Nothing Special   »   [go: up one dir, main page]

JPH01136317A - Superconductive wire for permanent current switch and manufacture thereof - Google Patents

Superconductive wire for permanent current switch and manufacture thereof

Info

Publication number
JPH01136317A
JPH01136317A JP62295765A JP29576587A JPH01136317A JP H01136317 A JPH01136317 A JP H01136317A JP 62295765 A JP62295765 A JP 62295765A JP 29576587 A JP29576587 A JP 29576587A JP H01136317 A JPH01136317 A JP H01136317A
Authority
JP
Japan
Prior art keywords
matrix
superconducting wire
resistance
wire
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62295765A
Other languages
Japanese (ja)
Inventor
Hidesumi Moriai
英純 森合
Shoji Inaba
稲葉 彰司
Yoichi Sawada
沢田 洋一
Kiyoshi Oizumi
大泉 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP62295765A priority Critical patent/JPH01136317A/en
Publication of JPH01136317A publication Critical patent/JPH01136317A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To perform sending and receiving of current between a matrix and a filament smoothly and to ensure cutting of the current with high resistance, by alternately arranging a part having small electric resistance and a part having large electric resistance in the matrix. CONSTITUTION:Oxygen-free copper is used for a matrix 3. Many pieces of filaments 2 are embedded in the longitudinal direction of a wire rod. Thus a superconductive wire 1 is formed. Low melting point metal (e.g., In), which is to become a plated part 4, is fused and plated on the superconductive wire. After the fusing and plating, the wire is heated, and In is diffused into Cu in the matrix 3. A high resistance Cu-In alloy part 5 is formed at the part, where In is fused and plated. With this machining steps, the superconductive wire for a permanent current switch, in which the matrixes 3 comprising the oxygen-free copper, whose electric resistance is small, and the Cu-In alloy parts 5 having large electric resistance are alternately formed in the longitudinal direction of the wire, is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は永久電流スイッチ用超電導線およびその製造方
法に関し、特に、スイッチオン時の電気抵抗を小さくし
、スイッチオフ時の電気抵抗を大きくした永久電流スイ
ッチ用超電導線およびその製造方法゛に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a superconducting wire for persistent current switches and a method for manufacturing the same, and in particular, to a superconducting wire for persistent current switches and a method for manufacturing the same. The present invention relates to a superconducting wire for persistent current switches and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

永久電流スイッチは、超電導時に超電導線の内部抵抗が
零状態になるときにスイッチオンとなり、超電導線をヒ
ータ等で加熱して常電導状態にしたときにスイッチオフ
となるようにしたものである。
A persistent current switch is designed to turn on when the internal resistance of the superconducting wire becomes zero during superconducting, and turn off when the superconducting wire is heated with a heater or the like to bring it into a normal conducting state.

この種の永久電流スイッチに要求される性能は、用いら
れる超電導材(例えば、NbTi)の臨界温度よりも高
い温度に加熱された時に電流の遮断が確実に行われ゛る
ことである。換言すれば、スイッチオフ時の電流値が闇
値以下にならなければならない。このために、NbTi
フィラメントを埋め込むマトリクスにCu −Ni等の
高抵抗金属が用いられる。
The performance required of this type of persistent current switch is that the current can be interrupted reliably when heated to a temperature higher than the critical temperature of the superconducting material used (eg NbTi). In other words, the current value when the switch is turned off must be below the dark value. For this purpose, NbTi
A high resistance metal such as Cu-Ni is used for the matrix in which the filament is embedded.

マトリクスに高抵抗金属が用いられる理由は、超電導状
B(オン状a)下で超電導材(NbTi)中に流れてい
た電流がヒータ等の加熱によって超電導が破れた時(オ
フ状態)、それまで超電導材に流れていた電流がマトリ
クスに流れ込むのを高抵抗によって阻止することにある
The reason why a high-resistance metal is used for the matrix is that when the current flowing in the superconducting material (NbTi) under superconducting state B (on state a) is broken by heating by a heater etc. (off state), The purpose is to prevent the current flowing through the superconducting material from flowing into the matrix using high resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の永久電流スイッチ用超電導線にあっては
、マトリクスを高抵抗にすると、超電導状態において超
電導フィラメント間での電流の授受がマトリクスに阻止
されて行えないため、超電導線が本来有する電流容量を
確保できないという不都合がある。
However, in conventional superconducting wires for persistent current switches, if the matrix is made to have a high resistance, current cannot be transferred between the superconducting filaments in the superconducting state because the matrix prevents the current from flowing between them. There is an inconvenience that it is not possible to secure the

この不都合を解消するため、マトリックスに電気抵抗の
小さな無酸素銅等を用いることが考えられる。このよう
にすることによって超電導線間の電流の授受が円滑に行
われるため、本来の電流容量が得られるものの、加熱に
よってオフ状態にしたとしても、電流が無酸素銅による
マトリクス中を流れ、スイッチ機能を具現できなくなる
In order to eliminate this inconvenience, it is conceivable to use oxygen-free copper or the like with low electrical resistance for the matrix. By doing this, the current is transferred smoothly between the superconducting wires, so the original current capacity can be obtained, but even if the wires are turned off due to heating, the current flows through the matrix made of oxygen-free copper, and the switch It becomes impossible to realize the function.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記に鑑みてなされたものであり、スイッチオ
ン状態では本来の電流容量を確保しながら、スイッチオ
フ状態における電流の遮断を確実に行えるようにするた
め、マトリクスを電気抵抗の小さな部分と電気抵抗の大
きな部分とを長手方向に交互に配設するよにうした永久
電流スイッチ用超電導線およびその製造方法を提供する
The present invention has been made in view of the above, and in order to ensure the original current capacity in the switch-on state and to reliably interrupt the current in the switch-off state, the matrix is made of a portion with low electrical resistance. The present invention provides a superconducting wire for a persistent current switch in which portions having high electrical resistance are arranged alternately in the longitudinal direction, and a method for manufacturing the same.

即ち、本発明の永久電流スイッチ用超電導線は以下の構
成を備えている。
That is, the superconducting wire for a persistent current switch of the present invention has the following configuration.

低電気抵抗のマトリクスに対して高電気抵抗を持つ部分
を形成し、線材の長手方向へ低電気抵抗部分と高電気抵
抗部分とを交互に配置する。マトリクスに無酸素銅ある
いはそれより高抵抗の金属を用いる場合があるが、何れ
もそれよりも高い電気抵抗を有する材料を長手方向に間
隔的に設ける。
A portion having high electrical resistance is formed in a matrix having low electrical resistance, and the low electrical resistance portion and the high electrical resistance portion are arranged alternately in the longitudinal direction of the wire. Oxygen-free copper or a metal with a higher resistance than that may be used for the matrix, but in either case, a material having a higher electrical resistance is provided at intervals in the longitudinal direction.

また、本発明の永久電流スイッチ用超電導線の製造方法
は以下の工程を備えている。
Further, the method for manufacturing a superconducting wire for a persistent current switch according to the present invention includes the following steps.

所定長のマトリクスに高電気抵抗領域を形成するため、
大きな電気抵抗を有する金属ま゛たは合金をマトリクス
上に塗布し、これを加熱してマトリクスに拡散させて高
抵抗部を生じさせる。低融点の金属または合金として、
Ga、、 Sns InXCd−Pb5 Cd−Sns
 ai −Cd%In−Tl、 Pb−Sn等のいずれ
かを用いることができる。
To form a high electrical resistance region in a matrix of predetermined length,
A metal or alloy with high electrical resistance is applied onto the matrix and heated to diffuse into the matrix to create high resistance areas. As a low melting point metal or alloy,
Ga,, Sns InXCd-Pb5 Cd-Sns
Either ai -Cd%In-Tl, Pb-Sn, etc. can be used.

〔作用〕[Effect]

以上の構成により、電気抵抗の小さいマトリクスはスイ
ッチオン時にフィラメントからの電流を障害無く受は入
れるため、線材の持つ本来の電流容量が得られる。一方
、高電気抵抗の合金部はスイッチオフ状態にする際、フ
ィラメントに流れる電流がマトリクスを通過するのを抑
制し、スイッチ機能を損なわないようにする。
With the above configuration, the matrix with low electrical resistance receives the current from the filament without any hindrance when the switch is turned on, so that the original current capacity of the wire can be obtained. On the other hand, the high electrical resistance alloy part suppresses the current flowing through the filament from passing through the matrix when the switch is turned off, so that the switch function is not impaired.

〔実施例〕〔Example〕

以下、本発明の永久電流スイッチ用超電導線およびその
製造方法を詳細に説明する。
Hereinafter, a superconducting wire for a persistent current switch and a method for manufacturing the same according to the present invention will be explained in detail.

第1図より第3図は本発明の実施例を示し、マトリクス
3は無酸素銅を用いており、これにNbTiを用いた直
径20μmのフィラメント2の多数本(例えば、125
0本)を線材長手方向に埋め込んで超電導線1 (例え
ば、直径1寵)を構成している。この超電導線1に、例
えば、100鶴長の間隔で30m〜50tmの長さでメ
ッキ部4になる低融点金属(本実施例では、In)を半
田ごてを用いて0.1〜0.2鰭の厚さに溶融メッキす
る。メッキ部4に使用される低融点金属の材料としては
、Ga5SnSIn、 Cd−Pb%Cd−Sn、■−
Cd、 In−Tl、Pb −Sn等の金属または合金
のいずれかを用いることができる。
1 to 3 show an embodiment of the present invention, in which the matrix 3 is made of oxygen-free copper, and a large number of filaments 2 (for example, 125 μm in diameter) made of NbTi are used.
A superconducting wire 1 (for example, 1 mm in diameter) is constructed by embedding 0 wires in the longitudinal direction of the wire. The superconducting wire 1 is coated with a low melting point metal (in this example, In) which will become the plated portion 4 at intervals of 100 m to 50 t, for example, by using a soldering iron. Hot dip plated to the thickness of the fin. The low melting point metal materials used for the plating part 4 include Ga5SnSIn, Cd-Pb%Cd-Sn, and ■-
Any metal or alloy such as Cd, In-Tl, Pb-Sn, etc. can be used.

溶融メッキの後、200云の雰囲気下で10時間加熱し
、Inをマトリクス3のCu中に拡散させ、Inを溶融
メッキした部分に高抵抗のCu −Inn全金部5第3
図のように形成する。このような加工履歴によって、線
材長手方向に電気抵抗の小さな無酸素銅によるマトリク
ス3と電気抵抗の大きなCu−Inn全金部5が交互に
形成された永久電流スイッチ用超電導線が得られる。
After hot-dip plating, it is heated for 10 hours in an atmosphere of 200 mm to diffuse In into the Cu of matrix 3, and a high-resistance Cu-Inn all-metal part 5 is formed on the part where In is hot-dip plated.
Form as shown. With such a processing history, a superconducting wire for a persistent current switch is obtained in which a matrix 3 made of oxygen-free copper having a low electric resistance and a Cu-Inn all-metal part 5 having a high electric resistance are alternately formed in the longitudinal direction of the wire.

このようにして得られた超電導線にポリイミドのフィル
ムを被覆絶縁し、さらにヒータ(いずれも不図示)を沿
わせて永久電流スイッチを作成し、スイッチ動作を試験
した。その結果、低抵抗のマトリクス3とフィラメント
2間で電流の授受の行われることが確認された。一方、
ヒータで加熱して超電導状態を破ったとき、Cu−In
n全金部5電気抵抗が大きいため、線材長手方向に電流
が遮断され、良好なスイッチング動作を示すことも確認
された。
The thus obtained superconducting wire was coated and insulated with a polyimide film, and a heater (both not shown) was placed along it to create a persistent current switch, and the switch operation was tested. As a result, it was confirmed that current was transferred between the low-resistance matrix 3 and the filament 2. on the other hand,
When heated with a heater to break the superconducting state, Cu-In
It was also confirmed that because the electric resistance of the all-metal part 5 was large, the current was interrupted in the longitudinal direction of the wire, resulting in good switching operation.

尚、通常、永久電流スイッチ用超電導線に用いられる超
電導材は、臨界温度の低い方が加熱によってオフ状態に
し易いため、NbTiが多く用いられる。NbTiの臨
界電流特性は加熱によって変化するため、拡散のために
加熱を行う場合、260℃では10時間以内、350℃
では30分以内の加熱に抑える必要がある。一方、高抵
抗部を拡散によって生じさせるには、−方を溶融状態に
して拡散させるのが効率的である。従って、融点350
℃以下の低融点の金属または合金を用いるのが良い。
Note that NbTi is usually used as the superconducting material used in superconducting wires for persistent current switches because it is easier to turn off the wire by heating when the critical temperature is lower. The critical current characteristics of NbTi change with heating, so when heating for diffusion, at 260°C, within 10 hours, at 350°C.
Therefore, it is necessary to limit the heating time to less than 30 minutes. On the other hand, in order to generate a high resistance part by diffusion, it is efficient to melt the - side and diffuse it. Therefore, melting point 350
It is preferable to use a metal or alloy with a low melting point below ℃.

次に、本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

前記実施例と同様にマトリクス3に無酸素銅を用い、直
径15μmのNbTiフィラメント2を550本埋め込
んで直径0.5 tmの超電導線を作成し、100 m
の間隔で30tl〜50寵の長さにわたってIn−5寵
合金による合金材を半田ごてヲ用いて0.05〜0.1
鶴の厚さに溶融してメッキ部4を形成する。その後、2
30℃で10時間加熱し、In −Snをマトリクス3
のCu中に拡散させ、高抵抗のCu−Sn −Inn全
金部5形成した。
As in the previous example, oxygen-free copper was used for the matrix 3, and 550 NbTi filaments 2 with a diameter of 15 μm were embedded to create a superconducting wire with a diameter of 0.5 tm, and the wire was 100 m long.
An alloy material made of In-5 alloy was soldered using a soldering iron over a length of 30 tl to 50 tl at intervals of 0.05 to 0.1
The plated portion 4 is formed by melting to the thickness of the crane. After that, 2
Heated at 30°C for 10 hours to form In-Sn matrix 3.
was diffused into Cu to form a high-resistance Cu-Sn-Inn all-metal part 5.

このようにして得られた超電導線を前記実施例と同様に
永久電流スイッチ動作試験を行ったところ、良好なスイ
ッチング動作を示すことが確認できた。
When the thus obtained superconducting wire was subjected to a persistent current switch operation test in the same manner as in the above example, it was confirmed that it exhibited good switching operation.

また、前記第1の実施例において、マトリクス3をCu
−10%Ni合金にして超電導線を作成し、前記各実施
例と同様に永久電流スイッチの動作試験を行ったが、こ
の場合も良好なスイッチング動作を示すことが確認され
た。
Further, in the first embodiment, the matrix 3 is made of Cu.
A superconducting wire was prepared using a -10% Ni alloy, and a persistent current switch operation test was conducted in the same manner as in each of the examples described above, and it was confirmed that good switching operation was exhibited in this case as well.

この場合、マトリクス3に無酸素銅よりも抵抗値が大き
いCu−10%Ni合金を使用しているので、高抵抗部
5を所定の抵抗値にする加熱拡散作業が容易になる。そ
のため、NbTiフィラメント等の臨界電流特性の変動
を抑えるのが更に容易になる。
In this case, since the matrix 3 is made of a Cu-10% Ni alloy whose resistance value is higher than that of oxygen-free copper, the heating and diffusion work to bring the high-resistance portion 5 to a predetermined resistance value is facilitated. Therefore, it becomes easier to suppress fluctuations in critical current characteristics of NbTi filaments and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明によればマトリクスが電気抵
抗の小さい領域と大きい領域とを長さ方向に交互に有す
るため、マトリクスとフィラメント間の電流の授受が円
滑に行われ、線材本来の電流容量が得られると共に、フ
ィラメントの超電導性が無くなった際には、高抵抗が電
流遮断を確実に行う、従って、永久電流スイッチとして
用いた場合、その動作が確実に保証される。
As explained above, according to the present invention, since the matrix has regions of low electrical resistance and regions of high electrical resistance alternately in the length direction, current transfer between the matrix and the filament is performed smoothly, and the current capacity inherent to the wire is At the same time, when the superconductivity of the filament is lost, the high resistance ensures that the current is cut off. Therefore, when used as a persistent current switch, its operation is guaranteed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による永久電流スイッチ用超電導線の製
造過程を示す正面図、第2図は第1図の超電導線の非メ
ッキ部分の断面図、第3図は本発明における永久電流ス
イッチ用超電導線を示す正面図である。 符号の説明 1−−−−−−−−−−一超電導線 2−・・−−−−−−−フィラメント 3−・・−・−・・マトリクス低抵抗部4・−・・−・
・−・メッキ部分
Fig. 1 is a front view showing the manufacturing process of the superconducting wire for persistent current switch according to the present invention, Fig. 2 is a cross-sectional view of the non-plated part of the superconducting wire of Fig. 1, and Fig. 3 is the superconducting wire for persistent current switch according to the present invention. It is a front view showing a superconducting wire. Explanation of symbols 1 - Superconducting wire 2 - Filament 3 - Matrix low resistance part 4 - - -
・−・Plated part

Claims (6)

【特許請求の範囲】[Claims] (1)超電導性を示すフィラメントと、このフィラメン
トに対し安定性を付与するマトリックスとから成る永久
電流スイッチ用超電導線において、 前記マトリクスはスイッチオン時に前記フ ィラメント間で電流通過を可能にする低抵抗部と、スイ
ッチオフ時に電流レベルを所定値以下にする高抵抗部を
有し、この各抵抗部が長さ方向に交互に配置されている
ことを特徴とする永久電流スイッチ用超電導線。
(1) In a superconducting wire for a persistent current switch consisting of a filament that exhibits superconductivity and a matrix that provides stability to this filament, the matrix is a low resistance section that allows current to pass between the filaments when the switch is turned on. A superconducting wire for a persistent current switch, characterized in that the wire has a high resistance portion that lowers the current level to a predetermined value or less when the switch is turned off, and the resistance portions are arranged alternately in the length direction.
(2)前記低抵抗部が無酸素銅によって構成され、前記
高抵抗部が無酸素銅に低融点金属あるいは合金を拡散し
た合金部によって構成されることを特徴とする特許請求
の範囲第1項記載の永久電流スイッチ用超電導線。
(2) The low-resistance portion is made of oxygen-free copper, and the high-resistance portion is made of an alloy portion in which a low-melting point metal or alloy is diffused into oxygen-free copper. Superconducting wire for persistent current switches as described.
(3)前記低抵抗部が無酸素銅より抵抗値の大ななる金
属によって構成され、前記高抵抗部が前記金属に低融点
金属あるいは合金を拡散した合金部によって構成される
ことを特徴とする特許請求の範囲第1項記載の永久電流
スイッチ用超電導線。
(3) The low-resistance portion is made of a metal having a higher resistance value than oxygen-free copper, and the high-resistance portion is made of an alloy portion in which a low-melting point metal or alloy is diffused into the metal. A superconducting wire for a persistent current switch according to claim 1.
(4)マトリクス中に多数本のフィラメントを線材長手
方向に埋め込んだ超電導線に所定の間隔および所定の長
さで低融点の金属または合金のメッキ層を形成する段階
と、前記メッキ層を加熱してを拡散させることにより低
抵抗部および高抵抗部を交互に形成する段階を有するこ
とを特徴とする永久電流スイッチ用超電導線の製造方法
(4) forming a plating layer of a low-melting point metal or alloy at predetermined intervals and a predetermined length on a superconducting wire in which a large number of filaments are embedded in the longitudinal direction of the wire in a matrix; and heating the plating layer. 1. A method for producing a superconducting wire for a persistent current switch, comprising the step of alternately forming low-resistance portions and high-resistance portions by diffusing a superconducting wire.
(5)前記メッキ層を350℃以下に加熱して前記マト
リクスに拡散させることを特徴とする特許請求の範囲第
4項記載の永久電流スイッチ用超電導線の製造方法。
(5) The method for manufacturing a superconducting wire for a persistent current switch according to claim 4, characterized in that the plating layer is heated to 350° C. or lower and diffused into the matrix.
(6) 前記メッキ層として、Ga、Sn、In、Cd
−Pb、Cd−Sn、Bi−Cd、In−Tl、Pb−
Snのいずれかを用いることを特徴とする特許請求の範
囲第4項記載の永久電流スイッチ用超電導線の製造方法
(6) As the plating layer, Ga, Sn, In, Cd
-Pb, Cd-Sn, Bi-Cd, In-Tl, Pb-
5. The method of manufacturing a superconducting wire for a persistent current switch according to claim 4, characterized in that one of Sn is used.
JP62295765A 1987-11-24 1987-11-24 Superconductive wire for permanent current switch and manufacture thereof Pending JPH01136317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62295765A JPH01136317A (en) 1987-11-24 1987-11-24 Superconductive wire for permanent current switch and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295765A JPH01136317A (en) 1987-11-24 1987-11-24 Superconductive wire for permanent current switch and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01136317A true JPH01136317A (en) 1989-05-29

Family

ID=17824876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295765A Pending JPH01136317A (en) 1987-11-24 1987-11-24 Superconductive wire for permanent current switch and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01136317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704980A1 (en) * 1993-05-05 1994-11-10 Gec Alsthom Electromec Superconducting switch and application to a superconducting coil loader
GB2525218A (en) * 2014-04-16 2015-10-21 Siemens Plc High di/dt superconductive joint

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704980A1 (en) * 1993-05-05 1994-11-10 Gec Alsthom Electromec Superconducting switch and application to a superconducting coil loader
EP0629006A1 (en) * 1993-05-05 1994-12-14 Gec Alsthom Electromecanique Sa Superconducting switch and application to a superconducting coil load
GB2525218A (en) * 2014-04-16 2015-10-21 Siemens Plc High di/dt superconductive joint
WO2015158470A1 (en) * 2014-04-16 2015-10-22 Siemens Plc High di/dt superconductive joint
GB2525218B (en) * 2014-04-16 2016-08-03 Siemens Healthcare Ltd High di/dt superconductive switch

Similar Documents

Publication Publication Date Title
US4005454A (en) Semiconductor device having a solderable contacting coating on its opposite surfaces
US3372470A (en) Process for making composite conductors
KR102289548B1 (en) Electric wire
US3447236A (en) Method of bonding an electrical part to an electrical contact
AU771181B2 (en) High-temperature superconductor arrangement
KR890009008A (en) Method for forming low resistivity contact on high Tc superconductor and high Tc superconducting unit and system with low contact resistance
JPH01136317A (en) Superconductive wire for permanent current switch and manufacture thereof
JP3977884B2 (en) Current limiting element, current limiter using oxide superconductor, and manufacturing method thereof
CA1083648A (en) Composite fuse element for a high voltage current limiting fuse
JPH11195332A (en) Structure of high-temperature superconductor
JP2008118121A (en) Superconducting element
US4493964A (en) Method of joining electrically conductive members
US5168125A (en) Superconductor protected against partial transition
GB2205455A (en) Thermal fuse
JP2009049257A (en) Superconducting current-limiting element
US3187229A (en) Superconducting magnet utilizing superconductive shielding at lead junctions
US4431862A (en) Multiwire conductor having increased interwire resistance and good mechanical stability and method for making same
JP3065429B2 (en) Permanent current switch
JP3024347B2 (en) Current limiting element
NO840070L (en) MELT CONTROL FOR ELECTRICAL FUSING
KR940000445B1 (en) Network fuse element
JPH0355781A (en) Connection of superconductive wire
JP2023043040A (en) Connection structure for superconducting wires and connection method therefor
EP0059334A2 (en) Electric fuse
JPH0791622B2 (en) High-low anti-matrix composite superconductor manufacturing method