JPH01185414A - Magnetic type rotary encoder - Google Patents
Magnetic type rotary encoderInfo
- Publication number
- JPH01185414A JPH01185414A JP1038688A JP1038688A JPH01185414A JP H01185414 A JPH01185414 A JP H01185414A JP 1038688 A JP1038688 A JP 1038688A JP 1038688 A JP1038688 A JP 1038688A JP H01185414 A JPH01185414 A JP H01185414A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- rotating body
- elements
- sensor
- change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 abstract description 3
- 230000004304 visual acuity Effects 0.000 abstract 2
- 230000005415 magnetization Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、情報機器や自動化機器等における回転体の回
転角を検出する磁気式ロータリーエンコーダ(以下単に
エンコーダと称す)に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic rotary encoder (hereinafter simply referred to as an encoder) that detects the rotation angle of a rotating body in information equipment, automation equipment, etc.
エンコーダの従来例を第3図ないし第6図に示す。第3
図において、エンコーダは回転体の軸に取り付けられる
磁気ドラム1と磁気センサ2の二つの主要素から構成さ
れ、この磁気ドラム1と磁気センサ2は間隔りだけ離れ
て対向している。磁気ドラム1は回転体の軸に取り付け
られる回転ドラムの周面に一定のピッチλでN極とS極
が交互に着磁されており、ピッチλは電気角πとなる。Conventional examples of encoders are shown in FIGS. 3 to 6. Third
In the figure, the encoder is composed of two main elements: a magnetic drum 1 and a magnetic sensor 2, which are attached to the shaft of a rotating body, and the magnetic drum 1 and the magnetic sensor 2 are opposed to each other with a distance apart. The magnetic drum 1 has north and south poles alternately magnetized at a constant pitch λ on the circumferential surface of a rotating drum attached to the shaft of a rotating body, and the pitch λ is an electrical angle π.
磁気センサ2は第5図に示すようにガラス基板3にパー
マロイなどのような磁気抵抗効果を有する合金をλ/2
の間隔をおいて蒸着して形成した両磁気抵抗効果素子(
以下MR素子と称す)21a、。As shown in FIG. 5, the magnetic sensor 2 has a glass substrate 3 coated with an alloy having a magnetoresistive effect such as permalloy at λ/2.
Both magnetoresistive elements (
(hereinafter referred to as MR element) 21a.
21bを直列に接続したものである。第4図は磁気ドラ
ム1の代わりに磁気円板4を用いたもので、回転円板の
周縁に一定のピッチλでN極とS極が交互に着磁されて
おり、磁気センサ2は既に述べた第5図に示すものと同
様である。この磁気円板4の動作は磁気ドラム1とほぼ
同様であるから磁気ドラムlまたは磁気円板4を磁気回
転体と称する。21b are connected in series. In Fig. 4, a magnetic disk 4 is used instead of the magnetic drum 1, and N and S poles are alternately magnetized at a constant pitch λ on the circumference of the rotating disk, and the magnetic sensor 2 has already been magnetized. It is similar to that shown in FIG. 5 mentioned above. Since the operation of the magnetic disk 4 is almost the same as that of the magnetic drum 1, the magnetic drum 1 or the magnetic disk 4 is referred to as a magnetic rotating body.
磁気センサ2は第5図に示すようにMR素子21a、2
1bを直列に接続してその両端に直流電圧Vdが印加さ
れており、磁気回転体1の磁極が両MR素子21a、2
1bに作用するとこの両MR素子21a、21bの抵抗
値が変化するので、磁気回転体1が回転すると両MR素
子21a、21bの接続点と素子21bの一端との間に
交流電圧Vaを発生する。The magnetic sensor 2 includes MR elements 21a, 2 as shown in FIG.
1b are connected in series and a DC voltage Vd is applied to both ends thereof, and the magnetic pole of the magnetic rotating body 1 is connected to both MR elements 21a and 2.
1b changes the resistance values of both MR elements 21a and 21b, so when the magnetic rotating body 1 rotates, an alternating current voltage Va is generated between the connection point of both MR elements 21a and 21b and one end of element 21b. .
この交流電圧の周波数を計数することにより磁気回転体
1の回転角を検出できる。一般には第6図に示すように
両MR素子21a、21bのほかにこの両MR素子21
a、21bからλ/4(電気角π/4)ずらしたもう−
組のMR素子21c、21dを設け、これらを組み合わ
せてA相とB相とからなる二相交流を得て、A相がλ/
4進んでいるか、B相がλ/4進んでいるかでその回転
方向を検出できるようにされている。なおこのようにす
ると検出信号を増加してエンコーダの分解能を高めるこ
ともできる。By counting the frequency of this AC voltage, the rotation angle of the magnetic rotating body 1 can be detected. Generally, as shown in FIG. 6, in addition to both MR elements 21a and 21b, this MR element 21
a, shifted from 21b by λ/4 (electrical angle π/4) -
A set of MR elements 21c and 21d is provided, and by combining them, a two-phase alternating current consisting of A phase and B phase is obtained, and the A phase is λ/
The direction of rotation can be detected based on whether the phase B is advanced by 4 or whether the B phase is advanced by λ/4. Note that by doing so, it is also possible to increase the detection signal and improve the resolution of the encoder.
近年エンコーダは小形で高分解能のものが要求されでき
ている。高分解能を得る一つの方法として磁気回転体へ
の着磁ピッチλを小さくし、出力電圧の周波数を高くす
ることがある。しかじ着磁ピッチλを小さくすると1個
の磁極が小さくなり、磁気センサに作用する磁界が弱く
なるので、感度を上げるには磁気センサを磁気回転体に
接近させる必要がある。この場合磁気回転体の僅かの偏
心による磁界の強さの変化で出力が変動したり、磁気回
転体と磁気センサとが接触するという問題がある。別の
方法として、磁気回転体の周囲にλ/4の間隔を置いて
複数の磁気センサを設け、信号数を増加して高分解能を
得る方法もある。しかしこの方法では磁気回転体の回転
に伴う出力波形の変動の小さいことが前提になるが、磁
気回転体として磁気ドラムの場合にはその偏心があり、
磁気円板の場合には面振れがあり、何れの場合も出力波
形に変動が生じこの調整には多大の工数を要するという
問題がある。In recent years, encoders have been required to be compact and have high resolution. One way to obtain high resolution is to reduce the magnetization pitch λ of the magnetic rotating body and increase the frequency of the output voltage. However, if the magnetization pitch λ is made smaller, one magnetic pole becomes smaller, and the magnetic field acting on the magnetic sensor becomes weaker. Therefore, in order to increase the sensitivity, it is necessary to bring the magnetic sensor closer to the magnetic rotating body. In this case, there is a problem that the output fluctuates due to a change in the strength of the magnetic field due to slight eccentricity of the magnetic rotating body, or that the magnetic rotating body and the magnetic sensor come into contact with each other. Another method is to provide a plurality of magnetic sensors at intervals of λ/4 around the magnetic rotating body to increase the number of signals and obtain high resolution. However, this method assumes that the fluctuation of the output waveform due to the rotation of the magnetic rotating body is small, but in the case of a magnetic drum as the magnetic rotating body, there is eccentricity,
In the case of a magnetic disk, there is surface runout, and in either case, there is a problem in that the output waveform fluctuates and adjustment requires a large number of man-hours.
本発明の目的は出力波形の変動を小さくし、分解能の優
れたエンコーダを提供することにある。An object of the present invention is to provide an encoder that reduces fluctuations in output waveform and has excellent resolution.
上述の課題を解決するため本発明は、回転ドラムの周面
または回転円板の周縁に一定ピッチで多数の磁極を設、
けた磁気回転体と、この磁気回転体の周囲に設置されこ
の磁気回転体の回転による磁界の変化で抵抗値が変化す
る複数の磁気抵抗効果素子を組み合わせた磁気センサと
を備えた磁気式ロータリーエンコーダにおいて、少な(
とも三組の磁気センサを前記磁気回転体の周囲に前記磁
極ピッチの整数倍で等間隔に配置し、この各磁気センサ
の磁気抵抗効果素子を直列に接続したものである。In order to solve the above-mentioned problem, the present invention provides a large number of magnetic poles at a constant pitch on the circumferential surface of a rotating drum or the circumferential edge of a rotating disk.
A magnetic rotary encoder is equipped with a magnetic rotary encoder that is a combination of a magnetic rotary body and a plurality of magnetoresistive elements installed around the magnetic rotary body and whose resistance value changes due to changes in the magnetic field caused by the rotation of the magnetic rotary body. In, there are few (
In each case, three sets of magnetic sensors are arranged around the magnetic rotating body at equal intervals at integral multiples of the magnetic pole pitch, and the magnetoresistive elements of each magnetic sensor are connected in series.
磁気センサの出力の変化は、磁気回転体とこの磁気回転
体の周囲に設けた磁気センサとの間隔が偏心した磁気回
転体の回転で変化し、磁気センサに作用する磁界の強さ
が変化するので起こる。したがって磁気回転体の周囲に
少なくとも三組の磁気センサを磁極ピッチの整数倍で等
間隔に配置し、この磁気センサのMR素子を直列に接続
すれば各磁気センサの出力はそれぞれ磁気回転体の回転
により変化するが、この出力を合計したものは一定とな
り、高分解能のエンコーダを得ることが可能となる。Changes in the output of the magnetic sensor are caused by the rotation of the eccentric magnetic rotating body, which changes the distance between the magnetic rotating body and the magnetic sensor installed around the magnetic rotating body, and the strength of the magnetic field acting on the magnetic sensor changes. So it happens. Therefore, if at least three sets of magnetic sensors are arranged around a magnetic rotating body at equal intervals at integral multiples of the magnetic pole pitch, and the MR elements of these magnetic sensors are connected in series, the output of each magnetic sensor will correspond to the rotation of the magnetic rotating body. However, the sum of these outputs remains constant, making it possible to obtain a high-resolution encoder.
第1図および第2図は本発明によるエンコーダの一実施
例を示し、第3図ないし第6図と同一のものには第3図
ないし第6図と同一の符号を付した。第1図において、
磁気回転体1の周囲にMR素子21a、21bからなる
磁気センサ2aと、MR素子22a、22bからなる磁
気センサ2bと、MR素子23a、23bからなる磁気
センサ2Cと、MR素子24a、24bからなる磁気セ
ンサ2dとがそれぞれ機械角90°(磁極ピッチλの整
数n倍)の等間隔で配置され、磁気回転体1は偏心によ
りその磁極が磁気センサ2aから離れ、磁気センサ2C
に接近した状態を示している。このような各磁気センサ
2a〜2dの各MR素子21 a 〜24 bは第2図
に示すように直列に接続され、その両端に直流電圧Vd
が印加されている。またMR素子24a素子24bとの
接続点は交流電圧Vaの出力端とされている。1 and 2 show an embodiment of the encoder according to the present invention, and the same parts as in FIGS. 3 to 6 are given the same reference numerals as in FIGS. 3 to 6. In Figure 1,
Around the magnetic rotating body 1, there is a magnetic sensor 2a consisting of MR elements 21a and 21b, a magnetic sensor 2b consisting of MR elements 22a and 22b, a magnetic sensor 2C consisting of MR elements 23a and 23b, and a magnetic sensor 24a and 24b. The magnetic sensors 2d are arranged at equal intervals of 90 degrees mechanical angle (an integral number n times the magnetic pole pitch λ), and the magnetic rotating body 1 has its magnetic poles separated from the magnetic sensor 2a due to eccentricity, and the magnetic sensor 2C
It shows a state close to . The MR elements 21a to 24b of each of the magnetic sensors 2a to 2d are connected in series as shown in FIG.
is applied. Further, the connection point between the MR element 24a and the element 24b is an output end of the AC voltage Va.
磁気回転体1が回転すると各MR素子21a〜24bは
その磁界の強さの変化による抵抗値の変化を起こし、出
力端には交流波形が現れる。このときセンサ2b、2d
に対してセンサ2aの抵抗値変化の変動は小さく、その
分センサ2Cの抵抗値変化の変動は大きい。すなわち一
つのセンサについて注目すれば磁気回転体1の回転に伴
って交流出力は変動するが、全体としてはこれを平均化
して安定した出力を得るものである。したがって出力安
定性の点からはセンサの数は多い方が望ましいが、最低
3個あればかなりの安定化がはかれる。When the magnetic rotating body 1 rotates, each MR element 21a to 24b causes a change in resistance value due to a change in the strength of the magnetic field, and an alternating current waveform appears at the output end. At this time, sensors 2b and 2d
On the other hand, the variation in the resistance value change of the sensor 2a is small, and the variation in the resistance value change of the sensor 2C is correspondingly large. That is, if we focus on one sensor, the AC output will fluctuate as the magnetic rotating body 1 rotates, but as a whole, this is averaged out to obtain a stable output. Therefore, from the point of view of output stability, it is desirable to have a large number of sensors, but a minimum of three will provide considerable stability.
なお、この実施例では各磁気センサ2a、2b。In this embodiment, each magnetic sensor 2a, 2b.
2c、2dは簡単のためにそれぞれλ/2間隔の二つの
MR素子からなるものについて説明したが、この各磁気
センサ2a、2b、2c、2dは従来のものと同様に第
6図に示す四つのMR素子からなる磁気センサを等間隔
に配置し、第2図に準じて接続すれば、高分解能が得ら
れ、かつ回転方向の検出も可能になる。2c and 2d are each made up of two MR elements spaced apart by λ/2 for simplicity, but each of these magnetic sensors 2a, 2b, 2c, and 2d is composed of four magnetic sensors shown in FIG. By arranging magnetic sensors consisting of two MR elements at equal intervals and connecting them according to FIG. 2, high resolution can be obtained and the direction of rotation can also be detected.
本発明によれば、1個の磁気回転体に対し少なくとも三
組の磁気センサを配置し、この磁気センサのMR素子を
直列に接続してそれらの出力を総合するようにしたから
磁気回転体の偏心や磁気円板の面振れにより、ドラムや
円板の回転に伴って各磁気センサの出力が変動しても全
体としては安定した出力を得ることができる。したがっ
て磁気センサの各MR素子を複数組配置し、信号数を増
加し、高分解能のエンコーダを構成することができる。According to the present invention, at least three sets of magnetic sensors are arranged for one magnetic rotating body, and the MR elements of the magnetic sensors are connected in series to combine their outputs. Even if the output of each magnetic sensor fluctuates as the drum or disk rotates due to eccentricity or surface runout of the magnetic disk, a stable output can be obtained as a whole. Therefore, it is possible to arrange a plurality of sets of each MR element of the magnetic sensor, increase the number of signals, and configure a high-resolution encoder.
なお出力不安定の要因として、ドラムの偏心や円板の面
振れのほかに各磁極間の着磁むらがあるが、この着磁む
らによる出力不安定も本発明により軽減することができ
るという効果がある。In addition to the eccentricity of the drum and the surface runout of the disk, the causes of output instability include magnetization unevenness between each magnetic pole, but the present invention has the advantage that output instability due to magnetization unevenness can also be reduced. There is.
第1図および第2図は本発明によるエンコーダの一実施
例を示し、第1図はその概要を示す平面図、第2図は第
1図の磁気センサの結線図、第3図ないし第6図は従来
のエンコーダの例を示し、第3図は磁気ドラムを用いた
エンコーダの概要を示す斜視図、第4図は磁気円板を用
いたエンコーダの概要を示す斜視図、第5図および第6
図はそれぞれ異なる磁気センサの平面図である。
1 磁気回転体、2 磁気センサ、21a、21b〜2
4 a、 24 bMR素子。
第1図
第2図1 and 2 show an embodiment of the encoder according to the present invention, FIG. 1 is a plan view showing its outline, FIG. 2 is a wiring diagram of the magnetic sensor shown in FIG. 1, and FIGS. The figures show an example of a conventional encoder, Fig. 3 is a perspective view showing an outline of an encoder using a magnetic drum, Fig. 4 is a perspective view showing an outline of an encoder using a magnetic disc, Figs. 6
The figures are plan views of different magnetic sensors. 1 Magnetic rotating body, 2 Magnetic sensor, 21a, 21b~2
4 a, 24 b MR element. Figure 1 Figure 2
Claims (1)
チで多数の磁極を設けた磁気回転体と、この磁気回転体
の周囲に設置されこの磁気回転体の回転による磁界の変
化で抵抗値が変化する複数の磁気抵抗効果素子を組み合
わせた磁気センサとを備えた磁気式ロータリーエンコー
ダにおいて、少なくとも三組の磁気センサを前記磁気回
転体の周囲に前記磁極ピッチの整数倍で等間隔に配置し
、この各磁気センサの磁気抵抗効果素子を直列に接続し
たことを特徴とする磁気式ロータリーエンコーダ。1) A magnetic rotating body with a large number of magnetic poles arranged at a constant pitch on the circumferential surface of a rotating drum or the periphery of a rotating disk, and a resistance value that is set around this magnetic rotating body and changes in the magnetic field due to the rotation of this magnetic rotating body. In the magnetic rotary encoder, at least three sets of magnetic sensors are arranged around the magnetic rotating body at equal intervals at integral multiples of the magnetic pole pitch. , a magnetic rotary encoder characterized in that the magnetoresistive elements of each magnetic sensor are connected in series.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1038688A JPH01185414A (en) | 1988-01-20 | 1988-01-20 | Magnetic type rotary encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1038688A JPH01185414A (en) | 1988-01-20 | 1988-01-20 | Magnetic type rotary encoder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01185414A true JPH01185414A (en) | 1989-07-25 |
Family
ID=11748679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1038688A Pending JPH01185414A (en) | 1988-01-20 | 1988-01-20 | Magnetic type rotary encoder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01185414A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004507722A (en) * | 2000-08-22 | 2004-03-11 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Angle measuring device and method |
JP2011080783A (en) * | 2009-10-05 | 2011-04-21 | Showa Corp | Relative angle detector, rotation angle detector, and power steering device |
-
1988
- 1988-01-20 JP JP1038688A patent/JPH01185414A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004507722A (en) * | 2000-08-22 | 2004-03-11 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Angle measuring device and method |
JP2011080783A (en) * | 2009-10-05 | 2011-04-21 | Showa Corp | Relative angle detector, rotation angle detector, and power steering device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6549676B2 (en) | Measurement of absolute angular position | |
US6300758B1 (en) | Magnetoresistive sensor with reduced output signal jitter | |
CN103443590B (en) | Absolute encoder device and motor | |
US5598153A (en) | Capacitive angular displacement transducer | |
US5019776A (en) | Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion | |
US6459261B1 (en) | Magnetic incremental motion detection system and method | |
JPH04282417A (en) | Magnetic sensor | |
JPH01185414A (en) | Magnetic type rotary encoder | |
JP3512537B2 (en) | Rotation speed detector | |
JPH1010141A (en) | Magnetic rotation detector | |
JP2613059B2 (en) | Magnetic sensor | |
JP2767281B2 (en) | Magnetic sensor | |
JPH10122808A (en) | Magnetic sensor | |
EP0283163B1 (en) | Magnetoresistance element | |
JPS61189414A (en) | Magnetic flux density change detector | |
JP3170806B2 (en) | Magnetoelectric converter | |
JPH0430756B2 (en) | ||
JPH0326324B2 (en) | ||
JPS62137514A (en) | Magnetic sensor | |
JPH03191821A (en) | Magnetic encoder | |
JPS63305211A (en) | Magnetic encoder for clearing absolute position | |
JPH03191820A (en) | Magnetic encoder | |
JPH0320779Y2 (en) | ||
JPH04152212A (en) | Rotation detecting device | |
JPH03191815A (en) | Magnetic encoder |