Nothing Special   »   [go: up one dir, main page]

JPH01159386A - Member for fin of heat exchanger - Google Patents

Member for fin of heat exchanger

Info

Publication number
JPH01159386A
JPH01159386A JP31769887A JP31769887A JPH01159386A JP H01159386 A JPH01159386 A JP H01159386A JP 31769887 A JP31769887 A JP 31769887A JP 31769887 A JP31769887 A JP 31769887A JP H01159386 A JPH01159386 A JP H01159386A
Authority
JP
Japan
Prior art keywords
copper
copper alloy
heat exchanger
film
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31769887A
Other languages
Japanese (ja)
Inventor
Keizo Kazama
風間 敬三
Kazuhiko Takei
武井 和彦
Iwao Sato
巌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP31769887A priority Critical patent/JPH01159386A/en
Publication of JPH01159386A publication Critical patent/JPH01159386A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To obtain a member for the fins of a heat exchanger having a corrosion preventing film which has superior corrosion preventiveness and is not damaged by heat at the time of soldering, by forming a film based on a 3- aminopropylsiloxane deriv. on the surface of copper or copper alloy. CONSTITUTION:An about 1-2% soln. of a 3-aminopropylsiloxane deriv. in an org. solvent or water is applied on the surface of copper or copper alloy and dried to obtain a member for the fins of a heat exchanger. The siloxane deriv. is preferably 3-aminopropyltrialkoxysilane and the alkoxy groups may be methoxy or ethoxy. Since a monomolecular layer bonding to the copper or copper alloy is formed on the surface of the copper or copper alloy, a corrosion resistant durable film is obtd. The film withstands heating at 300-500 deg.C for 1-5min at the time of soldering.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車、空調機器等に用いられる熱交換器の
フィン用部材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fin member for a heat exchanger used in automobiles, air conditioners, etc.

〔従来の技術〕[Conventional technology]

自動車の冷却水の熱交換器のフィン用部材には、厚さ3
0〜50μmの銅又は銅合金が用いられ、熱伝導性な低
下させない範囲で、錫、銀、カドミウム等を少量添加し
て、強度や耐熱性等を改善したものが用いられている。
The fin members of automobile cooling water heat exchangers have a thickness of 3
Copper or a copper alloy with a thickness of 0 to 50 μm is used, and a small amount of tin, silver, cadmium, etc. is added to improve strength, heat resistance, etc. within a range that does not reduce thermal conductivity.

寒冷地において道路に散布される凍結防止剤や海岸に近
い地域での海塩の影響により、自動車本体だけでなく、
ラジェーターのフィン材にも著しい腐食現象が生ずる。
Due to the effects of anti-freezing agents sprayed on roads in cold regions and sea salt in areas near the coast, not only the car itself but also
Significant corrosion phenomenon also occurs in the radiator fin material.

ラジェーターのフィンの腐食を防ぐために、ベンゾトリ
アゾールに代表される防錆剤の被膜をフィンに形成Tる
ことも行なわれている。しかし従来の防錆剤は、フィン
材をチューブ材に半田付はするときの熱で被膜が破壊し
防錆被膜としての効果を充分に得ることができなかった
In order to prevent corrosion of the radiator fins, a coating of a rust preventive agent such as benzotriazole is sometimes formed on the fins. However, with conventional rust preventive agents, the coating was destroyed by the heat generated when the fin material was soldered to the tube material, so that it was not possible to obtain a sufficient effect as a rust preventive coating.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、防食性に優れ、半田付けの際の熱によっても
破壊することのない防錆被膜を有する熱交換器フィン用
部材を開発することにより、上記の問題点を解決しよう
とするものである。
The present invention attempts to solve the above-mentioned problems by developing a heat exchanger fin member that has a rust-proof coating that has excellent corrosion resistance and is not destroyed by heat during soldering. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による問題点を解決するための手段は、銅又は銅
合金からなる熱交換器のフィン用部材の表面に、主とし
て3−アミノプロピルシロキサン誘導体からなる被膜を
形成したことにある。
A means for solving the problems of the present invention is to form a film mainly made of a 3-aminopropylsiloxane derivative on the surface of a fin member of a heat exchanger made of copper or a copper alloy.

〔作用〕[Effect]

3−アミノプロピルシロキサン誘導体の被膜は、銅又は
銅合金の表面に、3−アミノプロピルトリアルコキシシ
ランを、水や有機溶媒で1〜2%程度の溶液としたもの
を、吹き付けや刷毛塗り、あるいは浸漬するなどして塗
布し、常温又は加温乾燥することによって得るものであ
る。
A coating of 3-aminopropylsiloxane derivatives is made by spraying, brushing, or coating a 1-2% solution of 3-aminopropyltrialkoxysilane in water or an organic solvent on the surface of copper or copper alloy. It is obtained by coating by dipping or drying at room temperature or heating.

この3−アミノプロビルトリアルフキジシランとしては
、種々のアルフキシル基を有するものを用いることが出
来るが、メトキシル基、エトキシル基、ブトキシル基、
プロポキシル基からなるものを用いるのが良い。
As this 3-aminoprobyl trialfoxydisilane, those having various alfxyl groups can be used, including methoxyl group, ethoxyl group, butoxyl group,
It is preferable to use one consisting of a propoxyl group.

3−アミノプロピルトリアルキルアルフキジシランの溶
液を銅又は銅合金の表面に塗布すると、銅又は銅合金の
表面の水分によって、アルフキシル基が加水分解されて
アルコールとなって分離し、珪素に結合した酸素と銅又
は銅合金とが結合し、又残りのアルコキシル基の珪素と
結合した酸素はOHとなり、これが更に脱水縮合して酸
素を介して珪素同士を結合してシロキサンを生成する。
When a solution of 3-aminopropyl trialkyl alfoxysilane is applied to the surface of copper or copper alloy, the alfxyl group is hydrolyzed by the moisture on the surface of the copper or copper alloy, converting it into alcohol, separating it, and bonding to silicon. Oxygen is bonded to copper or copper alloy, and oxygen bonded to silicon in the remaining alkoxyl group becomes OH, which is further dehydrated and condensed to bond silicon to each other via oxygen to produce siloxane.

これを模式図で示すと次のようになる。This is shown schematically as follows.

以上のようにして銅又は銅合金の表面に、銅又は銅合金
と結合した単分子層被膜を形成するので耐食性、耐久性
のある被膜を得ることができる。
Since a monomolecular layer film combined with copper or copper alloy is formed on the surface of copper or copper alloy in the above manner, a corrosion-resistant and durable film can be obtained.

この被膜は半田付けの際の300〜,350 t:’で
1〜5分間の加熱に対しても耐久性を有し、半田付けに
用いる7ラツクスとも容易に置換するので、半田付けも
良好に行なえる。更にこの被膜は上記のように極めて薄
いので、銅又は銅合金表面からの熱放散を低下させるこ
とはない。
This film is durable even when heated at 300 to 350 t:' for 1 to 5 minutes during soldering, and easily replaces the 7 lux used for soldering, resulting in good soldering. I can do it. Furthermore, since this coating is extremely thin as mentioned above, it does not reduce heat dissipation from the copper or copper alloy surface.

なお上記の被膜には、Siに結合したま\アルコキシル
基がそのまま残っているものや、アルコキシル基に置換
しりOH基が残っているものなども含まれているものと
考えられる。
It is considered that the above-mentioned coatings include those in which the alkoxyl groups bonded to Si remain as they are, and those in which the alkoxyl groups have substituted OH groups.

〔実施例〕〔Example〕

実施例1 通常、自動車のラジェーター用部材として使用されてい
る錫0.15重量%と燐0.002重量%を含み、残部
が本質的に銅である銅合金からなる厚さ0.3鴎なる材
料を、3−アミノプロピルトリエトキシシランを2重量
%溶かした水溶液中に常温で10秒間浸mして引上げ、
乾燥させて本発明実施材を作成した。
Example 1 A copper alloy with a thickness of 0.3 mm and containing 0.15% by weight of tin and 0.002% by weight of phosphorus, and the balance being essentially copper, is usually used as a member for automobile radiators. The material was immersed in an aqueous solution containing 2% by weight of 3-aminopropyltriethoxysilane at room temperature for 10 seconds and pulled up.
It was dried to produce a material according to the present invention.

上記の如くシて表面に3−アミノプロピルシロキサン誘
導体を主体とする被膜を形成した。ラジェータ一部材用
素材について、幅251111、長さ9Qmsの試片を
作成し、330Cにて5分間の熱処理を施した後、その
表面に濃度5重量%、温度35 trの食塩水を1時間
噴霧し、次いで温度50C1相対湿度70%の恒温恒湿
雰囲気に23時間保持すること。
As described above, a coating mainly composed of a 3-aminopropylsiloxane derivative was formed on the surface. A specimen with a width of 251111 and a length of 9 Qms was prepared from the material for the radiator part, heat treated at 330C for 5 minutes, and then saline solution with a concentration of 5% by weight and a temperature of 35 tr was sprayed on the surface for 1 hour. Then, keep it in a constant temperature and humidity atmosphere with a temperature of 50C and a relative humidity of 70% for 23 hours.

を1サイクルとし、これを45サイクル(45日間)繰
返子と云う腐食環境下に設置し、材料の表面に生成した
腐食生成物を除去し、試片の重量減少を測定することに
より素材の耐食性を試験した。
is one cycle, and this is repeated for 45 cycles (45 days) by placing it in a corrosive environment called a repeater, removing corrosion products generated on the surface of the material, and measuring the weight loss of the specimen. Tested for corrosion resistance.

この試片の腐食減量は2.9 my/Cybであった。The corrosion loss of this specimen was 2.9 my/Cyb.

実施例2 供試母材としてテルルを0.010重景多量燐を0.0
03重量%含み、残部が本質的に銅である銅合金を用い
た他は実施例1と同じ工程で処理した試片について耐食
性を試験した場合、試料の腐食減量は2.3■/俤であ
った。
Example 2 Tellurium is 0.010 and phosphorus is 0.0 as the test base material.
When the corrosion resistance of the specimen was tested using the same process as in Example 1 except that a copper alloy containing 0.3% by weight and the remainder was essentially copper was used, the corrosion loss of the specimen was 2.3μ/t. there were.

比較例1 実施例1と同じ母材をベンゾトリアゾールの2重量%水
溶液中に10秒間浸漬した後引上げ、更に乾燥して得た
供試材について330 Cにて5分間の熱処理を施し、
実施例1と同様な45サイクルの耐食性試験を行なった
場合、試片の腐食減量は4.2■/偏であり、本発明の
実施例1と比較して約1.5倍の腐食性ご示した。
Comparative Example 1 The same base material as in Example 1 was immersed in a 2% by weight aqueous solution of benzotriazole for 10 seconds, then pulled up and further dried. The test material was then heat treated at 330 C for 5 minutes.
When a 45-cycle corrosion resistance test was conducted in the same manner as in Example 1, the corrosion loss of the specimen was 4.2 cm/deviation, which was approximately 1.5 times as corrosive as in Example 1 of the present invention. Indicated.

比較例2 実施例2と同じ母材企ベンゾトリアゾールの2重量%水
溶液に10秒間浸漬して引上げ、乾燥して得た供試材に
ついて、330Cにて5分間の熱処理を施し、実施例1
と同様な45サイクルの耐食性試験を行なった。試片の
腐食減量は3.7 rru)10rn2であり、本発明
の実施例2と比較して約1.6倍の腐食性を示した。
Comparative Example 2 A test material obtained by immersing the same base material as in Example 2 in a 2% by weight aqueous solution of benzotriazole for 10 seconds, pulling it up, and drying it was heat-treated at 330C for 5 minutes.
A similar 45-cycle corrosion resistance test was conducted. The corrosion weight loss of the specimen was 3.7 rru)10rn2, indicating approximately 1.6 times higher corrosivity than Example 2 of the present invention.

比較例3 実施例1と同じ母材に対して何等の保護被膜を付ずこと
なく 33Orにて5分間の熱処理を施し、実施例1と
同様な45サイクルの耐食性試験を行なった。腐食減量
は4.5 ′m9/(mであり、本発明の実施例1と比
較して約1.6倍の腐食量を示した。
Comparative Example 3 The same base material as in Example 1 was heat treated at 33 Or for 5 minutes without any protective coating, and the same 45-cycle corrosion resistance test as in Example 1 was conducted. The corrosion loss was 4.5'm9/(m), which was about 1.6 times as much as in Example 1 of the present invention.

比較例4 実施例2と同じ母材に対して何等の保護被膜を付ずこと
なく 330 Cにて5分間の熱処理を施し、実施例1
と同様な45サイクルの耐食性試験を行なった。腐食減
量は3.8 mg/eであり、本発明の実施例2と比較
して約1.7倍の腐食量を示した。
Comparative Example 4 The same base material as in Example 2 was heat treated at 330 C for 5 minutes without any protective coating, and Example 1 was heated.
A similar 45-cycle corrosion resistance test was conducted. The corrosion loss was 3.8 mg/e, which was about 1.7 times as much as in Example 2 of the present invention.

実施例3 実施例1で利用した母材と同一母材から切出された供試
材に実施例1と同じく3−アミノプロピルトリエトキシ
シランで処理した試片を、ZnO1が10重量%含有さ
れた水溶性フラックスに2秒間浸漬した後、自動車用ラ
ジェーターコアの組立に通常用いられる鉛85重量%と
錫15重量%の組成の半田3用い330Cに加熱した半
田洛中に一定期間浸漬し、試片を引上げることにより行
なう半田付性試験を行ない、幅25鴎、厚さ0.311
111、長さ90鴎の試片について長さ方向の1/33
0 fiに半田を付着させ、顕微鏡で該当部を40倍に
拡大して観察することにより判断した結果は、半田付時
間の1秒、3秒、7秒の何れについても半田ハゲの認め
られない良好な結果を示していた。
Example 3 A specimen cut from the same base material as that used in Example 1 and treated with 3-aminopropyltriethoxysilane in the same manner as in Example 1 was prepared by adding 10% by weight of ZnO1. The sample was immersed for 2 seconds in a water-soluble flux heated to 330C using solder 3, which is commonly used in the assembly of automotive radiator cores and has a composition of 85% lead and 15% tin. A solderability test was carried out by pulling up a piece with a width of 25 mm and a thickness of 0.311 mm.
111, 1/33 in the length direction for a specimen of length 90 seagulls
The results determined by attaching solder to 0 fi and observing the relevant part under a microscope at 40x magnification showed that no solder baldness was observed at any of the soldering times of 1 second, 3 seconds, and 7 seconds. It showed good results.

比較例5 実施例1で利用した母材と同一母材から切出された供試
材にベンゾトリアゾール処理による被膜を形成し、実施
例3と同じ半田付試験を行なった結果は半田付時間の1
秒にて直径0.2〜1.0簡の半田のハゲが認められた
。但し、半田付時間を延長することにより試片の半田の
ハゲはなくなった。
Comparative Example 5 A film was formed by benzotriazole treatment on a test material cut from the same base material as that used in Example 1, and the same soldering test as in Example 3 was conducted.The results showed that the soldering time was 1
Solder baldness with a diameter of 0.2 to 1.0 was observed in seconds. However, by extending the soldering time, the solder on the specimen disappeared.

以上の試験結果から、本発明材を用いるときは耐食強度
も高く半田付性も併せて良好なラジェータ一部材を供給
できることが明らかになった。
From the above test results, it has become clear that when the material of the present invention is used, it is possible to supply a radiator member with high corrosion resistance and good solderability.

〔発明の効果〕〔Effect of the invention〕

従来から熱交換器用のラジェータ一部材に用いられてい
る銅又は銅合金の表面に、主として3−アミノプロピル
シロキサン誘導体からなる被膜を形成することによって
材料の耐食性を大幅に向上でき、半田付の際の熱に耐え
、半田付性も優れた熱交換器フィン用部材を提供できる
By forming a film mainly composed of 3-aminopropylsiloxane derivatives on the surface of copper or copper alloys that have traditionally been used as radiator parts for heat exchangers, the corrosion resistance of the material can be greatly improved, making it easier to solder. It is possible to provide a heat exchanger fin member that can withstand heat and has excellent solderability.

出願人  住友金属鉱山株式全社 で、:覧Applicant: Sumitomo Metal Mining Co., Ltd. So: see

Claims (1)

【特許請求の範囲】[Claims] (1) 表面に、主として3−アミノプロピルシロキサ
ン誘導体からなる被膜を有する銅又は銅合金からなる熱
交換器フイン用部材。
(1) A heat exchanger fin member made of copper or copper alloy and having a coating mainly made of a 3-aminopropylsiloxane derivative on its surface.
JP31769887A 1987-12-16 1987-12-16 Member for fin of heat exchanger Pending JPH01159386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31769887A JPH01159386A (en) 1987-12-16 1987-12-16 Member for fin of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31769887A JPH01159386A (en) 1987-12-16 1987-12-16 Member for fin of heat exchanger

Publications (1)

Publication Number Publication Date
JPH01159386A true JPH01159386A (en) 1989-06-22

Family

ID=18091028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31769887A Pending JPH01159386A (en) 1987-12-16 1987-12-16 Member for fin of heat exchanger

Country Status (1)

Country Link
JP (1) JPH01159386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032688A1 (en) * 1997-12-22 1999-07-01 Infineon Technologies Ag Metal surface coating, especially for micro electronics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032688A1 (en) * 1997-12-22 1999-07-01 Infineon Technologies Ag Metal surface coating, especially for micro electronics
US6787242B2 (en) 1997-12-22 2004-09-07 Infineon Technologies Ag Methods of using adhesion enhancing layers and microelectronic integrated modules including adhesion enhancing layers

Similar Documents

Publication Publication Date Title
US5549927A (en) Modified substrate surface and method
JPS6041697B2 (en) Brazing fin material for aluminum alloy heat exchanger
JPH0448546B2 (en)
US4699674A (en) Thermal treatment of brazed products for improved corrosion resistance
JPH01159386A (en) Member for fin of heat exchanger
JPS5989999A (en) Heat exchanger made of aluminum alloy
JPH0261536B2 (en)
JPS6021176A (en) Production of aluminum heat exchanger
JPH01184289A (en) Production of member for heat exchanger fin
JPS6342547B2 (en)
JP3153874B2 (en) Manufacturing method of corrosion resistant heat exchanger
JP3678575B2 (en) Test method for corrosion resistance of aluminum materials
JPS61202772A (en) Aluminum alloy made fin material having both sacrifical anode effect and zn coating effect
JPS6342546B2 (en)
JPS60194062A (en) Surface treatment of copper and copper alloy
JPS61246354A (en) Aluminum tube having many holes for heat exchanger and its manufacture
JPS5920457A (en) Manufacture of anticorrosive coat metallurgically adheared on iron base product
JPS601557B2 (en) Heat exchanger with excellent corrosion resistance of fins
JPH04190A (en) Fin material for heat exchanger
JPH02299827A (en) Heat exchanger fin material
JPS60194296A (en) Material for heat exchanger, which is prominent in anticorrosion
JPH03255895A (en) Manufacture of heat exchanger for vehicle
JP3646001B2 (en) Test method for corrosion resistance of aluminum materials
JPS62182244A (en) Aluminum alloy for fin
JPH05322479A (en) Corrosion resistant heat exchanger and manufacture thereof