Nothing Special   »   [go: up one dir, main page]

JPH01108294A - Production of phosphor - Google Patents

Production of phosphor

Info

Publication number
JPH01108294A
JPH01108294A JP26477387A JP26477387A JPH01108294A JP H01108294 A JPH01108294 A JP H01108294A JP 26477387 A JP26477387 A JP 26477387A JP 26477387 A JP26477387 A JP 26477387A JP H01108294 A JPH01108294 A JP H01108294A
Authority
JP
Japan
Prior art keywords
phosphor
raw material
particles
laser beam
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26477387A
Other languages
Japanese (ja)
Other versions
JPH0662938B2 (en
Inventor
Junichi Hatada
畠田 潤一
Yoshinori Shimizu
義則 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP62264773A priority Critical patent/JPH0662938B2/en
Publication of JPH01108294A publication Critical patent/JPH01108294A/en
Publication of JPH0662938B2 publication Critical patent/JPH0662938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To prepare a phosphor having uniform particle diameter and spherical form, by heating a raw material of a phosphor with a laser beam and then granuating the material. CONSTITUTION:A laser beam from a laser beam generator 1 is passed through a condenser lens 2 and a lens protection space 3 held in an oxidizing, reducing or neutral atmosphere and applied to a nozzle 5. On the other hand, a raw material of a phosphor stored in a feed hopper 7 and comprising a phosphor matrix compsn. and an activator is carried by a carrier gas 8 and sprayed on the nozzle 5 through a feed pipe 6 to heat, melt and granulate the material, thereby giving spherical phosphor particles. The phosphor particles are then introduced into a cooling chamber 9 kept so as to have an oxidizing, reducing or neutral atmosphere to cool the particles. The particles are then collected by a filter 12 connected to an exhauster 13.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、螢光体の製造方法に係り、特に加熱源とし
てレーザビームを用いて螢光体を造粒する螢光体の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a method for producing a phosphor, and more particularly to a method for producing a phosphor in which the phosphor is granulated using a laser beam as a heating source. .

[従来の技術及びその問題点] 一般に、螢光体は、数ミクロンの粒子からなっており、
有機バインダー等を媒体とすることによって形成すべき
硝子面等に螢光体粒子を付着させて利用されている。
[Prior art and its problems] In general, phosphors are composed of particles of several microns,
It is used by attaching phosphor particles to a glass surface or the like to be formed using an organic binder or the like as a medium.

一般には螢光体粒子は組成物を混合してこの混合物を数
時間電気炉で焼成することによって得られている。電気
炉で数時間要するので、焼成工程を改良するため、造粒
技術を螢光体55造に応用することが考えられる。例え
ば、特公昭45−37296号公報及び特閉昭52−3
7581号公報には、ノズルを使って螢光体原料を液体
燃焼炎に噴出させて粒状粒子を作製することが開示され
ている。また、最近では、セラミックの造粒技術を螢光
体製造に適用することが考えられ、例えば、特開昭62
−201989号公報には、高周波プラズマを使って螢
光体原料を溶融することが提案されている。
Generally, phosphor particles are obtained by mixing the compositions and firing the mixture in an electric furnace for several hours. Since it takes several hours in an electric furnace, it is conceivable to apply granulation technology to the production of the phosphor 55 in order to improve the firing process. For example, Japanese Patent Publication No. 45-37296 and Japanese Patent Publication No. 52-3
Publication No. 7581 discloses that a nozzle is used to eject a phosphor material into a liquid combustion flame to produce granular particles. Furthermore, recently, it has been considered to apply ceramic granulation technology to the production of phosphors; for example, in JP-A-62
Japanese Patent No. 201989 proposes melting a phosphor material using high-frequency plasma.

しかしながら、従来のこれらの方法では、依然として工
業的には実用的ではない。例えば、特公昭45−372
96号公報及び特開昭52−37581号公報では、加
熱源が液体燃焼炎であるため、螢光体原料を酸化さすこ
とが容易であるけれとも、螢光体原料を還元或は分解す
る反応には不適である。また、特開昭62−20198
9号公報に示されるような高周波プラズマを使用して螢
光体原料を溶融する場合、反応時の雰囲気を酸化、還元
或は中性に保持制御することは容易であるが、使用加熱
源が高周波プラズマであるので、高電圧を使用しなけれ
ばならず、実用的でないという問題があった。
However, these conventional methods are still not industrially practical. For example, Tokuko Sho 45-372
96 and JP-A-52-37581, since the heating source is a liquid combustion flame, it is easy to oxidize the phosphor raw material, but the reaction that reduces or decomposes the phosphor raw material is difficult. It is unsuitable for Also, JP-A-62-20198
When melting phosphor raw materials using high-frequency plasma as shown in Publication No. 9, it is easy to maintain and control the atmosphere during the reaction to be oxidizing, reducing, or neutral, but depending on the heating source used. Since it is a high-frequency plasma, a high voltage must be used, which poses a problem that it is not practical.

従って、この発明の目的は、反応時の雰囲気を容易に制
御できて工業的に容易であって、しかも均一な粒径て均
一な球形形状の螢光体を得ることのてきる新規な螢光体
の製造方法を提供することにある。
Therefore, an object of the present invention is to develop a new phosphor that is industrially easy because the atmosphere during the reaction can be easily controlled, and that allows the production of phosphors with uniform particle size and uniform spherical shape. The objective is to provide a method for manufacturing the body.

[問題点を解決するための手段] 本発明者は、従来よりセラミックの造粒技術に着目して
、螢光体粒子の製造にレーザービームを加熱源として適
用して新規な螢光体の製造方法を見い出した。
[Means for Solving the Problems] The present inventor has focused on conventional ceramic granulation technology, and has developed a method for producing a novel phosphor by applying a laser beam as a heating source to the production of phosphor particles. I found a way.

即ち、この発明の目的は、螢光体原料をレーザビームで
加熱して造粒することにより、解決される。
That is, the object of the present invention is achieved by heating the phosphor raw material with a laser beam and granulating it.

レーザービームは高エネルギ密度が得やすく制御しやす
いので、例えば、高周波プラズマに比較して螢光体の加
熱源として経済的に最適であると共に、反応時の雰囲気
制御、螢光体原料の供給量の制御、反応温度の制御が容
易である。
Laser beams provide high energy density and are easy to control, so they are economically optimal as a heating source for phosphors compared to high-frequency plasmas, and they are also effective in controlling the atmosphere during reactions and supplying the phosphor raw materials. and reaction temperature are easy to control.

[実施例] 以下、この発明の実施例について説明する。[Example] Examples of the present invention will be described below.

まず、実施例に先だって本発明に使用した装置について
第1図を参照しながら説明する。
First, prior to working examples, the apparatus used in the present invention will be explained with reference to FIG.

レーザービーム発生装置lとしては、セラミックの造粒
のための炭酸ガスレーザー発生器を用いた。レーザービ
ーム発生装置lの下方には集光レンズ2が配置され、こ
の集光レンズ2は収納器内のレンズ保護ガス空間3を規
定している。レンズ保護空間3には、レーザービーム!
!!羽時に飛散する高温粒子から集光レンズ2を保護す
る為にレンズ保護ガス4が注入される。また、収容器の
下部にはノズル部5が形成されている。ノズル部5はキ
ャリアガス道管6の一端に連結されており、このキャリ
アガス道管6の他端は原料供給装置の原料供給ホッパ7
と連結されていると共に、キャリアガス8の供給源に連
結されている。ノズル部5の下方には冷却チャンバ9が
設けられており、この冷却チャンバ9の外周壁には冷却
水が矢印10から矢印11に示されるように循環してい
る。冷却チャンバ9の一方にはフィルタ12が設けられ
ており、このフィルタ12は排気装置12に連結されて
いる。
As the laser beam generator 1, a carbon dioxide laser generator for ceramic granulation was used. A condensing lens 2 is arranged below the laser beam generator l, and this condensing lens 2 defines a lens-protecting gas space 3 within the container. Laser beam in lens protection space 3!
! ! A lens protection gas 4 is injected to protect the condenser lens 2 from high-temperature particles scattered by the wings. Further, a nozzle portion 5 is formed in the lower part of the container. The nozzle portion 5 is connected to one end of a carrier gas pipe 6, and the other end of the carrier gas pipe 6 is connected to a raw material supply hopper 7 of a raw material supply device.
It is also connected to a supply source of carrier gas 8. A cooling chamber 9 is provided below the nozzle portion 5, and cooling water circulates around the outer peripheral wall of the cooling chamber 9 as shown by arrows 10 and 11. A filter 12 is provided on one side of the cooling chamber 9 and is connected to an exhaust device 12 .

運転時、レーザービーム発生装置1から出たレーザービ
ームは集光レンズ2によってノズル部5付近に集まる。
During operation, the laser beam emitted from the laser beam generator 1 is focused near the nozzle portion 5 by the condenser lens 2.

一方、原料供給ホッパ7からキャリアガス8で搬送され
てきた螢光体原料はノズル部5から噴霧される。噴霧さ
れた融解粉体は冷却チャンバ9で冷却された後、フィル
タ12及び排気装置13を介して補集される。
On the other hand, the phosphor raw material conveyed from the raw material supply hopper 7 by the carrier gas 8 is sprayed from the nozzle portion 5. The sprayed molten powder is cooled in a cooling chamber 9 and then collected via a filter 12 and an exhaust device 13.

このレーザ溶融造粒装置によれば、キャリアガス8及び
レンズ保護ガス4の種類とガス圧とを設定することによ
り、螢光体の製造にとって極めて広範囲に還元雰囲気か
ら中性雰囲気さらに酸化雰囲気と任意に設定することが
でき、また、レーザー発生装置lを設定することにより
、粉体の溶融温度を広範囲に設定できる。
According to this laser melting granulation device, by setting the types and gas pressures of the carrier gas 8 and the lens protective gas 4, a wide range of atmospheres can be used for the production of phosphors, from reducing atmosphere to neutral atmosphere to oxidizing atmosphere. By setting the laser generator l, the melting temperature of the powder can be set over a wide range.

また、このレーザ溶融造粒装置によれば、螢光体原料は
、付活剤を含んだ原料であってもよく、また、螢光体原
料の製造方法が、単なる原料の均一な混合物であっても
或は共沈物であってもよい。
Further, according to this laser melt granulation device, the phosphor raw material may be a raw material containing an activator, and the method for producing the phosphor raw material may be a simple homogeneous mixture of raw materials. It may also be a coprecipitate.

さらに、このレーザ溶融造粒装置によれば、冷却チャン
バ9内の雰囲気を変えることができる。
Furthermore, according to this laser melt granulation device, the atmosphere inside the cooling chamber 9 can be changed.

即ち、還元雰囲気から中性雰囲気さらに酸化雰囲気と任
意に設定した状態で螢光体粒子を冷却することができる
That is, the phosphor particles can be cooled in an arbitrarily set state from a reducing atmosphere to a neutral atmosphere to an oxidizing atmosphere.

次に、このレーザ溶融造粒装置を用いた実施例について
述べる。
Next, an example using this laser melt granulation apparatus will be described.

(実施例1) 酸化イツトリウム1モルと酸化ユーロピウム0゜05モ
ルを混合し、800℃に仮焼きした原料を乾式粉砕をし
て200メツシユのフルイを通し、原料供給ホッパ7に
充填し、キャリアーガス8に清浄空気を3Kg/cm2
の圧力で10リットル/分のff1ffiで混合し、ノ
ズルに100g/分て供給し、出力3.5kwの、レー
ザービームを照射した後、酸素雰囲気中の冷却チャンバ
ーで冷却し捕集した。レンズ保護ガス4にはアルゴン3
Kg/cmzの圧力で2リットル/分を供給した。
(Example 1) 1 mole of yttrium oxide and 0.05 mole of europium oxide were mixed and calcined at 800°C. The raw material was dry-pulverized, passed through a 200-mesh sieve, and charged into the raw material supply hopper 7. 8. Clean air 3Kg/cm2
The mixture was mixed at a pressure of 10 liters/min ff1ffi, supplied to a nozzle at 100 g/min, irradiated with a laser beam with an output of 3.5 kW, and then cooled and collected in a cooling chamber in an oxygen atmosphere. Argon 3 for lens protection gas 4
2 liters/min was supplied at a pressure of Kg/cmz.

得られたY2O3: E u螢光体は、真円率が1゜0
に近いほぼ真珠の粒子であることが走査型顕微鏡で確認
された。この電子顕微鏡写真を第2図に示す。又、従来
の製造法で製造された螢光体に比へ、同等の発光輝度を
有した。
The obtained Y2O3: Eu phosphor has a circularity of 1°0.
Using a scanning microscope, it was confirmed that the particles were almost pearl-like particles. This electron micrograph is shown in FIG. In addition, the luminance was equivalent to that of the phosphor manufactured by the conventional manufacturing method.

(実施例2) リン酸アンモニウム1モル水溶液を撹拌しながら塩化ラ
ンタン、セリウム、テルビウムの混合1モル水溶液を滴
下し、共沈物を生成し、分離・水洗・乾燥した後、乾式
200メツシユのフルイな通し、原料供給ホッパ7に充
填し、キャリアーガス8にCOを3Kg/crn2の圧
力で15リットル/分の端流で混合し、ノズル内に15
3g/分て供給し、出力4.5kwのレーザービームを
照射した後、COガス雰囲気中の冷却チャンバ9で冷却
し捕集した。
(Example 2) A mixed 1 molar aqueous solution of lanthanum chloride, cerium, and terbium was added dropwise to a 1 molar ammonium phosphate aqueous solution with stirring to form a coprecipitate, which was separated, washed with water, dried, and then placed in a dry 200-mesh sieve. The raw material supply hopper 7 is filled, and the carrier gas 8 is mixed with CO at a pressure of 3 kg/crn2 at an end flow of 15 liters/min.
After being supplied at a rate of 3 g/min and irradiated with a laser beam with an output of 4.5 kW, it was cooled and collected in a cooling chamber 9 in a CO gas atmosphere.

レンズ保護ガス4にはアルゴンガスを3Kg7cm2の
圧力で2.8リットル/分を供給した。
As the lens protection gas 4, argon gas was supplied at a pressure of 3 kg 7 cm 2 at a rate of 2.8 liters/min.

得られたLaPO4: Ce、Tb螢光体は、平均粒径
7μで実施例1と同様の球状粒子が確認された。又、螢
光体分光光度計による測定により、従来法で製造された
螢光体と同等の緑色発光の輝度を示した。
The obtained LaPO4:Ce,Tb phosphor was confirmed to have spherical particles similar to those in Example 1 with an average particle size of 7 μm. In addition, measurements using a phosphor spectrophotometer showed that the luminance of green light emission was equivalent to that of phosphors produced by conventional methods.

(実施例3) 塩化ランタン1モル溶液と塩化テルビウム0゜16モル
溶液を混合撹拌しなからシュウ酸溶液を加え、シュウ酸
、ランタン、タルビニラムの共沈物を生成し、分離、水
洗、乾燥した粉末を原料供給ホッパ7に充填し、キャリ
アーガス8として塩素ガス3Kg/cm2の圧力で3リ
ットル/分の竜流で混合し、ノズル内に50g/分で供
給し、出力1.Okwのレーザービームを照射した後、
COガス、塩素ガス雰囲気中の冷却チャンバー内で冷却
し捕集した。
(Example 3) A 1 molar solution of lanthanum chloride and a 0.16 molar solution of terbium chloride were mixed and stirred, and then an oxalic acid solution was added to form a coprecipitate of oxalic acid, lanthanum, and talvinyram, which was separated, washed with water, and dried. The powder is filled into the raw material supply hopper 7, mixed with chlorine gas as a carrier gas 8 at a pressure of 3 kg/cm2 in a torrent flow of 3 liters/min, and fed into the nozzle at a rate of 50 g/min, with an output of 1. After irradiating Okw's laser beam,
It was cooled and collected in a cooling chamber in a CO gas or chlorine gas atmosphere.

レンズ保護ガス4にはCOガスを3 K g / c 
m2の圧力で5リットル/分で供給した。得られたLa
0C1:Tb螢光体は、実施例1. 2と同様に球状粒
子であフた。
Lens protection gas 4 contains CO gas at 3 K g/c
It was fed at a rate of 5 l/min at a pressure of m2. The obtained La
The 0C1:Tb phosphor was prepared in Example 1. Similar to 2, spherical particles were obtained.

[発明の効果] 以−L説明したように、この発明の方法によれば、反応
時の雰囲気を容易に制御できて工業的に容易であって、
しかも均一な粒径で均一な球形形状の螢光体を得ること
ができる。
[Effects of the Invention] As explained below, according to the method of the present invention, the atmosphere during the reaction can be easily controlled, and it is industrially easy.
Moreover, it is possible to obtain a phosphor having a uniform particle size and a uniform spherical shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を実施するためのレーザ溶融造
粒装置を示す概略図、第2図は、本発明の方法により得
られたY2O3: EuQ光体粒子の粒状構造を示す電
子Vr4微鏡写真図である。 l・・レーザ発生装置、2・・集光レンズ、4・・レン
ズ保護ガス、5・・ノズル部、7・・原料供給ホッパ、
8・・キャリアガス、9・・冷却チャンバ。 特許出願人 日亜化学工業株式会社 第2図 8g 手続補JIE書(方式) %式% 1、事件の表示 昭和62年 特 許 願 第264773号2、発明の
名称 螢光体の製造方法 3、補正をする者 事件との関係 特許出願人 住所 徳島県阿南市上中町491番地100氏名 日亜
化学工業株式会社 代表者 小 川 信 m   ′ 4、補正命令の日付 昭和63年1月26日発送 5、補正により増加する発明の数 な  し 6、補正の対象 図面(第1図及び第2図) 7、補正の内容 願書に最初に添付した図面の洗浄・別 紙のとおり(内容に変更なし)
FIG. 1 is a schematic diagram showing a laser melt granulation apparatus for carrying out the method of the present invention, and FIG. 2 is an electron Vr4 diagram showing the granular structure of Y2O3:EuQ light particles obtained by the method of the present invention. This is a microscopic photograph. 1. Laser generator, 2. Condensing lens, 4. Lens protective gas, 5. Nozzle section, 7. Raw material supply hopper,
8. Carrier gas, 9. Cooling chamber. Patent Applicant Nichia Chemical Industries, Ltd. Figure 2 8g Procedural Supplement JIE Document (Method) % Formula % 1. Indication of the case 1988 Patent Application No. 264773 2. Name of the invention Method for manufacturing phosphors 3. Relationship with the case of the person making the amendment Patent applicant address: 491-100, Kaminaka-cho, Anan City, Tokushima Prefecture Name: Nichia Chemical Industries, Ltd. Representative: Nobuo Ogawa m' 4, Date of amendment order: January 26, 1988 Sent: 5 , No increase in the number of inventions due to the amendment 6. Drawings subject to the amendment (Figures 1 and 2) 7. Contents of the amendment Cleaning of the drawing originally attached to the application As shown in the attached sheet (no change in content)

Claims (5)

【特許請求の範囲】[Claims] (1) 螢光体原料をレーザビームで加熱して造粒する
ことを特徴とする螢光体の製造方法。
(1) A method for producing a phosphor, which comprises heating and granulating a phosphor raw material with a laser beam.
(2) 上記加熱時の螢光体原料が雰囲気を制御された
気体中に分散状態で供給されることを特徴とする特許請
求の範囲第1項に記載の螢光体の製造方法。
(2) The method for producing a phosphor according to claim 1, wherein the phosphor raw material upon heating is supplied in a dispersed state in a gas whose atmosphere is controlled.
(3) 上記螢光体原料を加熱した後、溶融した球状螢
光体粒子を冷却して補集する工程をさらに含んでなるこ
とを特徴とする特許請求の範囲第1項又は第2項に記載
の螢光体の製造方法。
(3) The method according to claim 1 or 2 further comprises a step of cooling and collecting the molten spherical phosphor particles after heating the phosphor raw material. A method for producing the described phosphor.
(4) 上記雰囲気が酸化、還元及び中性のいずれかで
あることを特徴とする特許請求の範囲第1項又は第2項
に記載の螢光体の製造方法。
(4) The method for producing a phosphor according to claim 1 or 2, wherein the atmosphere is one of oxidizing, reducing, and neutral.
(5) 上記螢光体原料が、螢光体母体組成物及び付活
剤を含んだ混合物であることを特徴とする特許請求の範
囲第1項ないし第4項のいずれか1項に記載の螢光体の
製造方法。
(5) The phosphor raw material according to any one of claims 1 to 4, wherein the phosphor raw material is a mixture containing a phosphor matrix composition and an activator. Method for manufacturing phosphors.
JP62264773A 1987-10-19 1987-10-19 Fluorescent material manufacturing method Expired - Fee Related JPH0662938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62264773A JPH0662938B2 (en) 1987-10-19 1987-10-19 Fluorescent material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62264773A JPH0662938B2 (en) 1987-10-19 1987-10-19 Fluorescent material manufacturing method

Publications (2)

Publication Number Publication Date
JPH01108294A true JPH01108294A (en) 1989-04-25
JPH0662938B2 JPH0662938B2 (en) 1994-08-17

Family

ID=17407987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62264773A Expired - Fee Related JPH0662938B2 (en) 1987-10-19 1987-10-19 Fluorescent material manufacturing method

Country Status (1)

Country Link
JP (1) JPH0662938B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808409A (en) * 1993-12-17 1998-09-15 Kabushiki Kaisha Toshiba Phosphor, cathode-ray tube, fluorescent lamp and radiation intensifying screen
WO2003106588A1 (en) * 2002-06-13 2003-12-24 イージーブライト株式会社 Spherical light storing phosphor powder and process for producing the same
US9062251B2 (en) 2010-06-09 2015-06-23 Shin-Etsu Chemical Co., Ltd. Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
US9617469B2 (en) 2011-01-06 2017-04-11 Shin-Etsu Chemical Co., Ltd. Phosphor particles, making method, and light-emitting diode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259075A (en) * 1975-11-06 1977-05-16 Ciba Geigy Ag Method of coagulating substance from liquid system
JPS61257227A (en) * 1985-05-10 1986-11-14 Mitsubishi Heavy Ind Ltd Production of fine powder
JPS62125843A (en) * 1985-11-25 1987-06-08 Agency Of Ind Science & Technol Production of spherical particle
JPS62201989A (en) * 1985-11-07 1987-09-05 Kasei Optonix Co Ltd Production of phosphor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259075A (en) * 1975-11-06 1977-05-16 Ciba Geigy Ag Method of coagulating substance from liquid system
JPS61257227A (en) * 1985-05-10 1986-11-14 Mitsubishi Heavy Ind Ltd Production of fine powder
JPS62201989A (en) * 1985-11-07 1987-09-05 Kasei Optonix Co Ltd Production of phosphor
JPS62125843A (en) * 1985-11-25 1987-06-08 Agency Of Ind Science & Technol Production of spherical particle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808409A (en) * 1993-12-17 1998-09-15 Kabushiki Kaisha Toshiba Phosphor, cathode-ray tube, fluorescent lamp and radiation intensifying screen
US5814932A (en) * 1993-12-17 1998-09-29 Kabushiki Kaisha Toshiba Phosphor, cathode-ray tube, fluorescent lamp and radiation intensifying screen
US6081069A (en) * 1993-12-17 2000-06-27 Kabushiki Kaisha Toshiba Phosphor, cathode-ray tube, fluorescent lamp and radiation intensifying screen
WO2003106588A1 (en) * 2002-06-13 2003-12-24 イージーブライト株式会社 Spherical light storing phosphor powder and process for producing the same
JPWO2003106588A1 (en) * 2002-06-13 2005-10-13 イージーブライト株式会社 Spherical phosphorescent phosphor powder and method for producing the same
US9062251B2 (en) 2010-06-09 2015-06-23 Shin-Etsu Chemical Co., Ltd. Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
US9617469B2 (en) 2011-01-06 2017-04-11 Shin-Etsu Chemical Co., Ltd. Phosphor particles, making method, and light-emitting diode

Also Published As

Publication number Publication date
JPH0662938B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
CN102363728B (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
JP4176958B2 (en) Synthetic silicate production and its use in glass production
KR20070103029A (en) Method for producing spherical mixed oxide powders in a hot wall reactor
CN1180048C (en) Luminophor making process
JPH0745655B2 (en) Method for manufacturing phosphor
KR20190017333A (en) Manufacturing method of YOF based powder
KR20240036112A (en) Powder for coating an etch chamber
JP2002346377A (en) Method for preparing ceramics or metallic spherical powder by hot plasma and apparatus therefor
EP1298183A1 (en) Phosphor and production method therefor
JPWO2003106588A1 (en) Spherical phosphorescent phosphor powder and method for producing the same
JP5467272B2 (en) Manufacturing method of MCNO phosphor
JPH01108294A (en) Production of phosphor
JP2005054046A (en) Method for producing fluorophor
KR20010038293A (en) Process for Preparing Oxidized Phosphor Particles by Spray Pyrolysis Employing Flux
JP5446106B2 (en) Spherical phosphor particles, process for producing the same, resin composition and glass composition containing the same
JP2000336353A (en) Production of fluorescent aluminate
KR100481618B1 (en) Preparation method of a nano-size red phosphor
JP5315501B2 (en) Method for producing fluorescent light emitting powder and fluorescent light emitting powder
JPS5997527A (en) Manufacture of high purity alumina particle
KR100411176B1 (en) Preparation method of blue and green emitting Barium-Magnesium-aluminate phosphor particles by spray pyrolysis using non-organic polymer solution
SU1763422A1 (en) Method for preparation of hollow ceramic microspheres
JP2004277543A (en) Method for producing phosphor particle
CN1312252C (en) Method and apparatus for preparing PDP fluorescent material
JPH08109375A (en) Production of phosphor
JP2000109825A (en) Preparation of terbium-activated yttrium aluminate fluorescent substance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees