Nothing Special   »   [go: up one dir, main page]

JPH01145317A - Production of spherical fine particle of silica - Google Patents

Production of spherical fine particle of silica

Info

Publication number
JPH01145317A
JPH01145317A JP30141487A JP30141487A JPH01145317A JP H01145317 A JPH01145317 A JP H01145317A JP 30141487 A JP30141487 A JP 30141487A JP 30141487 A JP30141487 A JP 30141487A JP H01145317 A JPH01145317 A JP H01145317A
Authority
JP
Japan
Prior art keywords
group
fine particles
silane compound
silica
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30141487A
Other languages
Japanese (ja)
Other versions
JPH054325B2 (en
Inventor
Tadahiro Yoneda
忠弘 米田
Shigefumi Kuramoto
成史 倉本
Mitsuo Takeda
光生 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP30141487A priority Critical patent/JPH01145317A/en
Publication of JPH01145317A publication Critical patent/JPH01145317A/en
Publication of JPH054325B2 publication Critical patent/JPH054325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To obtain high-purity spherical fine particles of silica suitable as an additive for coating compound, having controlled average particle diameter, true specific gravity, etc., by blending specific two silane compounds in a given ratio, hydrolyzing and condensing in an organic solution containing water and an ammonium ion as a catalyst. CONSTITUTION:(A) A hydrolyzable and condensable silane compound (e.g. tetramethoxysilane) shown by formula I (X is alkoxy, acyloxy, hydroxyl or H) is blended with (B) a silane compound (derivative) (e.g., methyltrimethoxysilane) shown by formula II (R<2> is alkyl, aryl or unsaturated aliphatic residue; m is 1-3) in the ratio of the component B to total silane compounds of 0.0017-1 calculated as equivalent ratio of Si atom. The blend is hydrolyzed and condensed in an organic solution (e.g., methanol) containing NH3 ion as a catalyst and water in an amount exceeding hydrolysis equivalent. Consequently, high-purity spherical fine particles of silica shown by formula III (R<1> is average composition of organic group containing carbon atom directly bonded to silicon atom; n is 0.005-1), 0.05-20mum average particle diameter, 1-1.5 standard deviation of particle diameter and 1.2-2.1 true specific gravity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシリカ微粒子の製法に関する。詳しくは特定し
た組成、物性等を有し、真比重が制御された高純喰な真
球状シリカ微粒子の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing fine silica particles. Specifically, the present invention relates to a method for producing highly pure, true spherical silica fine particles having a specified composition, physical properties, etc., and a controlled true specific gravity.

該微粒子は各種樹脂成形品用フィラー、表面処理剤、塗
料、インキ等の添加剤として工業的に価値のあるもので
ある。
The fine particles are industrially valuable as fillers for various resin molded products, surface treatment agents, paints, inks, and other additives.

(従来の技術) シリカ微粒子は従来より、ハロゲン化ケイ素の熱分解法
による平均−次微粒子径0,02〜0.1μmのヒユー
ムドシリカ、ケイ酸ナトリウム湿式法による 1〜5μ
mの凝集塊の粉砕シリカ、天然シリカの破砕体を溶融球
状化したシリカなどがあるが、いずれも粒子形状が不定
形であったり、仮に球形に近いものでも粒径分布が非常
に広いものである。
(Prior art) Silica fine particles have conventionally been produced using fumed silica with an average particle diameter of 0.02 to 0.1 μm obtained by thermal decomposition of silicon halide, and 1 to 5 μm obtained by a sodium silicate wet method.
There are pulverized silica made from aggregates of m, and silica made from crushed natural silica melted into spherules, but both have irregular particle shapes, and even if they are close to spherical, the particle size distribution is extremely wide. be.

粒子が真球状で粒度分布がシャープであるシリカ微粒子
としては、ケイ酸ナトリウム水溶液よりイオン交換法等
により製造される平均粒子径が0.1μm程度までのシ
リカ、テトラアルコキシシランを含水アンモニア性アル
コール溶液中で加水分解して製造される平均粒子径が1
0μmまでのシリカ(STOBER他 ジャーナル オ
ブ コロイド インターフェイス サイエンス26巻、
62〜69 (1968) 、特開昭62−72514
号公報など)等がある。 しかし本来、SiO2として
表わされるシリカ微粒子の真比重は、微粒子の製法や粒
子径によって影響を受けるが、粒子径が0.05μm以
上のような粒子の場合、種々の製法により製造される上
述した従来公知のシリカ微粒子の真比重は、少なくとも
2.05以上、多くの場合2.10より大きく、真比重
が2,10以下の任意な値を有するシリカ微粒子を得る
ことができなかった。
Fine silica particles with perfectly spherical particles and a sharp particle size distribution include silica with an average particle diameter of up to about 0.1 μm produced from an aqueous sodium silicate solution by an ion exchange method, and a hydrous ammoniacal alcohol solution containing tetraalkoxysilane. The average particle size produced by hydrolysis in
Silica down to 0 μm (STOBER et al. Journal of Colloid Interface Science Vol. 26,
62-69 (1968), JP-A-62-72514
Publications, etc.). However, the true specific gravity of silica fine particles expressed as SiO2 is originally influenced by the manufacturing method and particle size of the fine particles, but in the case of particles with a particle size of 0.05 μm or more, the above-mentioned conventional method, which is manufactured by various manufacturing methods, The true specific gravity of known silica fine particles is at least 2.05 or more, and in many cases greater than 2.10, and it has not been possible to obtain silica fine particles having a true specific gravity of any value of 2.10 or less.

従来より任意な平均粒子径を有し、粒度分布がシャープ
であって真比重が任意にコントロールされた高純度の真
球状シリカ微粒子の具体的な製法例は知られていない。
Conventionally, there has been no known specific example of a method for producing highly purified true spherical silica fine particles having an arbitrary average particle diameter, a sharp particle size distribution, and an arbitrarily controlled true specific gravity.

ところで、特開昭61−243828号公報に有機基を
含有する平均粒子径が1μm以下の有機酸化ケイ素粉体
の製法として、有機基と加水分解性基とを有するシラン
化合物と、加水分解性基のみを有するシラン化合物とを
有機溶液中で加水分解する方法が開示されている。
By the way, JP-A No. 61-243828 describes a method for producing organic silicon oxide powder containing an organic group and having an average particle diameter of 1 μm or less, using a silane compound having an organic group and a hydrolyzable group, and a hydrolyzable group. A method is disclosed for hydrolyzing a silane compound containing only silane compounds in an organic solution.

しかし、該公報は生成粒子中にシラノール基量を少なく
して疎水化された微粒子の製造を目的として、加水分解
性基がハロゲンであるハロゲン化シラン化合物を原料と
した製造が具体的に開示されているのみであり、粒子の
形状、粒度分布に関して明らかではない。更に粒子の真
比重の制御の可能性についても明らかではなく、具体例
から推察すると不可能であると思われる。
However, this publication specifically discloses production using a halogenated silane compound whose hydrolyzable group is a halogen as a raw material for the purpose of producing hydrophobized fine particles by reducing the amount of silanol groups in the produced particles. However, the shape and size distribution of the particles are not clear. Furthermore, the possibility of controlling the true specific gravity of particles is not clear, and judging from specific examples, it seems impossible.

本発明者らは上記公知文献記載の方法について詳細に検
討したところ、上述した具体的方法では任意な粒径の粒
度分布のシャープなしかも任意な真比重値を有する真球
状微粒子が得られず微粒子中に原料由来のハロゲンが残
存し高純度な微粒子が得難く、ハロゲン化物使用による
装置上の問題がある等の問題点が見出された。
The present inventors conducted a detailed study on the method described in the above-mentioned known literature, and found that true spherical fine particles with a sharp particle size distribution of arbitrary particle size and arbitrary true specific gravity value could not be obtained with the above-mentioned specific method. Problems were found, such as that halogen derived from the raw material remained in the process, making it difficult to obtain highly pure fine particles, and that there were problems with equipment due to the use of halides.

(発明が解決しようとする問題点) 本発明は、シリカ微粒子の形状、粒度分布、真比重等を
特定した範囲内で任意に制御された高純度な該微粒子の
工業的に有利な製法を提供するものである。
(Problems to be Solved by the Invention) The present invention provides an industrially advantageous method for producing highly pure silica particles in which the shape, particle size distribution, true specific gravity, etc. of silica particles are arbitrarily controlled within specified ranges. It is something to do.

(問題点を解決するための手段および作用)本発明は、
平均の組成式がR1n Si O4−n(但し、R1は
直接ケイ素原子に結合する炭素原子を有する有機基の平
均組成を示し、nは0.005〜1の範囲の数をそれぞ
れ表わす。)で表わされるシリカ微粒子の製造法であっ
て、加水分解、縮合可能な一般式SiX4で表わされる
シラン化合物(A)、および一般式R2m 31 X4
−lで表わされるシラン化合物(B)[但し、一般式中
Xはアルコキシ基、アシロキシ基、水酸基および水素原
子からなる群から選ばれる少なくとも一種の基、R2は
置換基があってもよいアルキル基、アリール基および不
飽和脂肪族残基からなる群から選ばれる少なくとも一種
の基、mは1〜3の範囲の整数をそれぞれ表わす。]ま
たはそれらの誘導体を、シラン化合物(B)および/ま
たはその誘導体の全シラン化合物に対する比をケイ素原
子の当量数の比で表わして0.0017〜1の範囲に混
合して、少なくとも触媒としてのアンモニウムイオンと
加水分解当(至)を越える水を含む有機性溶液中で加水
分解、縮合することを特徴とする平均粒子径が0.05
〜20μm、粒子径の標準偏差値が1,0〜1.5の範
囲にあって粒子の真比重が1.20〜2.10の範囲で
制御された高純度な真球状シリカ微粒子の製法に関する
ものである。
(Means and effects for solving the problems) The present invention has the following features:
The average compositional formula is R1nSiO4-n (wherein, R1 represents the average composition of an organic group having a carbon atom directly bonded to a silicon atom, and n represents a number in the range of 0.005 to 1, respectively). A method for producing silica fine particles represented by the formula: a silane compound (A) represented by the general formula SiX4 which can be hydrolyzed and condensed; and a silane compound (A) represented by the general formula R2m 31 X4
-l [However, in the general formula, X is at least one group selected from the group consisting of an alkoxy group, an acyloxy group, a hydroxyl group, and a hydrogen atom; , at least one group selected from the group consisting of aryl groups and unsaturated aliphatic residues, and m represents an integer in the range of 1 to 3, respectively. ] or their derivatives are mixed so that the ratio of the silane compound (B) and/or its derivative to the total number of silane compounds is in the range of 0.0017 to 1 expressed as the ratio of the number of equivalents of silicon atoms, and at least as a catalyst. Hydrolyzed and condensed in an organic solution containing ammonium ions and water in excess of the amount of water that can be hydrolyzed.The average particle diameter is 0.05.
~20 μm, the standard deviation value of the particle diameter is in the range of 1.0 to 1.5, and the true specific gravity of the particles is controlled in the range of 1.20 to 2.10. It is something.

本発明でいうシリカとは、シリコン原子が主に酸素原子
との結合を介して3次元のネッワークを構成したシリコ
ンの酸素化合物と定義され、平均の組成式がR1n S
i Oと表わされ0は±土 0、005〜1の範囲である。但し、本発明のシリカ微
粒子の製法においてはシリコン原子に炭化水素基の他に
ヒドロキシル基、原料由来のW(X)等が結合している
事もあるが、これらの基は組成式の中には含めないもの
とする。
Silica in the present invention is defined as a silicon oxygen compound in which silicon atoms mainly form a three-dimensional network through bonds with oxygen atoms, and the average compositional formula is R1nS.
It is expressed as iO, and 0 is in the range of ±0,005 to 1. However, in the method for producing silica fine particles of the present invention, in addition to hydrocarbon groups, hydroxyl groups, W(X) derived from raw materials, etc. may be bonded to silicon atoms, but these groups are not included in the composition formula. shall not be included.

微粒子原料の一つである一般式5iXaで表わされるシ
ラン化合物(A)のXはアルコキシ基、アシロキシ基、
水酸基および水素原子からなる群から選ばれる少なくと
も一種の基で4個のXは異なっていてもよい。シラン化
合物(A)の具体例としては、テトラメトキシシラン、
テトラエトキシシラン、テトライソプロポキシシラン、
テトラブトキシシラン、テトラペントキシシラン、ジメ
トキシジェトキシシラン、テトラアセトキシシラン、ト
リメトキシシラン、トリエトキシシラン、ジェトキシシ
ラン等が掲げられる。又、もう一つの微粒子原料は一般
式R2m 3i X4−Illで表わされるシラン化合
物(B)であって一般式中R2は置換基があってもよい
、アルキル基、アリール基、不飽和脂肪族残基からなる
群から選ばれる少なくとも一種の基で必ずしも疎水性基
である必要はない。Xはシラン化合物(A)におけると
同様の基、mは1〜3の範囲の整数を表わしm個のR2
及び(4−m)個のXはそれぞれ異っていてもよい。
X of the silane compound (A) represented by the general formula 5iXa, which is one of the fine particle raw materials, is an alkoxy group, an acyloxy group,
The four X's may be different from each other and are at least one group selected from the group consisting of a hydroxyl group and a hydrogen atom. Specific examples of the silane compound (A) include tetramethoxysilane,
Tetraethoxysilane, tetraisopropoxysilane,
Examples include tetrabutoxysilane, tetrapentoxysilane, dimethoxyjethoxysilane, tetraacetoxysilane, trimethoxysilane, triethoxysilane, and jetoxysilane. Another fine particle raw material is a silane compound (B) represented by the general formula R2m 3i At least one group selected from the group consisting of groups does not necessarily have to be a hydrophobic group. X is the same group as in the silane compound (A), m is an integer in the range of 1 to 3, and m R2
and (4-m) X may be different from each other.

シラン化合物(B)の具体例としては、メチルトリメト
キシシラン、メチルトリエトキシシラン、メチルトリプ
ロポキシシラン、エチルトリメトキシシラン、エチルト
リエトキシシラン、プロピルトリエトキシシラン、オク
チルトリエトキシシラン、フェニルトリメトキシシラン
、トリメトキシビニルシラン、クロロメチルトリメトキ
シシラン、メルカプトメチルトリメトキシシラン、3.
3.3−トリフルオロプロピルトリメトキシシラン、3
−アミノプロピルトリメトキシシラン、3−グリシドキ
シプロビルトリエトキシシラン、アリルトリエトキシシ
ラン、3−メタクリロキシプロピルトリメトキシシラン
、3−(2−アミノエチルアミノプロビル〉トリメトキ
シシラン、ジメトキシメチルシラン、ジェトキシメチル
シラン、メチルトリアセトキシシラン、エチルトリアセ
トキシシラン、トリアセトキシビニルシラン、ジアセト
キシメチルシラン、ジメトキシジメチルシラン、ジメト
キシジメチルシラン、ジェトキシジメチルシラン、ジェ
トキシジエチルシラン、ジメチルジブトキシシラン、ジ
メトキシジフェニルシラン、クロロメチルジェトキシシ
ラン、ジェトキシメチルビニルシラン、ジェトキシメチ
ルフェニルシラン、ジメトキシメチル−3,3,3−1
−リフルオロプロピルシラン、ジメチルエトキシシラン
、ジエチルシラン、ジアセトキシジメチルシラン、ジア
セトキシジフェニルシラン、ジアセトキシメチルビニル
シラン、メトキシトリメチルシラン、エトキシトリメチ
ルシラン、アセトキシトリメチルシラン、アセトキシト
リエチルシラン、トリメチルシラノール等が挙げられる
。シラン化合物(A)及び(B)は例示されたものに限
定されるものではない。工業的製造における原料の入手
し易さを考慮すればXとしてアルコキシ基を含むシラン
化合物が好ましい。
Specific examples of the silane compound (B) include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, octyltriethoxysilane, and phenyltrimethoxysilane. , trimethoxyvinylsilane, chloromethyltrimethoxysilane, mercaptomethyltrimethoxysilane, 3.
3.3-trifluoropropyltrimethoxysilane, 3
-Aminopropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, allyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-(2-aminoethylaminopropyl)trimethoxysilane, dimethoxymethylsilane , jetoxymethylsilane, methyltriacetoxysilane, ethyltriacetoxysilane, triacetoxyvinylsilane, diacetoxymethylsilane, dimethoxydimethylsilane, dimethoxydimethylsilane, jetoxydimethylsilane, jetoxydiethylsilane, dimethyldibutoxysilane, dimethoxydiphenyl Silane, chloromethyljethoxysilane, jetoxymethylvinylsilane, jetoxymethylphenylsilane, dimethoxymethyl-3,3,3-1
-Lifluoropropylsilane, dimethylethoxysilane, diethylsilane, diacetoxydimethylsilane, diacetoxydiphenylsilane, diacetoxymethylvinylsilane, methoxytrimethylsilane, ethoxytrimethylsilane, acetoxytrimethylsilane, acetoxytriethylsilane, trimethylsilanol, etc. . The silane compounds (A) and (B) are not limited to those exemplified. Considering the ease of obtaining raw materials for industrial production, a silane compound containing an alkoxy group as X is preferred.

また、微粒子原料として使用しうるシラン化合物として
、上記シラン化合物の誘導体がある。−例としてシラン
化合物(A)及び(B)の一部の加水分解性基(X)が
カルボキシル基、β−ジカルボニル基など、キレート化
合物を形成しうる基で置換された化合物、あるいはこれ
らシラン化合物またはキレート化合物を部分的に加水分
解して得られる低縮合物である。
Further, as silane compounds that can be used as raw materials for fine particles, there are derivatives of the above-mentioned silane compounds. - For example, compounds in which some of the hydrolyzable groups (X) of silane compounds (A) and (B) are substituted with a group capable of forming a chelate compound, such as a carboxyl group or a β-dicarbonyl group, or these silanes It is a low condensate obtained by partially hydrolyzing a compound or a chelate compound.

上記した原料シラン化合物(A)及び/又はその誘導体
(以下、シラン化合物(A)類とよぶ)及び(B)及び
/又はその誘導体(以下、シラン化合物(B)類とよぶ
。)は少なくとも触媒としてのアンモニウムイオンと加
水分解当量を超える水を含む有機性溶液に添加して加水
分解、縮合して真球状シリカ微粒子とする。
The above-mentioned raw material silane compound (A) and/or its derivatives (hereinafter referred to as silane compounds (A)) and (B) and/or its derivatives (hereinafter referred to as silane compounds (B)) are at least catalysts. It is added to an organic solution containing ammonium ions and water in an amount exceeding the hydrolysis equivalent, and is hydrolyzed and condensed to form true spherical silica fine particles.

シラン化合物(A)類とシラン化合物(B ’) jl
の使用割合は、シラン化合物(B)類の全シラン化合物
に対する比をケイ素原子1個当りのモル比で表わした添
加比(以下、添加比と略称する)を0.0017〜1の
範囲とする必要がある。0.0017未満の場合は微粒
子の真比重を下げる効果が弱く1を超える場合は真球状
微粒子が生成しない。−方、有機性溶液中で加水分解、
縮合して生成する微粒子は凝集粒子が無く単分散してい
ることが好ましいが、上記添加比が大きくなれば凝集が
起り易いこともあり、添加比は0.0017〜0.2と
するのが好ましい。又、その範囲において生成微粒子の
真比重は大きく変化する。
Silane compounds (A) and silane compounds (B')
The usage ratio of silane compounds (B) to all silane compounds expressed as a molar ratio per silicon atom (hereinafter abbreviated as addition ratio) is in the range of 0.0017 to 1. There is a need. When it is less than 0.0017, the effect of lowering the true specific gravity of fine particles is weak, and when it exceeds 1, true spherical fine particles are not produced. - Hydrolysis in an organic solution,
It is preferable that the fine particles produced by condensation be monodispersed without agglomerated particles, but if the above addition ratio becomes large, agglomeration may easily occur, so it is preferable that the addition ratio is 0.0017 to 0.2. preferable. Further, within this range, the true specific gravity of the generated fine particles changes greatly.

シラン化合物(A)類及び(B)類を有機性溶液に添加
するに際し、両者を混合して均一溶液として添加するの
が好ましいが、シラン化合物(B)類の添加比が0,0
5以上のように多い場合にはシン化合物(A)類及び(
B)類を間けつ的に添加してもよい。しかし、添加比が
0.05未満の場合、シラン化合物(A)類のみを原料
として加水分解、縮合して真球状シリカ微粒子とした後
シラン化合物(B)類を添加する、いわゆる(B)類を
カップリング剤的に用いる方法では真比重を制御するこ
とはできない。少なくとも微粒子内部にもシラン化合物
(B)類に由来する有機基を存在させる必要がある。
When adding silane compounds (A) and (B) to an organic solution, it is preferable to mix them and add them as a homogeneous solution, but the addition ratio of silane compounds (B) is 0.0,
When there are many such as 5 or more, syn compounds (A) and (
B) may be added intermittently. However, when the addition ratio is less than 0.05, the silane compounds (B) are added after hydrolyzing and condensing only the silane compounds (A) as a raw material to form true spherical silica particles. The true specific gravity cannot be controlled using the method of using as a coupling agent. It is necessary that an organic group derived from the silane compound (B) be present at least inside the fine particles.

シラン化合物(A)類及びシラン化合物(B)類の添加
絶命は有機性溶液中の最終濃度として2モル/l以下と
した方が生成粒子の凝集が防止できるので好ましい。
It is preferable to add the silane compounds (A) and silane compounds (B) to a final concentration of 2 mol/l or less in the organic solution, since aggregation of the produced particles can be prevented.

有機性溶液とは、原料シラン化合物を溶解しうる有機溶
剤と水及びアンモニウムイオンが完全に溶解しているか
、又は水及びアンモニウムイオンがミセルとして有機溶
剤中に均一に分散した溶液をいう。有機溶剤の具体例と
しては、メタノール、エタノール、イソプロパツール、
n−ブタノール、t−ブタノール、ペンタノール、エチ
レングリコール、プロピレングリコール、1.4−ブタ
ンジオール等のアルコール類、アセトン、メチルエチル
ケトン等のケトン類、酢酸エチル等のエステル類、イソ
オクタン、シクロヘキサン等の(シクロ)パラフィン類
、ジオキサン、ジエチルエーテル等のエーテル類、ベン
ゼン、トルエン等の芳香族化合物等が単一で又は混合物
で用いられる。水及びアンモニアと相溶しない有機溶剤
の場合はそれらに界面活性剤を添加して均一なミセルに
してもよい。
The organic solution refers to a solution in which water and ammonium ions are completely dissolved in an organic solvent capable of dissolving the raw material silane compound, or a solution in which water and ammonium ions are uniformly dispersed as micelles in the organic solvent. Specific examples of organic solvents include methanol, ethanol, isopropanol,
Alcohols such as n-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, and 1,4-butanediol; ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate; ) Paraffins, ethers such as dioxane and diethyl ether, aromatic compounds such as benzene and toluene, etc. can be used singly or in mixtures. In the case of organic solvents that are incompatible with water and ammonia, a surfactant may be added to them to form uniform micelles.

有機性溶液中に存在させる水は原料シラン化合物の加水
分解に必要な当量を超えるmである。ここで当世の水と
はシラン化合物(A>の場合、Si X4 +2H20
→Si 02 +4HX、シラン化合物(B)の場合、 −m R2mSiX   +  2 820 −m →R2m S i O4−m ” (4m ) HXと
して計算した理論水にそれぞれの添加量(モル)を掛け
て加えた借と定義する。当量を超えない場合は均一な粒
子とはならない。好ましい水の量はシラン化合物の総量
に対しモル比で1,5〜50の範囲でしかも当量を超え
る量とする。
The amount of water present in the organic solution exceeds the equivalent amount required for hydrolysis of the raw material silane compound. Here, the water of today's world is a silane compound (in the case of A>, Si X4 +2H20
→Si 02 +4HX, in the case of silane compound (B), -m R2mSiX + 2 820 -m →R2m SiO4-m ” (4m) Multiply the theoretical water calculated as HX by the respective addition amount (mol) and add If the amount does not exceed the equivalent amount, uniform particles will not be obtained.The preferred amount of water is in a molar ratio of 1.5 to 50 with respect to the total amount of the silane compound, and the amount exceeds the equivalent amount.

触媒となるアンモニウムイオンの分はシラン化合物の総
量に対しモル比で1〜30の範囲とするのが好ましい。
The amount of ammonium ions serving as a catalyst is preferably in a molar ratio of 1 to 30 with respect to the total amount of silane compounds.

アンモニウムイオンはアンモニアガス又はアンモニア水
として添加することができるが、それ以外にも有機性溶
液中でアンモニウムイオンを発生しうる化合物を添加す
ることができる。
Ammonium ions can be added as ammonia gas or aqueous ammonia, but other compounds that can generate ammonium ions in an organic solution can also be added.

有機性溶液中に存在させる水、アンモニウムイオン量は
粒子の形状や粒子径、分散状態に影響を及ぼすので上記
範囲内で好ましい量に制御する必要があるが、原料シラ
ン化合物の種類、濃、度等によって変化する。
The amounts of water and ammonium ions present in the organic solution affect the shape, particle size, and dispersion state of the particles, so they must be controlled within the above range, but the amount depends on the type, concentration, and concentration of the raw material silane compound. It changes depending on the situation.

加水分解、縮合は、例えば上記した原料シラン化合物ま
たはその有機溶剤溶液を上記有機性溶液に添加し、0〜
100℃の範囲、好ましくは0〜70℃の範囲で30分
〜100時間1拌することによって行なわれる。
Hydrolysis and condensation can be carried out, for example, by adding the above-mentioned raw material silane compound or its organic solvent solution to the above-mentioned organic solution, and
This is carried out by stirring at a temperature in the range of 100°C, preferably in the range of 0 to 70°C, for 30 minutes to 100 hours.

加水分解、縮合の際に、原料シラン化合物の添加を分割
又は連続して行なってもよく、水及びアンモニウムイオ
ンについても同様である。更にそれらの添加口の数及び
位置や攪拌、混合方法等、具体的製法についても何ら制
限されるものではない。
During hydrolysis and condensation, the raw material silane compound may be added in portions or continuously, and the same applies to water and ammonium ions. Further, there are no restrictions on the number and position of the addition ports, stirring, mixing method, etc., and the specific manufacturing method.

このようにして原料シラン化合物を有機性溶液中で適切
な条件の元で加水分解、縮合すれば、球形でしかも粒径
分布の非常にシャープな平均組成がR1n Si Oと
表わされ、真比重が任意±」 に変化しうるシリカ微粒子を製造することができる。
If the raw material silane compound is hydrolyzed and condensed in an organic solution under appropriate conditions in this way, an average composition with a spherical shape and a very sharp particle size distribution is expressed as R1n SiO, and the true specific gravity is It is possible to produce silica fine particles that can vary arbitrarily.

更に好ましい条件を選定することにより、凝集の少ない
微粒子を製造することができる。但し、上記平均組成式
中R1は直接ケイ素原子に結合する炭素原子を有する有
機基の平均組成を示し、シラン化合物(B)の少くとも
一種以上の有機基(R2)に由来するものであり、nは
O,[5〜1の範囲の数を表わすものである。
By selecting more preferable conditions, fine particles with less aggregation can be produced. However, in the above average compositional formula, R1 represents the average composition of an organic group having a carbon atom directly bonded to a silicon atom, and is derived from at least one organic group (R2) of the silane compound (B), n represents O, [a number in the range of 5 to 1;

(発明の効果) 上述した如く、特定した原料を用い、特定した条件のも
とて加水分解、縮合することを特徴とする本発明の有機
基を含むシリカ微粒子の製法によって、初めて平均粒子
径が0.05〜20μm1粒子径の標準偏差値が1.0
〜1.5の範囲にあって、粒子の真比重が1.20〜2
.10の範囲で任意に制御された高純度な真球状シリカ
微粒子を製造することができた。粒子径分布のシャープ
な任意の粒径の高純度な真球状微粒子はそれを充填剤、
表面処理剤、成形体等として用いるポリマー、塗料、イ
ンク、トナー、吸着剤、触媒、セラミック等の機能を高
めることができ、その上に真比重の任意な制御は微粒子
の硬さの制御を可能としたり、該微粒子を溶剤、ポリマ
ー等に分散して使用する際の分散性、沈降防止性等に効
果を発揮することができる。更に本発明の製法によれば
微粒子中の有機基とシラノール基量のバランスが任意に
選択された微粒子を製造しうるので、各種の溶剤との親
和性に適合させることが可能であり、有機基として反応
性のあるものを使用すれば微粒子化した後反応性有機基
と結合しうる物質をグラフトさせることができる。
(Effects of the Invention) As mentioned above, the method for producing silica fine particles containing organic groups of the present invention, which is characterized by hydrolysis and condensation using specified raw materials and under specified conditions, makes it possible for the first time to increase the average particle size. Standard deviation value of 0.05-20 μm 1 particle size is 1.0
〜1.5, and the true specific gravity of the particles is 1.20 to 2.
.. It was possible to produce highly pure spherical silica fine particles whose purity was arbitrarily controlled within a range of 10. High purity true spherical fine particles of any particle size with a sharp particle size distribution can be used as a filler,
It can enhance the functionality of polymers, paints, inks, toners, adsorbents, catalysts, ceramics, etc. used as surface treatment agents, molded objects, etc. Furthermore, arbitrary control of true specific gravity allows control of the hardness of fine particles. In addition, when the fine particles are used by being dispersed in a solvent, polymer, etc., they can exhibit effects on dispersibility, anti-sedimentation properties, etc. Furthermore, according to the production method of the present invention, it is possible to produce fine particles in which the balance between the amount of organic groups and silanol groups in the fine particles is arbitrarily selected. If a reactive material is used as a material, it is possible to graft a substance capable of bonding with a reactive organic group after micronization.

(実施例) 以下、実施例を掲げて本発明を更に詳しく説明するが実
施例によって本発明の範囲が制限されることはない。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the scope of the present invention is not limited by the Examples.

なお、シリカ微粒子の形状、平均粒子径、標準偏差値、
結晶性、結合有機基量、真比重、比表面積は下記の方法
により分析した。
In addition, the shape, average particle diameter, standard deviation value,
Crystallinity, amount of bound organic groups, true specific gravity, and specific surface area were analyzed by the following methods.

・粒子形状 5万倍の電子顕微鏡観察により判定した。・Particle shape Judgment was made by observation with an electron microscope at a magnification of 50,000 times.

・平均粒子径及び標準偏差値 5万倍の電子顕微鏡撮影像の任意の粒子300個の粒子
径を実測して下記の式より求めた。
- Average particle diameter and standard deviation value The particle diameter of 300 arbitrary particles in an electron microscope photographed image with a magnification of 50,000 times was actually measured and determined from the following formula.

Σ X・ i=1 平均粒子径(X)= ・微粒子の結晶性 加水分解、縮合して得られたシリカ微粒子の有機性溶液
懸濁体の一部を100℃で一昼夜真空乾燥し、溶剤、水
等の揮発成分を完全に除去して微粒子の粉体試料を得る
。該粉体試料をX線回折分析により微粒子の結晶性を評
価した。又、懸濁体より粒子を分離した後乾燥又は焼成
して製造された粉体についても同様に評価した。
Σ Volatile components such as water are completely removed to obtain a fine powder sample. The crystallinity of the fine particles of the powder sample was evaluated by X-ray diffraction analysis. In addition, a powder produced by separating particles from a suspension and then drying or firing was evaluated in the same manner.

・比表面積 上述した方法により得た粉体試料をBET法により比表
面積を測定した。
- Specific surface area The specific surface area of the powder sample obtained by the method described above was measured by the BET method.

・真比重 上述した方法により得た粉体試料を島津製オートビクツ
メーター1320を使用して真比重を測定した。
-True specific gravity The true specific gravity of the powder sample obtained by the method described above was measured using a Shimadzu autobicmeter 1320.

・結合有機基量(nの測定) 上述した方法により得た粉体試料的5gを精秤し0.0
5 NのNa OH水溶液250−に添加し、室温で1
0時間攪拌を続ける。これにより微粒子中の加水分解性
基は全て加水分解されて水溶液に抽出される。該懸濁液
中の微粒子を超遠心分離により分離、水洗をくり返し行
なった竣200℃で5時間乾燥した微粒子粉末試料につ
いて、元素分析により全炭素含量を測定し、原料に用い
たR2m SiX4−mのR2の平均炭素数よりR1を
求め微粒子の平均組成をR1n Si Oと表わした時
のn■ 求めた。また、一方でFT−IRにより粒子中の嘩 一8i −Cの結合についても確認した。
・Bound organic group amount (measurement of n) Accurately weigh 5 g of the powder sample obtained by the method described above and obtain 0.0
Add to 250 - 5 N aqueous NaOH solution and stir at room temperature for 1
Continue stirring for 0 hours. As a result, all the hydrolyzable groups in the fine particles are hydrolyzed and extracted into an aqueous solution. The fine particles in the suspension were separated by ultracentrifugation, washed repeatedly with water, and dried at 200°C for 5 hours. The total carbon content was measured by elemental analysis, and the total carbon content was determined from the R2m SiX4-m used as the raw material. R1 was determined from the average carbon number of R2, and n■ when the average composition of the fine particles was expressed as R1n Si 2 O was determined. Moreover, on the other hand, the bonding of Kenichi 8i-C in the particles was also confirmed by FT-IR.

実施例1 度拌磯、滴下口、温度計を備えた30ノのガラス製反応
器にメタノール141及び28%アンモニア水溶液1.
5Kgを添加した後更にアンモニアガスを吹き込み0.
26 Kyを吸収させて混合しアンモニア濃度を調整し
た。該混合液を10℃±0.5℃に調整し、撹拌しなか
らシラン化合物(A)としてテトラメトキシシラン1.
22Kff及びシラン化合物(8)としてフェニルトリ
メトキシシラン0、79 Kyの混合物をメタノール2
Jlに希釈した溶液を滴下口より7時間かけて滴下し、
滴下後内温を50℃まで上げて5時間撹拌を続は熟成し
て加水分解を行ない、シリカ微粒子(a)の有機(メタ
ノール)性溶液懸濁体を製造した。この時の最終溶液全
量に対する各原料の濃度は、テトラメトキシシラン0.
40モル/i、フェニルトリメトキシシラン0.20モ
ル/i、水3.0モル/1、アンモニア2.0モル/i
であった。なお、反発後懸濁体より粒子を分離した清澄
な有機性溶液中に残存するケイ素を原子吸光分析により
測定した所10ppm以下で、原料シラン化合物はほぼ
完全に粒子になっていることを確認した。反応条件及び
微粒子の分析結果を表−1に示す。更に該微粒子を25
0℃で焼成した後も、粒子の形状、平均粒子径、標準偏
差値、結晶性、等に変化はなかった。
Example 1 Into a 30-inch glass reactor equipped with a stirrer, a dropping port, and a thermometer, 1.4 liters of methanol and 1.0 liters of a 28% aqueous ammonia solution were added.
After adding 5 kg, ammonia gas was further blown into the tank.
26 Ky was absorbed and mixed to adjust the ammonia concentration. The mixed solution was adjusted to 10°C±0.5°C, and while stirring, 1.0% tetramethoxysilane was added as the silane compound (A).
A mixture of 22 Kff and 0.79 Ky of phenyltrimethoxysilane as the silane compound (8) was mixed with methanol 2
A solution diluted to Jl was dripped from the dripping port over 7 hours,
After dropping, the internal temperature was raised to 50° C. and stirred for 5 hours, followed by aging and hydrolysis to produce an organic (methanolic) solution suspension of silica fine particles (a). At this time, the concentration of each raw material with respect to the total amount of the final solution was 0.5% for tetramethoxysilane.
40 mol/i, phenyltrimethoxysilane 0.20 mol/i, water 3.0 mol/1, ammonia 2.0 mol/i
Met. In addition, the silicon remaining in the clear organic solution from which the particles were separated from the suspension after repulsion was measured by atomic absorption spectrometry, and it was found to be less than 10 ppm, confirming that the raw material silane compound was almost completely in the form of particles. . Table 1 shows the reaction conditions and particle analysis results. Further, the fine particles were added to 25
Even after firing at 0°C, there was no change in particle shape, average particle diameter, standard deviation value, crystallinity, etc.

焼成後の表面積、真比重、結合有機基量を表−2に示す
Table 2 shows the surface area, true specific gravity, and amount of bound organic groups after firing.

実施例2 実施例1と同じ装置を用い、有機溶剤をメタノールより
エタノールに替えて以下の反応を行6つだ。
Example 2 Using the same apparatus as in Example 1, the following reactions were carried out six times by changing the organic solvent from methanol to ethanol.

まず、1段目としてシラン化合物(A>としてテトラエ
トキシシラン1,130(]及びシラン化合物(B)と
して3−アミノプロピルトリエトキシシラン63gをエ
タノール2.71に希釈した溶液を28%アンモニア水
2.310g及びエタノール147の混合液中に20℃
に濡度調面しながら添加して加水分解を行ない平均粒子
径1.53μmシリカ微粒子(bl)の懸濁体を得た。
First, in the first step, a solution prepared by diluting 1,130 g of tetraethoxysilane as the silane compound (A> and 63 g of 3-aminopropyltriethoxysilane as the silane compound (B) in 2.71 g of ethanol and 2.2 g of 28% aqueous ammonia 20℃ in a mixture of .310g and 147g of ethanol.
was added to the solution while adjusting the wetness and hydrolyzed to obtain a suspension of silica fine particles (BL) having an average particle diameter of 1.53 μm.

次いで2段目として該懸濁体のうち3.41を1段目と
同岳のアンモニア水エタノール混合液に希釈した懸濁液
中に1段目と同量のシラン化合物(A>及び(B)を添
加し1段目と同様に加水分解を行ない平均粒子径2.9
3μmのシリカ微粒子(b2)の懸濁体を得た。以下同
様にして平均粒子径5.62μmのシリカ微粒子(b3
)の懸濁体を得た。それぞれの微粒子の分析結果を表−
1及び表−2に示す。
Next, in the second stage, 3.41 of the suspension was diluted with the same amount of ammonia water ethanol mixture as in the first stage, and the same amount of silane compounds (A> and (B) as in the first stage were added. ) was added and hydrolyzed in the same manner as in the first step to obtain an average particle size of 2.9.
A suspension of 3 μm silica fine particles (b2) was obtained. Similarly, fine silica particles (b3) with an average particle diameter of 5.62 μm
) was obtained. Table showing the analysis results of each particle.
1 and Table 2.

実施例3〜6 実施例1において、有は溶剤をエタノールとしシラン化
合物(B)にメチルトリメトキシシランを用いた他、シ
ラン化合物(A)及び(B)の添加量を表−1に示す通
りとする以外は実施例1と同様に行ない、真比重の異な
るシリカ微粒子(C)〜(f>の懸濁体を製造した。結
果を表−1及び表−2に示す。
Examples 3 to 6 In Example 1, the solvent was ethanol, methyltrimethoxysilane was used as the silane compound (B), and the amounts of the silane compounds (A) and (B) were as shown in Table 1. The same procedure as in Example 1 was carried out except that suspensions of silica fine particles (C) to (f>) having different true specific gravity were produced. The results are shown in Tables 1 and 2.

比較例1 実施例3においてメチルトリメトキシシランを用いない
他は実施例2と同様に行ない、粒子内部に有機基を含ま
ないシリカ微粒子(gl)の懸濁体を製造した。更に該
懸濁体にメチルトリメトキシシランをテトラメトキシシ
ランに対して5モル%添加してシリカ微粒子(ql)に
カップリング処理を施したシリカ微粒子(g2)の懸濁
体を製造した。結果を表−1及び表−2に示す。
Comparative Example 1 A suspension of fine silica particles (gl) containing no organic group inside the particles was produced in the same manner as in Example 2 except that methyltrimethoxysilane was not used in Example 3. Further, methyltrimethoxysilane was added to the suspension in an amount of 5 mol % based on tetramethoxysilane to produce a suspension of silica fine particles (g2) in which the silica fine particles (ql) were subjected to a coupling treatment. The results are shown in Table-1 and Table-2.

実施例7 実施例1においてシラン化合物(A>の誘導体であるテ
トラエトキシシランの四8体(平均)とシラン化合物(
B)としてジメトキシジメチルシランを用いた伯は実施
例1と同様に行ないシリカ微粒子(h)の懸濁体を製造
した。結果を表−1及び表−2に示す。
Example 7 In Example 1, 48 (average) tetraethoxysilane derivatives of the silane compound (A>) and the silane compound (
A suspension of silica fine particles (h) was prepared in the same manner as in Example 1 using dimethoxydimethylsilane as B). The results are shown in Table-1 and Table-2.

実施例8 実施例1と同様の反応器を用い、シクロヘキサン221
、ポリエチレングリコールノニルフェニルエーテル(エ
チレンオキサイド平均付加モル数6;以後NPと称する
。>0.97Kg、28%アンモニア水0.49 Kg
及び水0.37 Kyを混合し、シクロヘキサン中に均
一なアンモニア水のマイクロエマルションを形成させた
。該エマルションを35℃に調整し撹拌しながらテトラ
エトキシシラン1.257(g及びジアセトキシジメチ
ルシラン0.16Kyの混合物を2時間かけて添加した
後同温で70時間撹拌を続は反応を完結させ、シリカ微
粒子(i)の有機(シクロヘキサン)性溶液懸濁体を製
造した。結果を表−1及び表−2に示す。
Example 8 Using the same reactor as in Example 1, cyclohexane 221
, polyethylene glycol nonylphenyl ether (average number of added moles of ethylene oxide: 6; hereinafter referred to as NP.>0.97 Kg, 28% aqueous ammonia 0.49 Kg
and 0.37 Ky of water were mixed to form a uniform microemulsion of aqueous ammonia in cyclohexane. The temperature of the emulsion was adjusted to 35°C, and while stirring, a mixture of 1.257 g of tetraethoxysilane and 0.16 Ky of diacetoxydimethylsilane was added over 2 hours, and the mixture was stirred at the same temperature for 70 hours to complete the reaction. An organic (cyclohexane) solution suspension of silica fine particles (i) was prepared.The results are shown in Tables 1 and 2.

実施例9 実施例8においてジアセトキシジメチルシランに替えて
ジェトキシメチルシランを用いた他は実施例8と同様に
行ないシリカ微粒子(j)の懸濁体を製造した。結果を
表−1及び表−2に示す。
Example 9 A suspension of silica fine particles (j) was produced in the same manner as in Example 8, except that jetoxymethylsilane was used instead of diacetoxydimethylsilane. The results are shown in Table-1 and Table-2.

Claims (1)

【特許請求の範囲】[Claims] (1)平均の組成式がR^1nSiO_4_−_n(但
し、R^1は直接ケイ素原子に結合する炭素原子を有す
る有機基の平均組成を示し、nは0.005〜1の範囲
の数をそれぞれ表わす。)で表わされるシリカ微粒子の
製造法であつて、加水分解、縮合可能な一般式SiX_
4で表わされるシラン化合物(A)、および一般式R^
2mSiX_4_−_mで表わされるシラン化合物(B
)[但し、一般式中Xはアルコキシ基、アシロキシ基、
水酸基および水素原子からなる群から選ばれる少なくと
も一種の基、R^2は置換基があつてもよいアルキル基
、アリール基および不飽和脂肪族残基からなる群から選
ばれる少なくとも一種の基、mは1〜3の範囲の整数を
それぞれ表わす。]またはそれらの誘導体を、シラン化
合物(B)および/またはその誘導体の全シラン化合物
に対する比をケイ素原子の当量数の比で表わして0.0
017〜1の範囲に混合して、少なくとも触媒としての
アンモニウムイオンと加水分解当量を超える水を含む有
機性溶液中で加水分解、縮合することを特徴とする平均
粒子径が0.05〜20μm、粒子径の標準偏差値が1
.0〜1.5の範囲にあつて、粒子の真比重が1.20
〜2.10の範囲で制御された高純度な真球状シリカ微
粒子の製法。
(1) The average compositional formula is R^1nSiO_4_-_n (where R^1 indicates the average composition of organic groups having carbon atoms directly bonded to silicon atoms, and n is a number in the range of 0.005 to 1. ) is a method for producing silica fine particles represented by the general formula SiX_ which can be hydrolyzed and condensed.
A silane compound (A) represented by 4, and the general formula R^
A silane compound (B
) [However, in the general formula, X is an alkoxy group, an acyloxy group,
at least one group selected from the group consisting of a hydroxyl group and a hydrogen atom; R^2 is at least one group selected from the group consisting of an optionally substituted alkyl group, an aryl group, and an unsaturated aliphatic residue; each represents an integer in the range of 1 to 3. ] or their derivatives, the ratio of the silane compound (B) and/or its derivatives to the total silane compounds is 0.0, expressed as the ratio of the number of equivalents of silicon atoms.
017 to 1 and hydrolyzed and condensed in an organic solution containing at least ammonium ions as a catalyst and water exceeding the hydrolytic equivalent; Standard deviation value of particle size is 1
.. In the range of 0 to 1.5, the true specific gravity of the particles is 1.20
A method for producing highly pure spherical silica fine particles controlled within the range of ~2.10.
JP30141487A 1987-12-01 1987-12-01 Production of spherical fine particle of silica Granted JPH01145317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30141487A JPH01145317A (en) 1987-12-01 1987-12-01 Production of spherical fine particle of silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30141487A JPH01145317A (en) 1987-12-01 1987-12-01 Production of spherical fine particle of silica

Publications (2)

Publication Number Publication Date
JPH01145317A true JPH01145317A (en) 1989-06-07
JPH054325B2 JPH054325B2 (en) 1993-01-19

Family

ID=17896590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30141487A Granted JPH01145317A (en) 1987-12-01 1987-12-01 Production of spherical fine particle of silica

Country Status (1)

Country Link
JP (1) JPH01145317A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238306A (en) * 1988-05-19 1990-02-07 Degussa Ag Spherical hydrophilic silicic acid, production thereof, and resin filler and stickiness preventing agent composed of said silicic acid
JPH02296711A (en) * 1989-05-12 1990-12-07 Shin Etsu Chem Co Ltd Spherical silica particle and its production
US5683501A (en) * 1993-11-09 1997-11-04 Nippon Shokubai Co., Ltd. Compound fine particles and composition for forming film
JP2002038028A (en) * 2000-07-26 2002-02-06 Toagosei Co Ltd Photocurable resin composition
JP2002037620A (en) * 2000-07-25 2002-02-06 Ube Nitto Kasei Co Ltd Spherical silica particle bulk materials and method of preparing it and resin composition using it
JP2006298708A (en) * 2005-04-22 2006-11-02 Denki Kagaku Kogyo Kk Powder, resin composition for light diffusion plate and light diffusion plate
JP2009068019A (en) * 2008-11-26 2009-04-02 Takemoto Oil & Fat Co Ltd Spherical silsesquioxane fine particle and surface modifier for polymer material
WO2009096501A1 (en) * 2008-01-30 2009-08-06 Dow Corning Toray Co., Ltd. Silicon-containing particle, process for producing the same, organic-polymer composition, ceramic, and process for producing the same
JP2010254510A (en) * 2009-04-23 2010-11-11 Daiso Co Ltd Method for producing organic-inorganic hybrid silica gel
JP2014159550A (en) * 2013-01-16 2014-09-04 Eternal Chemical Co Ltd Silsesquioxane copolymer microsphere, production method thereof and use thereof
JP2016008157A (en) * 2014-06-25 2016-01-18 扶桑化学工業株式会社 Method for producing colloidal silica containing core-shell type silica particles
US20220333006A1 (en) * 2021-04-20 2022-10-20 National Chi Nan University Far infrared-emitting composition and far infrared- emitting fiber including the same
WO2022226471A1 (en) * 2021-04-21 2022-10-27 Versum Materials Us, Llc Non-spherical primary silica nanoparticles and the use therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017528A (en) * 1973-11-16 1977-04-12 Merck Patent Gesellschaft Mit Beschrankter Haftung Preparation of organically modified silicon dioxides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017528A (en) * 1973-11-16 1977-04-12 Merck Patent Gesellschaft Mit Beschrankter Haftung Preparation of organically modified silicon dioxides

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238306A (en) * 1988-05-19 1990-02-07 Degussa Ag Spherical hydrophilic silicic acid, production thereof, and resin filler and stickiness preventing agent composed of said silicic acid
JPH0563409B2 (en) * 1988-05-19 1993-09-10 Degussa
JPH02296711A (en) * 1989-05-12 1990-12-07 Shin Etsu Chem Co Ltd Spherical silica particle and its production
JPH0470257B2 (en) * 1989-05-12 1992-11-10 Shinetsu Chem Ind Co
US5683501A (en) * 1993-11-09 1997-11-04 Nippon Shokubai Co., Ltd. Compound fine particles and composition for forming film
JP2002037620A (en) * 2000-07-25 2002-02-06 Ube Nitto Kasei Co Ltd Spherical silica particle bulk materials and method of preparing it and resin composition using it
JP4605864B2 (en) * 2000-07-25 2011-01-05 宇部日東化成株式会社 Method for producing spherical silica particle aggregate
JP2002038028A (en) * 2000-07-26 2002-02-06 Toagosei Co Ltd Photocurable resin composition
JP2006298708A (en) * 2005-04-22 2006-11-02 Denki Kagaku Kogyo Kk Powder, resin composition for light diffusion plate and light diffusion plate
JP5450103B2 (en) * 2008-01-30 2014-03-26 東レ・ダウコーニング株式会社 Silicon-containing particles, method for producing the same, organic polymer composition, ceramic, and method for producing the same
WO2009096501A1 (en) * 2008-01-30 2009-08-06 Dow Corning Toray Co., Ltd. Silicon-containing particle, process for producing the same, organic-polymer composition, ceramic, and process for producing the same
JPWO2009096501A1 (en) * 2008-01-30 2011-05-26 東レ・ダウコーニング株式会社 Silicon-containing particles, method for producing the same, organic polymer composition, ceramic, and method for producing the same
US8530617B2 (en) 2008-01-30 2013-09-10 Dow Corning Toray Company, Ltd. Silicon-containing particle, process for producing the same, organic-polymer composition, ceramic, and process for producing the same
JP2009068019A (en) * 2008-11-26 2009-04-02 Takemoto Oil & Fat Co Ltd Spherical silsesquioxane fine particle and surface modifier for polymer material
JP2010254510A (en) * 2009-04-23 2010-11-11 Daiso Co Ltd Method for producing organic-inorganic hybrid silica gel
JP2014159550A (en) * 2013-01-16 2014-09-04 Eternal Chemical Co Ltd Silsesquioxane copolymer microsphere, production method thereof and use thereof
JP2016008157A (en) * 2014-06-25 2016-01-18 扶桑化学工業株式会社 Method for producing colloidal silica containing core-shell type silica particles
US20220333006A1 (en) * 2021-04-20 2022-10-20 National Chi Nan University Far infrared-emitting composition and far infrared- emitting fiber including the same
WO2022226471A1 (en) * 2021-04-21 2022-10-27 Versum Materials Us, Llc Non-spherical primary silica nanoparticles and the use therefor
TWI812170B (en) * 2021-04-21 2023-08-11 美商慧盛材料美國責任有限公司 Non-spherical primary silica nanoparticles and the use therefor

Also Published As

Publication number Publication date
JPH054325B2 (en) 1993-01-19

Similar Documents

Publication Publication Date Title
US7186440B2 (en) Process for producing hydrophobic silica powder
JP5032328B2 (en) Production of direct hydrophobic silica from aqueous colloidal silica dispersions
US4842837A (en) Process for producing fine spherical silica
US9416015B2 (en) Method of producing silica particles
Arkhireeva et al. Synthesis of sub-200 nm silsesquioxane particles using a modified Stöber sol–gel route
JP5132193B2 (en) Porous silica particles and method for producing the same
JP5267758B2 (en) Method for producing hydrophobic silica powder
JPH01145317A (en) Production of spherical fine particle of silica
KR950001660B1 (en) Method for production of inorganic oxide particles
JP2013166667A (en) Fluidizing agent for power and method for producing the same
TWI841694B (en) Hydrophobic silica powder and colorant resin particles
US6638982B2 (en) Method of preparing a fumed metal oxide dispersion
TW201831402A (en) Silica particle dispersion and method for producing same
JP6147554B2 (en) Hydrophobic inorganic oxide powder and method for producing the same
JP4458396B2 (en) Method for producing high-purity hydrophilic organic solvent-dispersed silica sol, high-purity hydrophilic organic solvent-dispersed silica sol obtained by the method, method for producing high-purity organic solvent-dispersed silica sol, and high-purity organic solvent-dispersed silica sol obtained by the method
US20050011409A1 (en) Inorganic oxide
JP2014214061A5 (en)
US20240116764A1 (en) Fumed silica powder with reduced silanol group density
CN111867974B (en) Precipitated white carbon black and preparation method thereof
JPH0637282B2 (en) Metal oxide composite spherical fine particles and method for producing the same
JP3493109B2 (en) Method for producing organic group-containing silica fine particle dispersion sol
JP7539793B2 (en) Method for producing hollow silica particles
JP6064338B2 (en) Method for producing a nonpolar organic solvent dispersion of titanium oxide
JPH0832553B2 (en) Porous spherical silica fine particles having organic groups inside
JPH01239015A (en) Production of porous spherical silica fine particle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees