JPH01100207A - Production of infiltrated valve seat ring - Google Patents
Production of infiltrated valve seat ringInfo
- Publication number
- JPH01100207A JPH01100207A JP25471987A JP25471987A JPH01100207A JP H01100207 A JPH01100207 A JP H01100207A JP 25471987 A JP25471987 A JP 25471987A JP 25471987 A JP25471987 A JP 25471987A JP H01100207 A JPH01100207 A JP H01100207A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- valve seat
- seat ring
- infiltration
- infiltrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 52
- 239000000956 alloy Substances 0.000 claims abstract description 52
- 238000001764 infiltration Methods 0.000 claims abstract description 37
- 230000008595 infiltration Effects 0.000 claims abstract description 37
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 22
- 229910052802 copper Inorganic materials 0.000 claims abstract description 16
- 238000002485 combustion reaction Methods 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 abstract description 33
- 238000002844 melting Methods 0.000 abstract description 5
- 230000008018 melting Effects 0.000 abstract description 5
- 229910020220 Pb—Sn Inorganic materials 0.000 abstract 3
- 239000010949 copper Substances 0.000 description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 229910000531 Co alloy Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 229910000882 Ca alloy Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000978 Pb alloy Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、内燃機関などに用いられるバルブシートリン
グの製造方法に関するものであり、さらに詳しく述べる
ならば、焼結合金に溶浸をしたバルブシートリングの製
造方法に関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a valve seat ring used in internal combustion engines, etc. More specifically, the present invention relates to a method for manufacturing a valve seat ring used in internal combustion engines, etc. The present invention relates to a method of manufacturing a seat ring.
(従来の技術)
従来内燃機関に使用されていた有鉛ガソリンにあっては
、ガソリンに含まれる鉛が内燃機関の作動中に酸化物と
なって、バルブシートリングの面あるいはバルブシート
リングと接触するバルブの面に付着し、自己潤滑剤とし
て作用し、バルブシートリングおよびバルブの摩耗を少
なくする作用を期待することができた。しかしながら、
最近の内燃機関、特にガソリンエンジンは排ガス規制の
ため無鉛ガソリンを使用せざるを得なくなり、これに伴
い燃焼生成物に起因する上述の鉛の作用が期待されなく
なり、バルブシートリングの摩耗が増大する傾向が表わ
れた。特に、LPGガスを燃料とする内燃機関ではバル
ブシートリングの摩耗傾向は顕著となった。(Prior art) In the case of leaded gasoline conventionally used in internal combustion engines, the lead contained in the gasoline becomes an oxide during the operation of the internal combustion engine and comes into contact with the surface of the valve seat ring or the valve seat ring. It could be expected that it would adhere to the surface of the valve and act as a self-lubricating agent, reducing wear on the valve seat ring and valve. however,
Modern internal combustion engines, especially gasoline engines, have no choice but to use unleaded gasoline due to exhaust gas regulations, and as a result, the above-mentioned effects of lead caused by combustion products are no longer expected, leading to increased wear on valve seat rings. A trend has emerged. In particular, in internal combustion engines that use LPG gas as fuel, the tendency of valve seat rings to wear out has become remarkable.
この対策として、バルブシートリングに鉛(合金)を溶
浸することのより潤滑性を持たせる方法、あるいはバル
ブとの当接面には鉛を溶浸させ、基材には銅〈合金)を
溶浸させて耐摩耗性を向上させる方法(特開昭61−1
04048号)が提案されている。As a countermeasure for this, there is a method to improve lubricity by infiltrating the valve seat ring with lead (alloy), or by infiltrating the contact surface with the valve with lead and adding copper (alloy) to the base material. Method of improving wear resistance by infiltration (JP-A-61-1
No. 04048) has been proposed.
(発明が解決しようとする問題点)
しかしながら、鉛溶浸を行なうと銅溶浸に比較して強度
の低下が著しい、一方、摺動部に鉛(合金)を溶浸し、
基材に銅(合金)を溶浸する方法では、バルブシートリ
ングの製造工程が複雑になると同時に、摺動部と基材部
との材料強度の差が著しく大きくなり、このため溶浸中
およびバルブシートリングの使用中に変形が発生し易い
。本発明は鉛(合金)と銅(合金)を微細に分散させて
複合溶浸に上り、従来より性能が改良されたバルブシー
トリングを提供することを目的とするものである。(Problems to be solved by the invention) However, when lead infiltration is performed, the strength decreases significantly compared to copper infiltration.On the other hand, when lead (alloy) is infiltrated into the sliding part,
The method of infiltrating copper (alloy) into the base material complicates the manufacturing process of the valve seat ring, and at the same time, the difference in material strength between the sliding part and the base material becomes significantly large. Valve seat rings are prone to deformation during use. The object of the present invention is to provide a valve seat ring whose performance is improved compared to the conventional valve seat ring by finely dispersing lead (alloy) and copper (alloy) and performing composite infiltration.
(問題点を解決するための手段)
本発明のバルブシートリングは、耐摩耗性と材料強度向
上のため、バルブシートリングに溶浸されたPb−So
合金およびCu合金がバルブシートリングのほぼ全体に
微細に分散して存在していることを特徴とする。かかる
バルブシートリングを製造する方法は、バルブシートリ
ング用金属粉末成形体もしくは該金属粉末焼結体く予備
焼結体も含む)のバルブとの当接面もしくはその反対面
からPb−So合金およびCIまたはCu合金を別個の
溶浸源から溶浸させることを骨子とするものである。(Means for Solving the Problems) The valve seat ring of the present invention has Pb-So infiltrated into the valve seat ring to improve wear resistance and material strength.
The valve seat ring is characterized in that the alloy and the Cu alloy are present in a finely dispersed manner throughout almost the entire valve seat ring. The method for manufacturing such a valve seat ring involves applying a Pb-So alloy and The idea is to infiltrate the CI or Cu alloy from a separate infiltration source.
以下、本発明を具体的に説明する。The present invention will be explained in detail below.
バルブシートリングの基材となるものは、バルブシート
リング用金属粉末あるいは金属と炭化物などの化合物粉
末との混合粉末の成形体、仮焼結体、焼結体などであり
、これらは単層、複層体の何れであってもよい。またバ
ルブシートリングの組成も特に制限がなく、例えば本出
願人が提案した特公昭57−61106号、特開昭58
−152982号などの組成を使用することができる。The base material for valve seat rings is a molded body, temporary sintered body, sintered body, etc. of metal powder for valve seat rings or mixed powder of metal and compound powder such as carbide, etc. These are single layer, It may be any multilayer body. Furthermore, there is no particular restriction on the composition of the valve seat ring; for example, Japanese Patent Publication No. 57-61106 proposed by the applicant,
Compositions such as No.-152982 can be used.
本発明の複合溶浸組織は次のようなものである。The composite infiltrated structure of the present invention is as follows.
(イ)バルブシートリング全体でほぼ一定の溶浸組織で
あること:例えば摺動面が潤滑性に富んだ鉛溶浸組織で
あり、基材が強化作用が大である銅の溶浸組織であり、
これらの組織差が著しく大きいと、バルブシートリング
使用中の変形等の問題が起こる。そこで、はぼ一定の溶
浸組織が必要となる。(b) The entire valve seat ring should have a nearly constant infiltrated structure: For example, the sliding surface is a lead infiltrated structure with rich lubricity, and the base material is a copper infiltrated structure with a large reinforcing effect. can be,
If these structural differences are extremely large, problems such as deformation of the valve seat ring during use will occur. Therefore, a more or less uniform infiltration structure is required.
(ロ)溶浸されたPb−So合金とCuまたはCu合金
とがボア毎で識別されること:このように何れか一方の
合金であることが識別される状態で存在するPb−5+
+合金は耐摩耗性および潤滑性を高め、同様のCoもし
くはC++合金が強度および潤滑性を高める。また成形
体および焼結体に存在するボアの断面を光学顕微鏡で観
察すると、Pb−911合金が浸透したボアと、Co(
Co合金)が浸透したボアが識別される。このように光
学顕微鏡で識別される微細分散状態であると、各材料の
変形挙動等に差があるにも関わらず、バルブシートリン
グ使用中の変形挙動は問題にならない。(b) Infiltrated Pb-So alloy and Cu or Cu alloy can be identified for each bore: Pb-5+ that exists in a state where it can be identified that it is either one of the alloys.
+ alloys increase wear resistance and lubricity, while similar Co or C++ alloys increase strength and lubricity. Furthermore, when observing the cross-sections of the bores in the molded and sintered bodies using an optical microscope, we found that the bores penetrated by Pb-911 alloy and the Co(
A bore infiltrated with Co alloy) is identified. In this finely dispersed state that can be identified with an optical microscope, the deformation behavior during use of the valve seat ring will not be a problem, even though there are differences in the deformation behavior of each material.
溶浸合金のひとつをPb−5++合金としたのは、鉛単
独では溶浸が困難であることと、スズは鉛による潤滑作
用を損なわないからである。Pb−5o合金には第三成
分を添加してもよいが、溶浸性と潤滑性を損なわないよ
うに5%以下に添加量を制限する必要がある。 Pb−
311合金中でのスズ含有量は鉛による潤滑効果が損な
われない範囲とする。Ca合金の合金成分としてはSo
、 Pb、 Co、 Me、 Fe、 2o、 Niな
どをイセ用することができる。Co、 Me、 Feは
数%以下の添加量で溶浸時の接着性や製品表面の耐食性
を改善する。The Pb-5++ alloy was selected as one of the infiltration alloys because it is difficult to infiltrate with lead alone, and tin does not impair the lubricating effect of lead. A third component may be added to the Pb-5o alloy, but the amount added must be limited to 5% or less so as not to impair infiltration and lubricity. Pb-
The tin content in the 311 alloy is set within a range that does not impair the lubricating effect of lead. The alloy component of Ca alloy is So
, Pb, Co, Me, Fe, 2o, Ni, etc. can be used as an initial material. Co, Me, and Fe improve adhesion during infiltration and corrosion resistance of the product surface when added in amounts of several percent or less.
(A)Pb−So合金はボアの全体積の内10〜95%
、より好ましくは30〜60%を溶浸していることが望
ましい。C1合金は残部を溶浸してボア全体を充填して
いる。Pb−So合金とCII(Cu合金)の溶浸体積
比率は耐摩耗性と強度のバランスを考慮して適宜室める
。なお、溶浸体積の測定方法は各材料の比重により容易
に求められる。(A) Pb-So alloy accounts for 10-95% of the total volume of the bore
, more preferably 30 to 60%. The remaining C1 alloy is infiltrated to fill the entire bore. The infiltration volume ratio of Pb-So alloy and CII (Cu alloy) is adjusted appropriately considering the balance between wear resistance and strength. The infiltration volume can be easily measured using the specific gravity of each material.
目的とする複合溶浸組織を得るために、本発明者は種々
試行した。従来より知られているCu−5o合金単独の
溶浸(例えば特開昭62−44556号公報参照)、あ
るいはPb−So合金の溶浸(例えば特開昭61−10
4048号の表1参照)のように最終組成の合金を溶浸
源として使用するとpbが先に溶融し流動し、結果とし
ては充填率の低い溶浸しかできなかった。これらの方法
を試行した後、Pb−5o合金とCuもしくはCo合金
とを個別の溶浸源として溶浸させる方法に到達した。In order to obtain the desired composite infiltrated structure, the present inventor made various attempts. Infiltration of a conventionally known Cu-5o alloy alone (for example, see JP-A-62-44556) or infiltration of a Pb-So alloy (for example, JP-A-61-10)
When an alloy with the final composition as shown in Table 1 of No. 4048 was used as an infiltration source, PB melted and flowed first, resulting in infiltration with a low filling rate. After trying these methods, we arrived at a method in which Pb-5o alloy and Cu or Co alloy are infiltrated as separate infiltration sources.
Pb−5o合金の溶浸はこれを成形体の上に載せ該合金
の融点以上に加熱して行ない、またCoもしくはCo合
金の溶浸はこれをその融点以上に加熱して行なう。Pb
−So合金を先ず溶浸させ、続いてCuまたはCu合金
を溶浸させる場合は、後の溶浸工程の加熱温度がPb−
3n合金の融点を越えるために、前後工程の間に時間間
隔があるとCaまたはCu合金の溶浸中にPb−So合
金が焼結体等から溶は出すおそれがある。そこで、Pb
−5n合金の溶浸材の上にCaまたはCa合金の溶浸材
を載せて、両者の融点以上の温度に加熱を行ない、溶融
Pb−5o合金のフローとCuまたはCu合金のフロー
が前後して焼結体等の中に侵入するように溶浸を行なう
ことが好ましい。この場合両者の合金が同一工程で溶浸
されるため各成分が混和し易く、部分的合金化が起こる
が、溶浸材料(源)を重ねて配置しているためにフロー
が分かれて発生し、識別が困難になる程度の全面的合金
化は起こらない。Infiltration of Pb-5o alloy is carried out by placing it on a compact and heating it above the melting point of the alloy, and infiltration of Co or Co alloy is carried out by heating it above its melting point. Pb
- When infiltrating So alloy first and then infiltrating Cu or Cu alloy, the heating temperature in the subsequent infiltration step is Pb-
Since the melting point of the 3n alloy is exceeded, if there is a time interval between the preceding and following steps, there is a risk that the Pb--So alloy will melt out of the sintered body during the infiltration of the Ca or Cu alloy. Therefore, Pb
-Pb-5n alloy infiltrant is placed on top of Ca or Ca alloy infiltrant and heated to a temperature higher than the melting point of both, so that the flow of molten Pb-5o alloy and the flow of Cu or Cu alloy are mixed. It is preferable to perform infiltration so as to penetrate into the sintered body or the like. In this case, since both alloys are infiltrated in the same process, each component is easily miscible and partial alloying occurs, but since the infiltration materials (sources) are placed overlapping, the flows separate. , no general alloying occurs to the extent that it is difficult to identify.
逆にCuまたはCu合金を先に溶浸させ、続いてPb−
3a合金を溶浸させる場合は、CoまたはCu合金の上
にPb−5o合金を載せて加熱を行なうと、後者が球状
になって良好な侵入が困難になる。したがって、先ずC
u合金を溶浸させ、続いてPb−So合金を溶浸させる
ことが望ましい。Conversely, Cu or Cu alloy is infiltrated first, followed by Pb-
When infiltrating a 3a alloy, if a Pb-5o alloy is placed on top of a Co or Cu alloy and heated, the latter becomes spherical, making good infiltration difficult. Therefore, first C
It is desirable to infiltrate the u alloy followed by the Pb-So alloy.
バルブシートリングの厚さが2hm程度以下であれば、
Pb−5o合金およびC1またはCu合金の分布は厚さ
方向に一定となる。この厚さを越えるとバルブシートリ
ングの溶浸源側でC1lまたはCu合金の割合が多くな
る。If the thickness of the valve seat ring is about 2hm or less,
The distribution of Pb-5o alloy and C1 or Cu alloy is constant in the thickness direction. When this thickness is exceeded, the proportion of C1l or Cu alloy increases on the infiltration source side of the valve seat ring.
CuもしくはCa合金の割合が多い場合は、溶浸後のバ
ルブシートリングは硬さが高く、そのままでは加工が困
難なこともあるので、熱処理を行ない加工性を向上させ
ることが場合により必要となる。以下、実施例によりさ
らに詳しく本発明を説明する。If the proportion of Cu or Ca alloy is high, the valve seat ring after infiltration will be hard and may be difficult to process as is, so it may be necessary to heat treat it to improve the processability. . Hereinafter, the present invention will be explained in more detail with reference to Examples.
(実施例)
Fe粉末(−100メツシユ)に20重量%の硬質合金
粒子(Fe−Co−Cu−N1−C系合金)および1重
量%(以下、同じ)の黒鉛粉末よりなる原料粉末に潤滑
剤として0.8%のステアリン酸亜鉛粉末を添加した後
、V型混合機で30分間混合して調製した混合粉末を成
形圧力6 toa/am”で成形して、外径35em、
内径25am、厚さ10+uのリングとした。(Example) Lubricating raw material powder consisting of Fe powder (-100 mesh), 20% by weight of hard alloy particles (Fe-Co-Cu-N1-C alloy) and 1% by weight of graphite powder (hereinafter the same) After adding 0.8% zinc stearate powder as an agent, the mixed powder prepared by mixing with a V-type mixer for 30 minutes was molded at a molding pressure of 6 toa/am'' to form an outer diameter of 35 em,
The ring had an inner diameter of 25 am and a thickness of 10+u.
溶浸粉末のPb−3n合金(鉛70%)およびCu合金
(福山金属製FIP^3−Cu−Fc−Me−Zo系合
金)を表1の溶浸比率で別々に3 ton/cm2の圧
力で成形した後、母材成形体(1−第1図)の上にPb
−5o合金(2)を、その上にCo合金(3)を叙せた
(本発明材)。The infiltration powders of Pb-3n alloy (70% lead) and Cu alloy (FIP^3-Cu-Fc-Me-Zo alloy manufactured by Fukuyama Metals) were separately infiltrated at the infiltration ratio shown in Table 1 at a pressure of 3 ton/cm2. After molding with Pb on the base material molded body (1-Fig. 1)
-5o alloy (2) was coated thereon with Co alloy (3) (material of the present invention).
比較材2は上記Pb−5o合金のみを、比較材3は上記
Co合金のみを載せた。なお、比較材1は溶浸材を載せ
ないで次の焼結を行なった。Comparative material 2 was loaded with only the above Pb-5o alloy, and comparative material 3 was loaded with only the above Co alloy. Note that Comparative Material 1 was subjected to the next sintering without applying the infiltration material.
その後焼結を1130℃(本発明材1.3)および11
00℃(本発明材2および比較材)の温度で分解アンモ
ニアガス雰囲気中で40分間焼結を行なった。After that, sintering was carried out at 1130℃ (invention material 1.3) and 11
Sintering was performed for 40 minutes in a decomposed ammonia gas atmosphere at a temperature of 00°C (inventive material 2 and comparative material).
比較材4は上記した焼結後に摺動面側に上記したPb−
So合金を座面側に上記したCu合金を2工程で溶浸さ
せたものである。Comparative material 4 has the above-mentioned Pb- on the sliding surface side after the above-mentioned sintering.
The above-mentioned Cu alloy is infiltrated onto the seat side of the So alloy in two steps.
また比較材3は溶浸焼結7i6oo℃で1時間熱処理し
な。Comparative material 3 was heat treated at 7i6oo°C for 1 hour for infiltration and sintering.
上記各材料の特性を表1に示す。なお、表中の摩耗量は
弁座摩耗試験機で測定した幅方向の摩耗量である。密度
は溶浸後測定した値である。Table 1 shows the properties of each of the above materials. The amount of wear in the table is the amount of wear in the width direction measured with a valve seat wear tester. The density is a value measured after infiltration.
(以下余白)
表 1
本発明材1の焼結溶浸後の盟1iit鏡組織(倍率40
0倍)を第2図に示す。図において、白色を帯び、結晶
粒が明瞭に識別できる部分はFe粒子であり、マルテン
サイトと残留オーステナイト組織を有する。このFe粒
子と接し、白色部と黒色部が細かく入り混じった部分が
硬質合金粒子である。(Margin below) Table 1 Mirror structure of Inventive material 1 after sintering and infiltration (magnification 40
0x) is shown in Figure 2. In the figure, the white parts where crystal grains can be clearly identified are Fe particles, which have martensite and retained austenite structures. The part that is in contact with the Fe particles and has a fine mixture of white parts and black parts is a hard alloy particle.
黒鉛とFc粒子が反応して形成されたパーライトが認め
られる。写真上で最も黒い部分は空孔である。この部分
は溶浸時に充填されたPb−3II合金がエツチングに
より腐食されたため形成されたと考えられる。粒界に沿
って存在する灰色の部分は溶浸されたCu合金である。Pearlite formed by the reaction between graphite and Fc particles is observed. The darkest part in the photo is the hole. It is thought that this portion was formed because the Pb-3II alloy filled during infiltration was corroded by etching. The gray areas along the grain boundaries are infiltrated Cu alloy.
本発明材の性能は、圧環強度は鉛溶浸材より優れるが銅
溶浸材とほぼ同等かあるいはこれに僅かに及ばない。一
方耐摩耗性は鉛溶浸材(比較例2.4)とほぼ同等ある
いはそれ以上である。この耐摩耗性レベルが得られた理
由は鉛合金粒子が銅合金粒子により強化された基地に保
持されているため、脱落、削り取り、軟化等の耐摩耗性
上の悪影響を受は難くなっており、耐摩耗性の組織依存
性が大であるためと推定される。一方、強度は銅の溶浸
量に依存する組成依存性が大であるが、銅に対する鉛合
金の割合が大きいにも係わらずかなりのレベルの強度が
得られているのはV&細分散銅が強度の低下傾向を阻止
しているためと推定される。The performance of the material of the present invention is that the radial crushing strength is superior to that of the lead infiltrated material, but it is almost equal to or slightly inferior to that of the copper infiltrated material. On the other hand, the wear resistance is almost equal to or higher than that of the lead infiltrated material (Comparative Example 2.4). This level of wear resistance was achieved because the lead alloy particles are held in a matrix reinforced by copper alloy particles, making them less susceptible to negative effects on wear resistance such as falling off, scraping, and softening. This is presumed to be because the wear resistance is highly dependent on the structure. On the other hand, strength is largely composition dependent on the amount of copper infiltrated, but the reason why a considerable level of strength is obtained despite the large ratio of lead alloy to copper is that V&finely dispersed copper It is presumed that this is because it prevents the tendency of strength to decrease.
なお、比較材4は溶浸焼結工程でバルブシートリングに
変形が生じな。そのため比較材4のバルブシートリング
は焼結炉内での段積みができなかった。Note that in comparison material 4, the valve seat ring did not undergo deformation during the infiltration and sintering process. Therefore, the valve seat rings of Comparative Material 4 could not be stacked in a sintering furnace.
(発明の効果)
本発明によれば、耐摩耗性と強度のバランスがとれたバ
ルブシートリングを簡単な製法で製造することができる
。(Effects of the Invention) According to the present invention, a valve seat ring with a good balance between wear resistance and strength can be manufactured using a simple manufacturing method.
第1図は本発明方法における溶浸工程を説明する成形体
および溶浸材の断面図。
第2図は本発明のバルブシートリングの焼結溶浸組織を
示す金属盟微鏡組織写真である。
1−母材の成形体 2 Pb−3n合金の成形体3−
Cu合金の成形体FIG. 1 is a cross-sectional view of a molded body and an infiltrant material for explaining the infiltration step in the method of the present invention. FIG. 2 is a metal microstructure photograph showing the sintered infiltration structure of the valve seat ring of the present invention. 1-Base material molded body 2 Pb-3n alloy molded body 3-
Cu alloy molded body
Claims (1)
もしくは該金属粉末焼結体のバルブとの当接面もしくは
その反対面からPb−So合金およびCuまたはCu合
金を別個の溶浸源から溶浸させることにより、バルブシ
ートのほぼ全体がPb−So合金とCuまたはCu合金
で複合溶浸されているバルブシートリングを製造するこ
とを特徴とする溶浸バルブシートリングの製造方法。1. Infiltrating Pb-So alloy and Cu or Cu alloy from separate infiltration sources from the contact surface with the valve or the opposite surface of the metal powder compact for valve seat ring of an internal combustion engine or the metal powder sintered compact. A method for manufacturing an infiltrated valve seat ring, which comprises manufacturing a valve seat ring in which substantially the entire valve seat is compositely infiltrated with a Pb-So alloy and Cu or a Cu alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25471987A JPH07116489B2 (en) | 1987-10-12 | 1987-10-12 | Manufacturing method of infiltration valve seat ring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25471987A JPH07116489B2 (en) | 1987-10-12 | 1987-10-12 | Manufacturing method of infiltration valve seat ring |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01100207A true JPH01100207A (en) | 1989-04-18 |
JPH07116489B2 JPH07116489B2 (en) | 1995-12-13 |
Family
ID=17268894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25471987A Expired - Fee Related JPH07116489B2 (en) | 1987-10-12 | 1987-10-12 | Manufacturing method of infiltration valve seat ring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07116489B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08270499A (en) * | 1995-03-31 | 1996-10-15 | Yamaha Motor Co Ltd | Junction valve seat |
WO2002078881A1 (en) * | 2001-03-28 | 2002-10-10 | Korea Sintered Metal Co., Ltd. | Method for manufacturing flange for compressor |
CN102120262A (en) * | 2011-04-26 | 2011-07-13 | 常熟市双月机械有限公司 | Valve retainer |
-
1987
- 1987-10-12 JP JP25471987A patent/JPH07116489B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08270499A (en) * | 1995-03-31 | 1996-10-15 | Yamaha Motor Co Ltd | Junction valve seat |
WO2002078881A1 (en) * | 2001-03-28 | 2002-10-10 | Korea Sintered Metal Co., Ltd. | Method for manufacturing flange for compressor |
US7052648B2 (en) | 2001-03-28 | 2006-05-30 | Korea Sintered Metal Co., Ltd. | Method for manufacturing flange for compressor |
CN102120262A (en) * | 2011-04-26 | 2011-07-13 | 常熟市双月机械有限公司 | Valve retainer |
Also Published As
Publication number | Publication date |
---|---|
JPH07116489B2 (en) | 1995-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2185041A (en) | Aluminium base bearing alloy and method of producing same | |
US5895517A (en) | Sintered Fe alloy for valve seat | |
US3983615A (en) | Sliding seal member for an internal combustion engine | |
JP3401619B2 (en) | Method for producing at least wear layer of sintered part capable of high load | |
US3790352A (en) | Sintered alloy having wear resistance at high temperature | |
JPH01100207A (en) | Production of infiltrated valve seat ring | |
JPH0666117A (en) | Valve guide of internal combustion engine | |
CN102227569B (en) | Bearing material | |
KR100234601B1 (en) | High temperature wear resistant sintered alloy | |
JPH0555591B2 (en) | ||
US20010012490A1 (en) | Sintered alloy and method for the hardening treatment thereof | |
JP2643680B2 (en) | Valve seat made of metal-filled sintered alloy for internal combustion engine | |
JPS5810460B2 (en) | Engine cylinder head manufacturing method | |
JPS63227757A (en) | Method for thermally spraying wear-resistant ceramics | |
JP3331963B2 (en) | Sintered valve seat and method for manufacturing the same | |
JPH0770720A (en) | Ferrous sintered alloy for valve seat | |
JPS59203813A (en) | Double layer valve seat made of fe group sintering material | |
JPS62202044A (en) | Manufacture of sintered alloy superior in high temperature wear resistance | |
KR890001657B1 (en) | Sintering alloy for valve seat and making method of sintering valve seat | |
JPH01178712A (en) | Valve seat made of iron-based sintered alloy | |
JPH0543998A (en) | Valve seat made of metal-filled fe-base sintered alloy extremely reduced in attack on mating material | |
GB2088414A (en) | Sintering Stainless Steel Powder | |
JPS63114945A (en) | Sintered alloy member excellent in wear resistance and corrosion resistance | |
JPS6296661A (en) | Sintered iron alloy for valve seat | |
JP3175589B2 (en) | Coating material for iron-based casting, iron-based casting provided with coating layer using the same, and method of forming coating layer therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |