JPH01180948A - High-tensile steel for low temperature use excellent in toughness in weld zone - Google Patents
High-tensile steel for low temperature use excellent in toughness in weld zoneInfo
- Publication number
- JPH01180948A JPH01180948A JP311888A JP311888A JPH01180948A JP H01180948 A JPH01180948 A JP H01180948A JP 311888 A JP311888 A JP 311888A JP 311888 A JP311888 A JP 311888A JP H01180948 A JPH01180948 A JP H01180948A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- toughness
- haz
- tin
- mns
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 51
- 239000010959 steel Substances 0.000 title claims abstract description 51
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000006104 solid solution Substances 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 229910052796 boron Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract 4
- 239000002245 particle Substances 0.000 claims description 18
- 239000010936 titanium Substances 0.000 claims description 14
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 239000002131 composite material Substances 0.000 abstract description 9
- 150000001875 compounds Chemical class 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 4
- 229910009815 Ti3O5 Inorganic materials 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 229910000851 Alloy steel Inorganic materials 0.000 abstract description 2
- 229910009973 Ti2O3 Inorganic materials 0.000 abstract description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- GQUJEMVIKWQAEH-UHFFFAOYSA-N titanium(III) oxide Chemical compound O=[Ti]O[Ti]=O GQUJEMVIKWQAEH-UHFFFAOYSA-N 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 239000000463 material Substances 0.000 description 13
- 230000007423 decrease Effects 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 8
- 238000003466 welding Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 239000010953 base metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 241000282342 Martes americana Species 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910008649 Tl2O3 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- QTQRFJQXXUPYDI-UHFFFAOYSA-N oxo(oxothallanyloxy)thallane Chemical compound O=[Tl]O[Tl]=O QTQRFJQXXUPYDI-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- RMLPZKRPSQVRAB-UHFFFAOYSA-N tris(3-methylphenyl) phosphate Chemical compound CC1=CC=CC(OP(=O)(OC=2C=C(C)C=CC=2)OC=2C=C(C)C=CC=2)=C1 RMLPZKRPSQVRAB-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、溶接性の優れた強靭性高張力鋼に係わり、特
に、溶接熱影響部(以下HAZと称する)の低温靭性の
優れた鋼材に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a strong, high-strength steel with excellent weldability, and particularly to a steel material with excellent low-temperature toughness in a weld heat affected zone (hereinafter referred to as HAZ). It is related to.
[従来の技術]
低合金鋼の溶接HAZ靭性は、(1)有効結晶粒の大き
さ(オーステナイト粒径、ミクロ組織)、(2)硬化相
の粒径および体積分率(炭化物、高炭素マルテンサイト
、介在物) 、(3)母相の硬さおよび靭性(フェライ
ト中の固溶C,N)等の冶金学要因によって支配されて
いる。これらの中でHAZ靭性の向上策として、HAZ
組織を微細化し、有効結晶粒を細粒化する方法が簡便で
あり、高温で安定な種々の析出物を活用した各種の方法
が提案されている。[Prior art] Weld HAZ toughness of low alloy steel is determined by (1) effective grain size (austenite grain size, microstructure), (2) grain size and volume fraction of hardened phase (carbide, high carbon marten (3) hardness and toughness of the matrix (solid solution C, N in ferrite). Among these, HAZ
A simple method is to refine the structure and refine the effective crystal grains, and various methods have been proposed that utilize various precipitates that are stable at high temperatures.
例えば、TiNを微細分散させ、50kg I f/−
高張力鋼の大入熱溶接時のHAZ靭性を改善する手段が
とられている(昭和54年6月発行「鉄と鋼」第65巻
第8号1232頁)。しかしこれらの析出物は、大入熱
溶接においては大部分が溶解され、HAZ組織の粗粒化
と固溶Nの増加を生じ、HAZ靭性を劣化させるという
欠点が存在する。For example, if TiN is finely dispersed, 50 kg I f/-
Measures have been taken to improve the HAZ toughness during high heat input welding of high tensile strength steel ("Tetsu to Hagane" Vol. 65 No. 8, June 1970, p. 1232). However, most of these precipitates are dissolved in high heat input welding, resulting in coarse graining of the HAZ structure and increase in solute N, which has the disadvantage of degrading the HAZ toughness.
一方、本発明者の一部は、溶鉄のAΩ脱酸に替わるT1
脱酸により、鋼中にT1酸化物を微細分散させ、溶接時
のHAZ部において、粒内フェライト変態組織(以下I
FPと称する)を発達させることにより、HAZ靭性を
著しく改善できることを、特開昭80−245768号
、特開昭Go −79745号、特開昭[il −11
7245号、特開昭62−1842号各公報において示
した。On the other hand, some of the inventors of the present invention have proposed a T1 method to replace AΩ deoxidation of molten iron.
By deoxidizing, T1 oxide is finely dispersed in the steel, and in the HAZ area during welding, an intragranular ferrite transformation structure (hereinafter referred to as I
JP-A-80-245768, JP-A-Sho Go-79745, and JP-A-Sho [il-11] have shown that the HAZ toughness can be significantly improved by developing a
No. 7245 and Japanese Unexamined Patent Application Publication No. 62-1842.
しかし、その後HAZ組織と靭性の関係を詳細に調べた
ところ、T1脱酸により、鋼中にT1酸化物を微細分散
させた鋼においても、HAZ部を完全にIFP組織で覆
うことは出来ず、北極海域、LPGタンクのような極低
温環境で使用される低温用鋼の溶接部靭性を保証するに
は、さらに、HAZ靭性を飛躍的に向上させる技術思想
の導入が必要であることが判明した。However, when we later investigated the relationship between the HAZ structure and toughness in detail, we found that even in steel in which T1 oxide was finely dispersed in the steel through T1 deoxidation, the HAZ region could not be completely covered by the IFP structure. In order to guarantee the weld toughness of low-temperature steel used in extremely low-temperature environments such as Arctic waters and LPG tanks, it has been found that it is necessary to introduce a technological philosophy that dramatically improves HAZ toughness. .
[発明が解決しようとする課題]
本発明者らは上記の現状を踏まえ、HAZ靭性に及はす
脆性破壊の発生起点となる高炭素マルテンサイト(以下
M*と称する)の生成とフェライト母相の靭性に注目し
、それらの制御方法について鋭意検討を加え、以下の結
果を得た。[Problems to be Solved by the Invention] Based on the above-mentioned current situation, the present inventors have investigated the formation of high carbon martensite (hereinafter referred to as M*), which is the starting point of brittle fracture that affects HAZ toughness, and the ferrite matrix. Focusing on the toughness of the steel, we conducted intensive studies on how to control them, and obtained the following results.
T1酸化物粒子を均一微細分散させた鋼においても、鋼
の低温脆性破壊は粒界近傍に生成する比較的粗大な硬化
相、炭化物、M*から発生、伝播することかはとんとで
ある。特に鋼の高強度化、厚肉化のために、合金添加さ
れた場合はM*の生成が顕著になり、靭性が低下するこ
とが判明した。Even in steel in which T1 oxide particles are uniformly and finely dispersed, low-temperature brittle fracture of steel may occur and propagate from relatively coarse hardened phases, carbides, and M* generated near grain boundaries. In particular, it has been found that when alloying is added to increase the strength and thickness of steel, the formation of M* becomes noticeable and the toughness decreases.
それらの添加合金の中でもSi添加の影響が顕著である
ことが明らかになった。また、M*を生成しない成分、
冷却条件でも、固溶Nの存在は母相の靭性を悪化させる
ことも明らかになった。It has become clear that among these additive alloys, the influence of Si addition is significant. In addition, components that do not generate M*,
It was also revealed that the presence of solid solution N deteriorates the toughness of the matrix even under cooling conditions.
しかし、Slは強化および脱酸元素として有用な元素で
あり、またNもTi、Zr等の窒化物として、母材の強
化およびオーステナイト粒の細粒化に有効な場合もあり
、その両者の含有適量範囲を検討し、HAZの低温靭性
を向上させた溶接性の優れた海洋構造物、船舶、貯槽、
輸送用パイプなどの構造物用鋼の開発か可能であるとの
結論に達し、本発明を成したものである。However, Sl is an element useful as a strengthening and deoxidizing element, and N, as a nitride of Ti, Zr, etc., is sometimes effective in strengthening the base material and refining austenite grains, so the content of both is effective. We considered the appropriate amount range and improved the low-temperature toughness of HAZ for marine structures, ships, storage tanks, and other materials with excellent weldability.
We came to the conclusion that it is possible to develop steel for structures such as transportation pipes, and created the present invention.
[課題を解決するための手段]
本発明は、以上の知見に基づいてなされたものであり、
その要旨は、重量%で、C: 0.02〜0.18%、
Mn:0.4〜2.0 %、 S : 0.000
7〜0.0060%。[Means for Solving the Problems] The present invention has been made based on the above findings, and
The gist is, in weight%, C: 0.02-0.18%,
Mn: 0.4-2.0%, S: 0.000
7-0.0060%.
Ti:0.005〜0.030%を含有し、Aj! <
0.003%。Contains Ti: 0.005 to 0.030%, Aj! <
0.003%.
P < 0.015%に制限し、特i:N : 0.0
010−0.0040%、 S i:0.03〜0.
25%に限定し、これらに、さらに必要に応じてNi<
3.0%、Cu<1.5%。Limited to P < 0.015%, especially i:N: 0.0
010-0.0040%, Si:0.03-0.
25%, and further add Ni<
3.0%, Cu<1.5%.
Nb<0.05%、V<0.1%、Cr<1.0%。Nb<0.05%, V<0.1%, Cr<1.0%.
Mo<0.5%、 B<0.002%の1種または2
種以上を含有し、残部はFeおよび不可避不純物がらな
り、主に粒子径か01〜30睡にある数%のMnを固溶
したTl2O3,Ti3O5のチタン酸化物および、こ
れらの酸化物とTiN、MnSの複合体の合計と、Ti
N+MnSの複合体とを、夫々3×10〜lXl0”個
/mniの粒子数範囲で同時に含有することを特徴とす
る溶接部靭性の優れた強靭性高張力鋼である。One or two of Mo<0.5% and B<0.002%
titanium oxides of Tl2O3 and Ti3O5 in which a few percent of Mn is dissolved in solid solution, and these oxides and TiN, with the remainder consisting of Fe and unavoidable impurities. Total complex of MnS and Ti
This is a strong, high-strength steel with excellent weld toughness, characterized in that it simultaneously contains a composite of N+MnS in a particle number range of 3×10 to 1×10”/mni, respectively.
以下、本発明について詳細に説明する。The present invention will be explained in detail below.
最初に本発明鋼の基本成分範囲の限定理由について述べ
る。First, the reason for limiting the basic component range of the steel of the present invention will be described.
まず、Cは鋼の強度を向上させる有効な成分として添加
するもので、0.02%未満では溶接構造用鋼として必
要な強度が得られず、また、0.18%を超える過剰の
添加は、溶接割れ性、HAZ靭性などを著しく低下させ
るので、上限を0.18%とした。First, C is added as an effective component to improve the strength of steel, and if it is less than 0.02%, the strength required for welded structural steel cannot be obtained, and if it is added in excess of 0.18%, it is , weld cracking resistance, HAZ toughness, etc. are significantly reduced, so the upper limit was set at 0.18%.
Siは母材の強度確保、溶鋼の予備脱酸などに必要であ
るが、025%を超えるとHAZにM*を生成し、HA
Z靭性を著しく低下させる。また、0.03%以下では
M*は生成しないがHAZ靭性の低下が生じる。従って
、Sj含有量をこの範囲に制限した。Si is necessary to ensure the strength of the base metal and to preliminarily deoxidize molten steel, but if it exceeds 0.25%, it will generate M* in the HAZ and
Significantly reduces Z toughness. Further, if it is 0.03% or less, M* is not generated but HAZ toughness is decreased. Therefore, the Sj content was limited to this range.
Nは含有量が0.0040%を超えるとM*が存在しな
い条件でも、母相を脆化させHAZ靭性を低下させる。When the content of N exceeds 0.0040%, it embrittles the matrix even in the absence of M* and reduces HAZ toughness.
また、Nが0.0010%以下ではHAZで窒化物を生
成せず、IFP組織の生成量が減少しHAZ靭性が低下
する。Further, when N is 0.0010% or less, nitrides are not generated in the HAZ, the amount of IFP structure generated is reduced, and the HAZ toughness is decreased.
Mnは母材の強度、靭性の確保には0.4%以上の添加
が必要であるが、溶接部の靭性、割れ性などの許容でき
る範囲で上限を2.0%とした。Although it is necessary to add Mn in an amount of 0.4% or more to ensure the strength and toughness of the base metal, the upper limit was set to 2.0% within an allowable range such as the toughness and crackability of the welded part.
Sについては、複合体のMnSを析出させるために0.
0007%以上必要であるが、0.0060%超の過剰
の添加は、粗大な硫化物系介在物を形成し、母材の延性
低下と異方性の増加を招くため、0.0007〜0.0
060%とした。Regarding S, in order to precipitate MnS of the complex, 0.
0.0007% or more is necessary, but excessive addition of more than 0.0060% will form coarse sulfide inclusions, leading to a decrease in ductility and an increase in anisotropy of the base material, so 0.0007 to 0. .0
060%.
Tiは、T1酸化物とT1窒化物の形成に必須の元素で
あるか、0.03%超の添加は、過剰なT1炭化物の析
出をともない、HAZ硬さを上昇させ、靭性低下をもた
らすため、003%以下とした。Ti is an essential element for the formation of T1 oxide and T1 nitride, or addition of more than 0.03% causes excessive precipitation of T1 carbide, increases HAZ hardness, and reduces toughness. , 003% or less.
Pは、凝固偏析による溶接割れ性、靭性などの低下を防
止する上から、極力低減すべきであり、上限を0015
%に制限した。P should be reduced as much as possible to prevent deterioration of weld cracking properties and toughness due to solidification segregation, and the upper limit should be set at 0015.
%.
AΩは強力な脱酸元素であり、0.003%以上の添加
によりTi脱酸により形成されるTi酸化物が形成され
なくなり、HAZにIFPが形成されず、HAZ靭性の
低下がもたらされるので、0.003%以下に制限した
。AΩ is a strong deoxidizing element, and by adding 0.003% or more, Ti oxide formed by Ti deoxidation will not be formed, IFP will not be formed in the HAZ, and the HAZ toughness will decrease. It was limited to 0.003% or less.
以上が本発明鋼の基本成分であるが、母材強度の上昇、
および母相、HAZの靭性向上の目的で、Ni 、Cu
、Nb、V、Cr、Mo、Bの1種又は2種以上を含有
することができる。The above are the basic components of the steel of the present invention.
For the purpose of improving the toughness of the matrix and HAZ, Ni, Cu
, Nb, V, Cr, Mo, and B.
まず、N1は、母材の強靭性とHAZの靭性を同時に高
める極めて有効な元素であるが、3.0%を超す添加は
、焼き入れ性の増加により、IFP組織の形成が抑制さ
れること、M*が生成されることによりHAZ靭性の低
下をもたらすため、上限を30%とした。First, N1 is an extremely effective element that simultaneously increases the toughness of the base metal and the HAZ, but adding more than 3.0% increases hardenability and inhibits the formation of the IFP structure. , M*, which results in a decrease in HAZ toughness, the upper limit was set at 30%.
Cuは母材の強化のわりには、HAZの硬化が少なく、
有効な元素であるが、応力除去焼鈍による焼き戻し脆性
、溶接割れ性などを考慮して、上限を1.5%とした。Although Cu strengthens the base material, it hardens the HAZ less.
Although it is an effective element, the upper limit was set at 1.5% in consideration of temper embrittlement caused by stress relief annealing, weld cracking resistance, etc.
Nb、Vは母材の強靭化、粒界フェライトの生成抑制な
どによるHAZ靭性の改善などに有効であるが、各成分
の上限を超える過剰の添加は、靭性および硬化性の観点
から有害となるため、Nb。Nb and V are effective in improving HAZ toughness by strengthening the base material and suppressing the formation of grain boundary ferrite, but excessive addition exceeding the upper limit of each component is harmful from the viewpoint of toughness and hardenability. Because, Nb.
■のそれぞれについて、上限を005%、0.1%とし
た。For each of (2), the upper limits were set to 0.005% and 0.1%.
Cr、Moは焼き入れ性の向上と析出硬化により、母相
の強化に有効である。また、TMCPのような適切なプ
ロセスを付加することにより、母材の低温靭性の向上に
有効である。Cr and Mo are effective in strengthening the matrix by improving hardenability and precipitation hardening. Furthermore, adding an appropriate process such as TMCP is effective in improving the low-temperature toughness of the base material.
しかし、各成分の上限を超える過剰の添加は、HAZ靭
性および硬化性の観点から有害となるため、Cr、Mo
の各々について、上限を1.0%。However, excessive addition exceeding the upper limit of each component is harmful from the viewpoint of HAZ toughness and hardenability, so Cr, Mo
For each, the upper limit is 1.0%.
0.5%とした。It was set to 0.5%.
Bは焼き入れ性の向上による母材強度の上昇と、粒界フ
ェライトの成長の抑制によるHAZ靭性の向上が期待さ
れるが、0.002%を超える添加は、Fe23(CB
)6の析出による靭性低下とHAZの硬化を招くため、
上限を0.002%とした。B is expected to increase the strength of the base material by improving hardenability and improve HAZ toughness by suppressing the growth of grain boundary ferrite, but addition of more than 0.002%
) 6 precipitation leads to a decrease in toughness and hardening of the HAZ.
The upper limit was set to 0.002%.
次に、HAZにIFPを生成し組織を微細化しHAZ靭
性を向上させる基となるIFP核析出物について以下に
説明する。Next, the IFP nuclear precipitates that form the basis of IFP generation in the HAZ, refinement of the structure, and improvement of HAZ toughness will be described below.
IFPは主に粒子径か0,1〜3.Otlmにある数%
のMnを固溶したTi2O3,Ti3O5のチタン酸化
物およびこれらの酸化物とT i N。IFP mainly has a particle size of 0.1 to 3. A few percent in Otlm
Ti2O3, Ti3O5 titanium oxides containing Mn as a solid solution, and these oxides and TiN.
MnSの複合体、TiN+MnSの複合体から生成する
。It is produced from a MnS complex and a TiN+MnS complex.
該粒子径が01um未満てはIFP生成効果は極めて弱
く、また、3.0μm超になるとIFP生成能は有する
ものの、それ自身が破壊の発生箇所となり易くなり、H
AZ靭性の低下をもたらす。If the particle size is less than 0.1 μm, the IFP generation effect is extremely weak, and if the particle size exceeds 3.0 μm, although it has IFP generation ability, it tends to become a point where destruction occurs, and H
This results in a decrease in AZ toughness.
その粒子数については、Ti酸化物およびTiN+Mn
Sの複合体の粒子数が少ないと、HAZにおいて十分に
IFPを生成させることが出来ないので、それぞれにつ
いて3×103個/−以上存在させることが必要である
。Regarding the number of particles, Ti oxide and TiN+Mn
If the number of particles of the S complex is small, sufficient IFP cannot be generated in the HAZ, so it is necessary to have 3 x 103/- or more of each particle.
該粒子数の増加にともないIFPの個数も増加するが、
該粒子数のそれぞれについて、1×106個/mmを超
える過剰な存在は、母材および溶接部の延性低下を招く
傾向があるので、該粒子数の上限は1×106個/+n
mでなければならない。As the number of particles increases, the number of IFPs also increases,
Excessive presence of more than 1 x 106 particles/mm for each of these particle numbers tends to cause a decrease in the ductility of the base metal and weld zone, so the upper limit of the particle number is 1 x 106 particles/+n.
Must be m.
上記における鋼中のTi酸化物の生成方法は、溶鋼の溶
存酸素濃度を10〜60ppmに予備脱酸後、T1脱酸
し、かつ、溶鋼を凝固時の冷却速度20〜400℃/m
inで鋳造することにより得られる。またTiN+Mn
Sの複合体は、鋳造後の冷却途中の1100−800°
Cの範囲を、2℃/sec以下の冷却速度で冷却するこ
とによって得られる。The above method for producing Ti oxides in steel is to pre-deoxidize the dissolved oxygen concentration of molten steel to 10 to 60 ppm, then perform T1 deoxidation, and cool the molten steel at a cooling rate of 20 to 400°C/m during solidification.
It is obtained by casting in. Also, TiN+Mn
The S composite was heated at 1100-800° during cooling after casting.
C range at a cooling rate of 2° C./sec or less.
これらの生成条件からはずれた場合、例えば、T1脱酸
前の[○]濃度が60ppmを超える場合は、他の条件
を満たしていても、Ti酸化物が粗粒化し脆性破壊の起
点となり、靭性は向上しない。If these formation conditions are deviated from, for example, if the [○] concentration before T1 deoxidation exceeds 60 ppm, even if other conditions are met, Ti oxides will become coarse grains and become the starting point of brittle fracture, resulting in poor toughness. does not improve.
また、このような限定条件内で製造された鋼塊は、その
後の通常の鋼材製造過程での熱履歴によって該化合物の
効果は何ら影響を受けることがない。Further, in a steel ingot manufactured under such limited conditions, the effect of the compound is not affected by the thermal history during the subsequent normal steel manufacturing process.
[実 施 例]
第1表は、試作鋼の化学成分値およびTi酸化物、複合
化合物の分散度を表わしたものであり、50キロから7
0キロ級鋼まで試作した。試作材は圧延により30++
+m鋼板とし、板厚1/4 tから12×12X60m
mの試験片を採取し、溶接再現熱サイクル試験によりH
AZ靭性を評価した。[Example] Table 1 shows the chemical composition values and the degree of dispersion of Ti oxide and composite compounds of the prototype steel.
We have even produced prototypes of 0 kg class steel. The prototype material is 30++ by rolling.
+ m steel plate, plate thickness 1/4 t to 12 x 12 x 60 m
A test piece of m was taken, and H
AZ toughness was evaluated.
溶接再現熱サイクル試験は、試験片の中央部を高周波誘
導加熱により1400°Cに急速加熱し、800℃から
500℃の冷却時間161秒の条件で冷却した。In the welding reproduction thermal cycle test, the central part of the test piece was rapidly heated to 1400°C by high-frequency induction heating, and then cooled from 800°C to 500°C for a cooling time of 161 seconds.
この条件は溶接入熱量130KJ/cmに相当し、加熱
温度1400℃は実際のHAZの溶融縁近傍の加熱領域
に相当する。This condition corresponds to a welding heat input of 130 KJ/cm, and a heating temperature of 1400° C. corresponds to the heating area near the actual melting edge of the HAZ.
さらに靭性はこの試験片から2 mm Vノツチ・シャ
ルピーに加工し、衝撃破面遷移温度(vT rs)を求
め評価した。Furthermore, the toughness was evaluated by processing this test piece into a 2 mm V-notch Charpy and determining the impact fracture transition temperature (vTrs).
第2表には鋼材の機械特性を示す。Table 2 shows the mechanical properties of the steel materials.
鋼1〜鋼6は溶接再現熱サイクルにおいても硬化相のM
*がほとんど生成しない成分である。またT1酸化物、
複合化合物の密度は十分に本発明の範囲を満足しており
、Nの適正範囲を求めるために試作した鋼材である。Steels 1 to 6 have a hardening phase of M even in the welding simulated thermal cycle.
* indicates components that are hardly produced. Also, T1 oxide,
The density of the composite compound fully satisfies the range of the present invention, and this steel material was prototyped to determine the appropriate range of N.
゛ 第1図から明らかなように、N含有量が10
ppm以下の比較鋼の鋼1は固溶Nは低いもののTiN
の生成量が少なく、IFP生成能が低下するためvTr
sは上昇しHAZ靭性は悪化する。゛ As is clear from Figure 1, when the N content is 10
Steel 1, a comparative steel with a ppm or less, has low solute N but contains TiN.
vTr
s increases and HAZ toughness deteriorates.
またN含有量か40pprtlを超える鋼6ではTiN
は存在するものの、分解するTiNも多く、固溶Nの増
加により母相の靭性が低下しHAZ靭性が悪化する。そ
れに比べN含有量が本発明の範囲内にある鋼2〜鋼5は
いずれも高い靭性を示す。In addition, in steel 6 where the N content exceeds 40 pprtl, TiN
Although TiN is present, there is also a large amount of TiN that decomposes, and the toughness of the matrix decreases due to the increase in solid solution N, resulting in deterioration of HAZ toughness. In comparison, Steels 2 to 5, each of which has a N content within the range of the present invention, exhibit high toughness.
鋼7〜鋼12はN含有量、Ti酸化物、複合化合物の密
度が本発明の要件の範囲内であるが、Cu。Steels 7 to 12 have N content, Ti oxide, and composite compound density within the requirements of the present invention, but Cu.
N1を添加しており、溶接再現熱サイクルにおいて硬化
相のM*を生成する成分である。特にSi添加はM*を
生成し易いので、その影響を検討し、適正範囲を求めた
。N1 is added and is a component that generates the hardening phase M* in the welding reproduction thermal cycle. In particular, since the addition of Si tends to generate M*, its influence was studied and an appropriate range was determined.
第2図に示すように、Siを極端に低減した鋼7てはM
*は減少するものの、HAZ靭性は悪化する。この原因
は母相の靭性に関係する固溶C1NとSiとの相互関係
によるものと考えられるが不明である。As shown in Figure 2, steel 7 with extremely reduced Si is M
Although * decreases, HAZ toughness deteriorates. The cause of this is thought to be due to the interaction between solid solution C1N and Si, which is related to the toughness of the matrix, but it is unclear.
Siが本発明の要件の範囲外の鋼11.12はSi量の
増加とともにM*か増加し、HAZ靭性が著しく低下す
る。In Steel 11.12, in which Si is outside the range of the requirements of the present invention, M* increases as the Si amount increases, and the HAZ toughness significantly decreases.
さらに、本発明鋼の特徴を明らかにするため、N含有量
は本発明の要件の範囲内であるが、T1酸化物、複合化
合物の密度か低く本発明の要件の範囲外である比較鋼1
3〜17鋼を用い・Siの影響を調べた。Furthermore, in order to clarify the characteristics of the steel of the present invention, a comparative steel 1 whose N content is within the range of the requirements of the present invention, but the density of T1 oxide and composite compound is low and outside the range of the requirements of the present invention.
3 to 17 steels were used to investigate the influence of Si.
それを第2図に発明鋼と重ねて示す。This is shown in Fig. 2, superimposed on the invented steel.
図から明らかなように、比較鋼においてはN。As is clear from the figure, N in the comparative steel.
Si含有量ともに本発明の要件の範囲内である場合でも
、vTrsは高<HAZ靭性は低下する。これはIFP
核となるTi酸化物、複合化合物の密度が極端に低くI
FP組織を生成しないためである。Even when both the Si contents are within the requirements of the present invention, vTrs is high<HAZ toughness is decreased. This is IFP
The density of the core Ti oxide and composite compound is extremely low.
This is because no FP tissue is generated.
即ち、本発明鋼の3つの要件が総て満たされた時に、鋼
25に示されるような一80’C(vT rs=−85
°C)での使用可能な溶接部靭性に優れた低温用鋼材の
製造か可能になる。That is, when all three requirements of the steel of the present invention are satisfied, -80'C (vT rs = -85
This makes it possible to produce low-temperature steel materials with excellent weld toughness that can be used at temperatures up to 30°F (°C).
[発明の効果]
本発明により、溶接HAZ低温靭性の優れた鋼の製造が
可能になり、北海のような極低温環境で使用される、海
洋構造物、ラインパイプ、低温容器、等の鋼材に適用が
できる。その結果、構造物の安全性の確保、溶接性能の
向上による経済効果等の産業上の効果は極めて顕著なも
のがある。[Effects of the Invention] The present invention makes it possible to manufacture steel with excellent welded HAZ low-temperature toughness, making it suitable for steel materials used in extremely low-temperature environments such as the North Sea, such as marine structures, line pipes, and low-temperature vessels. Can be applied. As a result, industrial effects such as ensuring the safety of structures and economic effects due to improved welding performance are extremely significant.
第1図はN含有量とvTrs(’C)値との図表、第2
図はS1含有量とvTrs(’C)値との図表である。Figure 1 is a diagram of N content and vTrs('C) value, Figure 2
The figure is a chart of S1 content and vTrs('C) value.
Claims (1)
にN:0.0010〜0.0040%、Si:0.03
〜0.25%に限定し、 残部はFeおよび不可避不純物からなり、主に粒子径が
0.1〜3.0μmにある数%のMnを固溶したTi_
2O_3、Ti_3O_5のチタン酸化物およびこれら
の酸化物とTiN、MnSの複合体の合計と、TiN+
MnSの複合体とを、夫々3×10^3〜1×10^6
個/mm^3の粒子数範囲で同時に含有することを特徴
とする溶接部靭性の優れた強靭性高張力鋼。 2、重量%で C:0.02〜0.18%、 Mn:0.4〜2.0%、 S:0.0007〜0.0060%、 Ti:0.005〜0.030%、 を含有し、 Al<0.003%、P<0.015%に制限し、特に
N:0.0010〜0.0040%、Si:0.03〜
0.25%に限定し、 これらに、さらに Ni<3.0%、Cu<1.5%、 Nb<0.05%、V<0.1%、 Cr<1.0%、Mo<0.5%、 B<0.002%、 の1種または2種以上を含有し、 残部はFeおよび不可避不純物からなり、主に粒子径が
0.1〜3.0μmにある数%のMnを固溶したTi_
2O_3、Ti_3O_5のチタン酸化物および、これ
らの酸化物とTiN、MnSの複合体の合計と、TiN
+MnSの複合体とを、夫々3×10^3〜1×10^
6個/mm^3の粒子数範囲で同時に含有することを特
徴とする溶接部靭性の優れた強靭性高張力鋼。[Claims] 1. C: 0.02-0.18%, Mn: 0.4-2.0%, S: 0.0007-0.0060%, Ti: 0.005-0.005% by weight. 0.030%, limited to Al < 0.003%, P < 0.015%, further N: 0.0010 to 0.0040%, Si: 0.03
~0.25%, the remainder consists of Fe and unavoidable impurities, mainly Ti_ with a solid solution of several percent Mn with a particle size of 0.1 to 3.0 μm.
The sum of titanium oxides of 2O_3, Ti_3O_5 and complexes of these oxides with TiN and MnS, and TiN+
MnS complex and 3×10^3 to 1×10^6, respectively.
A strong, high-strength steel with excellent weld toughness, characterized by simultaneously containing a number of particles in the number range of 0.035 mm/mm^3. 2. C: 0.02-0.18%, Mn: 0.4-2.0%, S: 0.0007-0.0060%, Ti: 0.005-0.030% in weight%. Contains, limited to Al < 0.003%, P < 0.015%, especially N: 0.0010~0.0040%, Si: 0.03~
In addition to these, Ni < 3.0%, Cu < 1.5%, Nb < 0.05%, V < 0.1%, Cr < 1.0%, Mo < 0. .5%, B < 0.002%, the remainder consists of Fe and unavoidable impurities, and contains several % of Mn with a particle size of mainly 0.1 to 3.0 μm. Solid-dissolved Ti_
TiN
+ MnS complex, respectively, 3 × 10^3 ~ 1 × 10^
A strong, high-strength steel with excellent weld toughness, characterized by simultaneously containing particles in a number range of 6 particles/mm^3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP311888A JPH01180948A (en) | 1988-01-12 | 1988-01-12 | High-tensile steel for low temperature use excellent in toughness in weld zone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP311888A JPH01180948A (en) | 1988-01-12 | 1988-01-12 | High-tensile steel for low temperature use excellent in toughness in weld zone |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01180948A true JPH01180948A (en) | 1989-07-18 |
Family
ID=11548439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP311888A Pending JPH01180948A (en) | 1988-01-12 | 1988-01-12 | High-tensile steel for low temperature use excellent in toughness in weld zone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01180948A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01188652A (en) * | 1988-01-25 | 1989-07-27 | Sumitomo Metal Ind Ltd | Steel for welding having excellent low temperature toughness and manufacture thereof |
US5985051A (en) * | 1992-09-24 | 1999-11-16 | Nippon Steel Corporation | Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60245768A (en) * | 1984-05-22 | 1985-12-05 | Nippon Steel Corp | High toughness steel for welding |
JPS61117245A (en) * | 1984-11-12 | 1986-06-04 | Nippon Steel Corp | Steel for welding having toughness at low temperature |
JPS621842A (en) * | 1985-06-26 | 1987-01-07 | Nippon Steel Corp | Tough, high tension steel having superior toughness in weld zone |
JPS6256518A (en) * | 1985-09-04 | 1987-03-12 | Sumitomo Metal Ind Ltd | Production of high strength steel sheet for high heat input welding |
JPS62214126A (en) * | 1986-03-17 | 1987-09-19 | Sumitomo Metal Ind Ltd | Manufacture of high tensile steel superior in cod characteristic at weld zone |
-
1988
- 1988-01-12 JP JP311888A patent/JPH01180948A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60245768A (en) * | 1984-05-22 | 1985-12-05 | Nippon Steel Corp | High toughness steel for welding |
JPS61117245A (en) * | 1984-11-12 | 1986-06-04 | Nippon Steel Corp | Steel for welding having toughness at low temperature |
JPS621842A (en) * | 1985-06-26 | 1987-01-07 | Nippon Steel Corp | Tough, high tension steel having superior toughness in weld zone |
JPS6256518A (en) * | 1985-09-04 | 1987-03-12 | Sumitomo Metal Ind Ltd | Production of high strength steel sheet for high heat input welding |
JPS62214126A (en) * | 1986-03-17 | 1987-09-19 | Sumitomo Metal Ind Ltd | Manufacture of high tensile steel superior in cod characteristic at weld zone |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01188652A (en) * | 1988-01-25 | 1989-07-27 | Sumitomo Metal Ind Ltd | Steel for welding having excellent low temperature toughness and manufacture thereof |
US5985051A (en) * | 1992-09-24 | 1999-11-16 | Nippon Steel Corporation | Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4629504A (en) | Steel materials for welded structures | |
JP3898814B2 (en) | Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness | |
JPH02194115A (en) | Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone | |
JPH03202422A (en) | Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone | |
JPH02220735A (en) | Production of high tensile strength steel for welding and low temperature including titanium oxide | |
JP2653594B2 (en) | Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone | |
JPH0860292A (en) | High tensile strength steel excellent in toughness in weld heat-affected zone | |
JPH03236419A (en) | Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance | |
JPH093597A (en) | Steel for low temperature use excellent in toughness of weld heat affected zone and its production | |
JPH01159356A (en) | High tension steel having superior tougeness at weld heat-affected zone | |
JPH0873983A (en) | Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production | |
JPH03162522A (en) | Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone | |
JPH02125812A (en) | Manufacture of cu added steel having superior toughness of weld heat-affected zone | |
JPH09194990A (en) | High tensile strength steel excellent in toughness in weld heat-affected zone | |
JPH0853734A (en) | Production of steel for welding excellent in big heat input weld heat-affected zone toughness | |
JPS61117213A (en) | Manufacture of structural steel superior in toughness at weld zone | |
JPH01191765A (en) | High-tensile steel for low temperature use excellent in toughness in weld zone and containing dispersed fine-grained titanium oxide and sulfide | |
JPS63210235A (en) | Manufacture of steel excellent in toughness at low temperature in welding heat affected zone | |
JPH10166179A (en) | High mn stainless welding wire for extra low temp. excellent in welding high temp. crack resistance | |
JPH11131177A (en) | Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production | |
JPH01180948A (en) | High-tensile steel for low temperature use excellent in toughness in weld zone | |
JP2930772B2 (en) | High manganese ultra-high strength steel with excellent toughness of weld heat affected zone | |
JPS621842A (en) | Tough, high tension steel having superior toughness in weld zone | |
JPH06240406A (en) | Steel plate with high strength and high toughness | |
JPH093600A (en) | Steel for welding structure excellent in toughness weld heat affected zone |