplastic forming apparatus and method |
JP2013517137A (en) * | 2010-01-12 | 2013-05-16 | ノベリス・インコーポレイテッド | Method of pressure forming a metal container or the like from a preform having a wall thickness gradient |
US8726543B2 (en) | 2006-11-30 | 2014-05-20 | Deere & Company | Automated blade with load management control |
JPWO2018078990A1 (en) * | 2016-10-24 | 2019-06-24 | 本田技研工業株式会社 | Automotive floor panel and method of manufacturing automotive floor panel |
-
1988
- 1988-02-02 JP JP63023431A patent/JPH01197020A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998046381A1 (en) * | 1997-04-11 | 1998-10-22 | Rolf Haberstock | Fluid forming press |
WO2001019546A1 (en) * | 1999-09-16 | 2001-03-22 | Sintokogio, Ltd. | Blow molding method for superplastic materials and system |
JP2002292435A (en) * | 2001-03-30 | 2002-10-08 | Japan Aircraft Mfg Co Ltd | Superelastic molding method |
US7318333B2 (en) | 2005-05-18 | 2008-01-15 | Ford Global Technologies, L.L.C. | Superplastic forming tool |
US7827840B2 (en) | 2006-11-30 | 2010-11-09 | Ford Global Technologies, Llc | Multistage superplastic forming apparatus and method |
US8726543B2 (en) | 2006-11-30 | 2014-05-20 | Deere & Company | Automated blade with load management control |
JP2013517137A (en) * | 2010-01-12 | 2013-05-16 | ノベリス・インコーポレイテッド | Method of pressure forming a metal container or the like from a preform having a wall thickness gradient |
JPWO2018078990A1 (en) * | 2016-10-24 | 2019-06-24 | 本田技研工業株式会社 | Automotive floor panel and method of manufacturing automotive floor panel |
US11230082B2 (en) | 2016-10-24 | 2022-01-25 | Honda Motor Co., Ltd. | Automobile floor panel and automobile floor panel manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5675844B2 (en) | Method of pressure forming a metal container or the like from a preform having a wall thickness gradient | |
RU2296641C2 (en) | Method for plunger molding of metallic containers and similar articles | |
JPH0739965A (en) | Production of hollow integral metal element | |
US3583188A (en) | Automobile rear axle housing and method of making same | |
CN109693083B (en) | Plastic forming method of titanium alloy shell with large length-diameter ratio | |
JPH01197020A (en) | Manufacture of formed product having required wall thickness by superplastic blow forming method | |
JP2001162330A (en) | Manufacturing method of metal sheet member having large area | |
Liu et al. | Deformation of large curved shells using double-sided pressure sheet hydroforming process | |
CN101977707A (en) | Hot forming process for metal alloy sheets | |
US4113522A (en) | Method of making a metallic structure by combined superplastic forming and forging | |
RU2586174C1 (en) | Method for production of shells from sheet workpiece and device therefor | |
JPH03204134A (en) | Manufacture of semi-spherical shoe for swash plate compressor | |
JPH02120536A (en) | Piston for disc brake and manufacture thereof | |
JP2000237828A (en) | Superplastic blow molding method | |
CN106670364A (en) | Variable-section thin-wall stainless steel hemisphere seal forming method | |
US3651559A (en) | Manufacturing a seamless pressure vessel | |
JPH01289531A (en) | Superplastic forging method | |
CN111400939A (en) | High-precision forming method for titanium alloy variable-wall-thickness spherical shell | |
JPS60166137A (en) | Upsetting method of tube end part | |
JPH09323137A (en) | Method for cold-forging of housing with shank | |
SU1148673A1 (en) | Apparatus for reversing pneumatic thermal moulding of sheet bars | |
SU812403A1 (en) | Shaft forging method | |
JP2518980B2 (en) | Method for drilling precision aluminum alloy product with holes | |
RU2045363C1 (en) | Method of making shells of sheet blanks | |
RU2239512C1 (en) | Method for making sleeve with flanges |