JPH0993788A - Ratio differential relay - Google Patents
Ratio differential relayInfo
- Publication number
- JPH0993788A JPH0993788A JP7269424A JP26942495A JPH0993788A JP H0993788 A JPH0993788 A JP H0993788A JP 7269424 A JP7269424 A JP 7269424A JP 26942495 A JP26942495 A JP 26942495A JP H0993788 A JPH0993788 A JP H0993788A
- Authority
- JP
- Japan
- Prior art keywords
- output
- amount
- arithmetic element
- value
- differential relay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Protection Of Generators And Motors (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、発電機等の回転機
及びその他の機器の保護に用いられる比率差動継電器に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ratio differential relay used for protecting rotating machines such as generators and other equipment.
【0002】[0002]
【従来の技術】図11は発電機の保護回路を示し、図11に
おいて、Gは発電機、TRは変圧器、CBはしゃ断器で
あり、しゃ断器CBを介して系統へ電力を供給する状態
を示す。CT1,CT2は計器用変流器であり、これら
CT1及びCT2からの電流を発電機をまたいで設けた
比率差動継電器87へ導入する構成となっている。2. Description of the Related Art FIG. 11 shows a generator protection circuit. In FIG. 11, G is a generator, TR is a transformer, CB is a circuit breaker, and power is supplied to the grid through the circuit breaker CB. Indicates. CT1 and CT2 are current transformers for meters, and are configured so that the currents from these CT1 and CT2 are introduced into the ratio differential relay 87 provided across the generator.
【0003】図12は図13の(a)に示す動作領域を有す
る可変比率特性を有する比率差動継電器の機能ブロック
図であり、これは図12の比率差動継電器87に対応する。
CT1及びCT2から導入された電流ICT1 ,ICT2 は
アナログ/ディジタル変換器A/Dを通して、ディジタ
ル量I1 ,I2 に変換され、演算部CPUにおいてソフ
ト処理される。FIG. 12 is a functional block diagram of a ratio differential relay having a variable ratio characteristic having the operation region shown in FIG. 13A, which corresponds to the ratio differential relay 87 of FIG.
The currents I CT1 and I CT2 introduced from CT1 and CT2 are converted into digital quantities I 1 and I 2 through an analog / digital converter A / D, and are soft-processed in a calculation unit CPU.
【0004】11は動作量作成部であり、入力されたディ
ジタル量I1 ,I2 とのベクトル和Id=I1 +I
2 (Id:動作量と称す)を作成する。又、振幅値演算
部12ではこの動作量Idの振幅値|Id|を求める。Reference numeral 11 denotes an operation amount creating section, which is a vector sum Id = I 1 + I with the input digital amounts I 1 and I 2.
2 (Id: referred to as movement amount) is created. Further, the amplitude value calculation unit 12 obtains the amplitude value | Id | of this operation amount Id.
【0005】振幅値演算部13,14では入力された夫々の
ディジタル量I1 及びI2 の振幅値|I1 |,|I2 |
を求め、ここで夫々求めた振幅値を抑制量作成部15へ導
入し、抑制量作成部15ではディジタル量I1 ,I2 のス
カラー和|Ir|=|I1 |+|I2 |(Ir:抑制量
と称す)を作成する。In the amplitude value calculators 13 and 14, the amplitude values | I 1 | and | I 2 | of the respective digital quantities I 1 and I 2 inputted.
Then, the amplitude values respectively obtained here are introduced into the suppression amount creating unit 15, and the suppression amount creating unit 15 adds the scalar sum | Ir | = | I 1 | + | I 2 | (of the digital quantities I 1 and I 2 Ir: referred to as the suppression amount) is created.
【0006】又、この抑制量Irが比率演算部16,17で
夫々k1,k2倍(k1,k2は定数)される。加算回
路18では振幅値演算部12及び比率演算部16での演算結果
を加算(|Id|−k1・|Ir|)し、この合成電気
量がDF1判定部20で一定値以上となったときに、DF
1判定部20は出力する。以上をまとめると(1) 式とな
り、DF1の特性図となる。Further, the suppression amount Ir is multiplied by k1 and k2 in the ratio calculation units 16 and 17, respectively (k1 and k2 are constants). In the adder circuit 18, the calculation results of the amplitude value calculation unit 12 and the ratio calculation unit 16 are added (| Id | −k1 · | Ir |), and when the combined electricity amount becomes a certain value or more in the DF1 determination unit 20. DF
The 1 determination unit 20 outputs. The above is summarized as equation (1), which is a characteristic diagram of DF1.
【0007】又、前記加算回路19出力からの合成電気量
はDF2判定部21へ導入され、DF2判定部21で一定値
以上となったときにDF2判定部21は出力する。以上を
まとめると(2) 式となり、図12のDF1判定部20及びD
F2判定部21の2つの出力の論理積を保護指令31として
出力する。Further, the combined electricity quantity from the output of the adder circuit 19 is introduced into the DF2 judging section 21, and when the DF2 judging section 21 exceeds a certain value, the DF2 judging section 21 outputs it. The above is summarized as formula (2), which is the DF1 determination unit 20 and D of FIG.
The logical product of the two outputs of the F2 determination unit 21 is output as the protection command 31.
【0008】[0008]
【数1】 |Id|−k1・|Ir|≧k3(k3は定数) ………(1) |Id|−k2・|Ir|≧k4(k4は定数) ………(2) ## EQU1 ## | Id | -k1. | Ir | .gtoreq.k3 (k3 is a constant) ... (1) | Id | -k2. | Ir | .gtoreq.k4 (k4 is a constant) ... (2)
【0009】図11のF1のように発電機の至近端で外部
事故が発生すると、大きな事故電流が発生する。この事
故電流に過渡直流分が重畳した場合、CTの鉄心の磁束
が増大し飽和を起こすことがある。When an external accident occurs at the near end of the generator like F1 in FIG. 11, a large accident current is generated. If a transient DC component is superimposed on this fault current, the magnetic flux of the CT iron core may increase and cause saturation.
【0010】CT1,CT2とも同様のCT飽和を起こ
した場合はCT1とCT2の2次電流波形の差は小さ
く、これによる差動電流(動作量)は図13の(b)に示
すCT飽和領域に存在することになり、継電器の動作域
へは入らず、継電器は動作することはない。このように
従来の比率差動継電器は可変比率特性を持たせることで
継電器の誤動作を防止している。When the same CT saturation occurs in both CT1 and CT2, the difference between the secondary current waveforms of CT1 and CT2 is small, and the resulting differential current (operation amount) is the CT saturation region shown in FIG. 13 (b). Therefore, the relay does not enter the operation range of the relay and the relay does not operate. As described above, the conventional ratio differential relay has a variable ratio characteristic to prevent malfunction of the relay.
【0011】[0011]
【発明が解決しようとする課題】図11のF2のような、
遠方端事故時のCT飽和について図15を用いて説明す
る。図11のF2のように発電機の遠方端で事故が発生す
るとCT1,CT2を通過する事故電流は小さく、重畳
する過渡直流分もこれに比例した値となる。[Problems to be Solved by the Invention]
CT saturation at the far end accident will be described with reference to FIG. When an accident occurs at the far end of the generator like F2 in FIG. 11, the accident current passing through CT1 and CT2 is small, and the superimposed transient DC component also has a value proportional to this.
【0012】しかし、これが長時間続くと過渡直流分に
よるCTの鉄心の磁束が時間と共に蓄積され飽和を起こ
す。この結果、CT飽和は事故発生時点から時間をおい
て発生することになる。CT飽和はCTの特性,事故電
流の大きさ,過渡直流分の大きさなどにより、その様子
が変わるが、CT1,CT2のCT特性が異なる場合は
CT飽和までの時間が異なるため、事故発生から時間遅
れを生じて差動電流(動作量)Idが発生する。However, if this continues for a long time, the magnetic flux of the CT iron core due to the transient DC component accumulates with time and causes saturation. As a result, CT saturation will occur some time after the accident occurs. The situation of CT saturation changes depending on the characteristics of CT, the magnitude of the fault current, the magnitude of the transient DC component, etc. However, if the CT characteristics of CT1 and CT2 are different, the time until CT saturation will be different, so the A time delay occurs and a differential current (operation amount) Id is generated.
【0013】又、遠方端では抑制量Irが小さいため、
図14の(b)に示すような継電器の動作域へCT飽和域
が入る場合があり、継電器の誤動作を招いてしまう問題
があった。このように従来の比率差動継電器の可変比率
特性では遠方端の外部事故が長時間継続する場合には、
比率差動継電器が誤動作する可能性があった。Further, since the suppression amount Ir is small at the far end,
In some cases, the CT saturation region may enter the operation range of the relay as shown in FIG. 14 (b), which causes a malfunction of the relay. In this way, in the variable ratio characteristic of the conventional ratio differential relay, when the external accident at the far end continues for a long time,
The ratio differential relay could malfunction.
【0014】又、この誤動作を逃れるためには比率差動
継電器の動作比率を低くすることも考えられるが、回転
機の保護上、一定以上に比率の感度を落とすことが困難
である。Although it is conceivable to reduce the operating ratio of the ratio differential relay in order to avoid this malfunction, it is difficult to reduce the ratio sensitivity above a certain level in order to protect the rotating machine.
【0015】本発明は上記課題を解決するためになされ
たものであり、比率差動継電器の外部遠方端事故で事故
電流が小さく、かつ過渡直流分が長時間発生したとき
に、比率差動継電器に適用しているCTが飽和を起こし
ても誤動作しない比率差動継電器を提供することを目的
としている。The present invention has been made to solve the above-mentioned problems, and when the fault current is small due to an external far-end accident of the ratio differential relay and a transient DC component is generated for a long time, the ratio differential relay is generated. It is an object of the present invention to provide a ratio differential relay that does not malfunction even if the CT applied to is saturated.
【0016】[0016]
【課題を解決するための手段】本発明の請求項1に係る
比率差動継電器は、2つ以上の交流電流を一定時間間隔
でサンプリングして、アナログ/ディジタル変換された
ディジタル量として取り込み、前記交流電流のディジタ
ル量をもとに演算を行なう演算部と、前記演算部により
前記交流電流のディジタル量をもとにベクトル和及びス
カラー和を演算し、ベクトル和を動作量、スカラー和を
抑制量として前記動作量と抑制量との関係から得られる
合成電気量が所定値以上となったときに保護指令を出力
する第1の演算要素20,21を有する比率差動継電器にお
いて、前記合成電気量が所定値以上となったときに動作
する前記第1の演算要素20,21出力を条件に、前記合成
電気量を積算し、ここで積算した合成電気量の値が所定
値以上となったときに保護指令を出力する第2の演算要
素23を備えた。A ratio differential relay according to claim 1 of the present invention samples two or more alternating currents at a constant time interval and takes them in as an analog / digital converted digital quantity, and An arithmetic unit that performs an arithmetic operation based on the digital amount of the alternating current, and a vector sum and a scalar sum are calculated by the arithmetic unit based on the digital amount of the alternating current, and the vector sum is the operating amount and the scalar sum is suppressed. As a ratio differential relay having first calculation elements 20 and 21 for outputting a protection command when the combined electric quantity obtained from the relationship between the operation quantity and the suppression quantity becomes a predetermined value or more, the combined electric quantity When the output of the first computing element 20 or 21 that operates when is equal to or more than a predetermined value is added, the combined electric quantity is integrated, and when the value of the integrated electric quantity integrated here is equal to or larger than a predetermined value. With a second computing element 23 for outputting a protection command.
【0017】したがって遠方端の外部事故で事故電流が
小さく、かつ過渡直流分が長時間発生して比率差動継電
器に適用しているCTが飽和を起こした場合には、第1
の演算要素20,21との判定が両方とも出力され、可変比
率特性の内部に入ることがある。Therefore, when the fault current is small due to an external accident at the far end, and the transient DC component is generated for a long time to cause saturation of the CT applied to the ratio differential relay,
Both of the judgments with the calculation elements 20 and 21 of are output and may fall inside the variable ratio characteristic.
【0018】しかしこの場合には、第2の演算要素であ
る反限時判定部に起動入力が発せられる。そこで反限時
判定部にて動作量|Id|と比率演算部でk1倍された
制御量|Ir|とが加算回路を介して合成電気量として
得られるが、外部事故であるためこの積算が所定の値以
上となる前に他の継電器により事故が除去されてしま
い、継電器誤動作に至らない。However, in this case, the activation input is issued to the anti-time limit determination section which is the second arithmetic element. Therefore, the operation amount | Id | and the control amount | Ir | multiplied by k1 by the ratio calculation unit are obtained as a combined electricity amount by the anti-time limit determination unit through the addition circuit, but this integration is predetermined because of an external accident. The accident is eliminated by another relay before the value exceeds the value of, and the relay does not malfunction.
【0019】又、内部事故時には第1の演算要素20,21
との判定が両方とも出力され、可変比率特性の内部に入
って反限時判定部に起動入力が発せられる。この場合内
部事故であるための他の継電器により事故が除去される
ことはなく、反限時判定部にて動作量|Id|と比率演
算部16でk1倍された抑制量|Ir|が加算回路18を通
して得られた合成電気量の積算が行なわれ、かつ、この
積算が所定の値以上となって継電器動作となる。In the case of an internal accident, the first computing elements 20, 21
Both of the determinations are output, the variable ratio characteristic is entered, and the activation input is issued to the counter time limit determination unit. In this case, since it is an internal accident, the accident is not eliminated by another relay, and the operation amount | Id | and the suppression amount | Ir | multiplied by k1 in the ratio calculation unit 16 are added in the counter circuit. The combined electric quantity obtained through 18 is integrated, and when this integrated value is equal to or greater than a predetermined value, relay operation is performed.
【0020】又、本発明の請求項2では請求項1におい
て、動作量が所定値以上となったときに出力する第3の
演算要素を付加したものである。したがって外部事故時
には第2の演算要素による限時動作にて誤動作すること
はなく、内部事故時には第3の要素による瞬時動作にて
事故除去される。According to a second aspect of the present invention, in addition to the first aspect, a third arithmetic element to be output when the operation amount exceeds a predetermined value is added. Therefore, in the event of an external accident, there is no malfunction due to the time-delayed operation by the second computing element, and in the case of an internal accident, the accident is eliminated by the instantaneous operation by the third element.
【0021】又、本発明の請求項3では請求項1におい
て、動作量と抑制量との関係から得られる合成電気量が
所定値以上になったときに出力する第4の演算要素出力
を付加したものである。したがって外部事故時には第2
の演算要素が合成電気量の入力により限時動作するか、
他の継電器にて事故除去されて誤動作しない。しかし、
内部事故時には第1,第4の各演算要素が動作して継電
器動作となる。According to a third aspect of the present invention, in addition to the first aspect, a fourth arithmetic element output is added, which is output when the combined electric quantity obtained from the relationship between the operation amount and the suppression amount exceeds a predetermined value. It was done. Therefore, in the event of an external accident, the second
The calculation element of operates in a timed manner by inputting the synthetic electric quantity,
Accident is removed by another relay and it does not malfunction. But,
In the event of an internal accident, the first and fourth computing elements operate and the relay operates.
【0022】又、本発明の請求項4では請求項1におい
て、第2の演算要素に代えて、動作量と抑制量との関係
から得られる合成電気量が所定値以上となったことを条
件に動作量を積算し、この積算値が所定値以上となった
ときに出力する第5の演算要素を付加したものである。
したがって動作量が所定値以上であり、かつ第1の演算
要素の動作にて内部事故が明確であることを条件に継電
器動作となるが、外部事故では第1の演算要素が不動作
であるため、誤動作することはない。Further, in claim 4 of the present invention, the condition in which the combined electric quantity obtained from the relationship between the operation amount and the suppression amount is equal to or more than a predetermined value in place of the second computing element in claim 1 is provided. Is added with a fifth operation element that outputs the integrated value when the integrated value exceeds a predetermined value.
Therefore, the relay operation is performed on condition that the operation amount is equal to or greater than the predetermined value and the internal accident is clear in the operation of the first arithmetic element, but the first arithmetic element does not operate in the external accident. , Will not malfunction.
【0023】[0023]
【発明の実施の形態】図1は本発明の請求項1に係る比
率差動継電器の一実施例の機能ブロック構成図である。
図1において図12と同一部分については同一符号を付し
て説明を省略する。図1の構成上の特徴部分は反限時判
定部23を設けて、論理積回路22からの起動入力を得る構
成としたものである。1 is a functional block diagram of an embodiment of a ratio differential relay according to claim 1 of the present invention.
In FIG. 1, the same parts as those in FIG. The characteristic part of the configuration shown in FIG. 1 is that the anti-time limit determination unit 23 is provided to obtain the activation input from the AND circuit 22.
【0024】したがって起動入力があると反限時判定部
23では、動作量|Id|と比率演算部16でk1倍された
抑制量|Ir|とが加算回路18を通して合成電気量とし
て得られ、この合成電気量の積算が(3) 式に示すような
所定の値以上となるか否かを判定する。Therefore, when there is a start input, the counter time limit determination unit
In 23, the operation amount | Id | and the suppression amount | Ir | multiplied by k1 in the ratio calculation unit 16 are obtained as the combined electric amount through the adder circuit 18, and the integrated amount of the combined electric amount is expressed by the equation (3). It is determined whether or not it is equal to or more than a predetermined value.
【0025】(3) 式を満たした場合には保護指令24を出
力する。又、論理積回路22を通して導入される起動入力
がないときは、前加算回路18を通して得られる合成電気
量の積算をクリアする。When the expression (3) is satisfied, the protection command 24 is output. Further, when there is no activation input introduced through the AND circuit 22, the integration of the combined electric quantity obtained through the pre-addition circuit 18 is cleared.
【数2】 ∫(|Id|−k1・|Ir|)dt≧k5(k5は定数) ……(3) [Equation 2] ∫ (| Id | −k1 · | Ir |) dt ≧ k5 (k5 is a constant) (3)
【0026】次に作用について説明する。先ず、遠方端
の外部事故で事故電流が小さく、かつ過渡直流分が長時
間発生して比率差動継電器に適用しているCTが飽和を
起こした場合には、機能ブロック図のDF1判定部20と
DF2判定部21との判定が両方とも出力され、図2
(a)の可変比率特性の動作範囲内に入ることがある。Next, the operation will be described. First, when the fault current is small due to an external accident at the far end, and the transient DC component is generated for a long time to cause saturation of the CT applied to the ratio differential relay, the DF1 determination unit 20 of the functional block diagram is shown. 2 and the DF2 determination unit 21 output both,
It may fall within the operating range of the variable ratio characteristic of (a).
【0027】この場合には、論理積回路22から反限時判
定部23に起動入力が発せられ、反限時判定部23にて動作
量|Id|と比率演算部16でk1倍された抑制量|Ir
|が加算回路18を通して合成電気量として得られる。そ
して合成電気量の積算が行なわれるが、この場合は外部
事故であるためこの積算が所定の値以上となる前に他の
継電器によって事故が除去されてしまい、継電器誤動作
には至らない。In this case, a start input is issued from the AND circuit 22 to the anti-time limit determination unit 23, and the anti-time limit determination unit 23 operates the operation amount | Id | and the ratio calculation unit 16 multiplies the suppression amount by k1. Ir
| Is obtained as a combined quantity of electricity through the adder circuit 18. Then, the integrated amount of electricity is integrated, but in this case, since it is an external accident, the accident is removed by another relay before the integrated value exceeds a predetermined value, and the relay does not malfunction.
【0028】一方、内部事故時には図1の機能ブロック
図のDF1判定部20とDF2判定部21との判定が両方と
も出力されて、図2(a)の可変比率特性の保護領域内
部に入る。しかし、論理積回路22から反限時判定部23に
対して起動入力が発せられ他の継電器により事故が除去
されることもない。On the other hand, at the time of an internal accident, both the judgments of the DF1 judging section 20 and the DF2 judging section 21 of the functional block diagram of FIG. 1 are output and enter the protection area of the variable ratio characteristic of FIG. 2 (a). However, the activation input is not issued from the AND circuit 22 to the anti-time limit determination unit 23, and the accident is not eliminated by another relay.
【0029】演算部16でk1倍された抑制量|Ir|が
加算回路18を通して得られる合成電気量の積算が行なわ
れ、この積算が所定の値以上となって継電器動作とな
る。又、上記実施例に限定されるものではなく、動作量
|Id|と、比率演算部17でk2倍された抑制量|Ir
|とから加算回路19を介して合成電気量を得、ここで得
られた合成電気量を反限時判定部23に導入するようにし
てもよい。The amount of suppression | Ir | multiplied by k1 in the arithmetic unit 16 is integrated by the combined amount of electricity obtained through the adder circuit 18. When this integrated amount exceeds a predetermined value, relay operation is performed. Further, the present invention is not limited to the above-described embodiment, and the operation amount | Id | and the suppression amount | Ir multiplied by k2 by the ratio calculation unit 17
It is also possible to obtain the combined amount of electricity from | and the addition circuit 19 and to introduce the obtained combined amount of electricity into the counter time limit determination unit 23.
【0030】本実施例によれば、保護範囲外部事故電流
によるCT飽和の影響でDF1判定部とDF2判定部の
両方がその動作判定式を満たしてしまい、図2に示す動
作域に至っても、反限時判定部により保護指令の出力に
は至らず、保護範囲外部事故電流によるCT飽和の影響
で誤動作をしない比率差動継電器を提供することが可能
となる。According to the present embodiment, both the DF1 judging section and the DF2 judging section satisfy the operation judgment formula due to the influence of CT saturation due to the fault current outside the protection range, and even if the operation range shown in FIG. 2 is reached, It is possible to provide a ratio differential relay that does not output a protection command by the anti-time limit determination unit and does not malfunction due to the effect of CT saturation due to a fault current outside the protection range.
【0031】図3は図1の変形例を示す構成図である。
本変形例では、比率演算部32および加算回路33を別に設
けて、動作量|Id|と比率演算部32でk8倍された抑
制量|Ir|が加算回路33を通して得られる合成電気量
から、反限時判定部23において(4) 式を判定するように
してもよい。FIG. 3 is a block diagram showing a modification of FIG.
In this modification, the ratio calculation unit 32 and the addition circuit 33 are separately provided, and the operation amount | Id | and the suppression amount | Ir | multiplied by k8 in the ratio calculation unit 32 are calculated from the combined electric amount obtained through the addition circuit 33. The equation (4) may be determined in the counter time limit determination unit 23.
【数3】 ∫(|Id|−k8・|Ir|)dt≧k5(k5は定数) ……(4) [Equation 3] ∫ (| Id | −k8 · | Ir |) dt ≧ k5 (k5 is a constant) (4)
【0032】図4は本発明の請求項2に係る比率差動継
電器の一実施例の構成図である。本実施例では図1の振
幅値演算部12の出力段にHOC判定部25を設けたもので
ある。FIG. 4 is a block diagram of an embodiment of a ratio differential relay according to claim 2 of the present invention. In this embodiment, the HOC judging section 25 is provided at the output stage of the amplitude value calculating section 12 of FIG.
【0033】そして,DF1判定部20の判定出力とDF
2判定部21の判定出力とが論理積回路22を通して論理積
された出力と、HOC判定部25との出力とを論理積回路
26を通して論理積し、更に論理積回路26の出力と反限時
判定部23の出力とを論理和回路27を通して論理和された
出力を保護指令として出力するようにしたことを特徴と
する。Then, the judgment output of the DF1 judgment unit 20 and the DF
2 The output of the judgment output of the judgment unit 21 is ANDed through the AND circuit 22 and the output of the HOC judgment unit 25.
The logical product is performed through 26, and the output of the logical product circuit 26 and the output of the anti-time limit determination unit 23 are logically summed through the logical sum circuit 27, and the output is output as a protection command.
【0034】なお、HOC判定部25では、動作量が(5)
式を満足するかを判定する。したがって動作量がHOC
判定部25の設定値未満であるときは図1と同様に反限時
動作域図5(a)を有し、設定値以上であるときは瞬時
動作域となる。これは図5(b)の特性図に示される。In the HOC determination unit 25, the operation amount is (5)
Determine if the formula is satisfied. Therefore, the operation amount is HOC
When it is less than the set value of the determination unit 25, it has the anti-time limit operation area FIG. 5 (a) as in FIG. 1, and when it is more than the set value, it is the instantaneous operation area. This is shown in the characteristic diagram of FIG.
【数4】 |Id|≧k6(k6は定数) ……………(5)[Expression 4] | Id | ≧ k6 (k6 is a constant) …………… (5)
【0035】要するに本実施例の比率差動継電器では、
その動作域内でかなり大きな動作量Idが発生する内部
事故の場合、比率差動継電器の動作域内の事故であるた
め、DF1判定部20の判定出力とDF2判定部21の判定
出力とが論理積回路22を通して論理積された出力があり
となる。In short, in the ratio differential relay of this embodiment,
In the case of an internal accident in which a considerably large operation amount Id occurs in the operating range, the judgment output of the DF1 judging section 20 and the judgment output of the DF2 judging section 21 are AND circuits because the accident is in the operating range of the ratio differential relay. There will be an ANDed output through 22.
【0036】又、振幅値演算部12を通してかなり大きな
動作量|Id|がHOC判定部25に導入され、この動作
量|Id|によりHOC判定部25にて(5) 式を満たし、
HOC判定部25も出力ありとなれば、論理積回路26を通
して論理積回路22の出力とHOC判定部25との出力の論
理積が更に出力ありとなる。Further, a considerably large movement amount | Id | is introduced into the HOC judgment unit 25 through the amplitude value calculation unit 12, and the movement amount | Id | satisfies the equation (5) in the HOC judgment unit 25.
When the HOC determination section 25 also outputs, the AND of the output of the AND circuit 22 and the output of the HOC determination section 25 is further output through the AND circuit 26.
【0037】論理積回路26の出力は論理和回路27を通し
てこの場合、反限時判定部23の出力に拘らず、論理和出
力ありとなり保護指令を出力する。本実施例によれば、
前記図1の比率差動継電器に対し内部事故時の大電流域
において、高速に内部事故を検出することが可能とな
る。In this case, the output of the logical product circuit 26 is output through the logical sum circuit 27 regardless of the output of the anti-time limit determination section 23, and the logical sum output is output, and the protection command is output. According to the present embodiment,
It becomes possible to detect an internal accident at high speed in the large current region at the time of an internal accident with respect to the ratio differential relay of FIG.
【0038】図6は本発明の請求項3に係る比率差動継
電器の一実施例の構成図である。本実施例ではHOC判
定部29を設け、加算回路18を経由した合成電気量を反限
時判定部23の入力として取り込むと共に、HOC判定部
29の入力としても取り込む構成とした。FIG. 6 is a block diagram of an embodiment of a ratio differential relay according to claim 3 of the present invention. In the present embodiment, the HOC determination unit 29 is provided, and the combined electric quantity that has passed through the adder circuit 18 is fetched as an input of the anti-time limit determination unit 23, and the HOC determination unit is also used.
It is also configured to be input as 29 inputs.
【0039】図6から明らかなように、HOC判定部29
においては(6) 式の動作判定が行なわれる。As is apparent from FIG. 6, the HOC determination unit 29
In, the motion judgment of Eq. (6) is performed.
【数5】 |Id|−k1・|Ir|≧k6(k6は定数) ………(6) [Expression 5] | Id | -k1 · | Ir | ≧ k6 (k6 is a constant) ……… (6)
【0040】したがって動作としては、DF1判定部20
の判定出力とDF2判定部21の判定出力とが論理積回路
22を通して論理積された出力と、HOC判定部29との出
力とを論理積回路26を通して論理積し、更に論理積回路
26の出力と反限時判定部23の出力とを論理和回路27を通
して論理和された出力を保護指令として出力する。Therefore, the operation is as follows:
And the determination output of the DF2 determining unit 21 are AND circuits.
The output that is logically ANDed through 22 and the output of the HOC determination unit 29 are logically ANDed through an AND circuit 26, and further the AND circuit
The output of 26 and the output of the anti-time limit determination section 23 are ORed through the OR circuit 27 and the output is output as a protection command.
【0041】本実施例では比率差動継電器において、そ
の動作域内で動作量|Id|と比率演算部16でk1倍さ
れた抑制量|Ir|とが加算回路18を通して得られる
が、この合成電気量(|Id|−k1・|Ir|)が内
部事故の場合に大となり、しかも比率差動継電器の動作
域内の事故であるため、DF1判定部20の判定出力とD
F2判定部21の判定出力とが、論理積回路22を通して論
理積された出力ありとなる。In this embodiment, in the ratio differential relay, the operation amount | Id | and the suppression amount | Ir | multiplied by k1 in the ratio calculation unit 16 are obtained through the adder circuit 18 in the operating range. The quantity (| Id | -k1 · | Ir |) becomes large in the case of an internal accident, and because it is an accident within the operating range of the ratio differential relay, the judgment output of the DF1 judgment unit 20 and D
The judgment output of the F2 judging unit 21 is logically output through the logical product circuit 22.
【0042】又、振幅値演算部12を通してかなり大きな
前記の合成電気量がHOC判定部29に導入され、この合
成電気量により、HOC判定部29にて(6) 式を満たして
HOC判定部29も出力ありとなる。したがって論理積回
路26を通して、論理積回路22の出力とHOC判定部29と
の出力の論理積が更に出力ありとなる。Further, a considerably large amount of the above-mentioned combined electric quantity is introduced into the HOC judging section 29 through the amplitude value calculating section 12, and the HOC judging section 29 satisfies the formula (6) by the combined electric quantity, and the HOC judging section 29 is satisfied. Is also output. Therefore, the logical product of the output of the logical product circuit 22 and the output of the HOC determination unit 29 is further output through the logical product circuit 26.
【0043】論理積回路26の出力は論理和回路27を通し
てこの場合、反限時判定部23の出力に拘らずに論理和出
力ありとなって保護指令を発する(図7)。本実施例に
よればHOC判定部29が動作する以前は反限時判定部23
による反限時動作をし、内部事故時の大電流域では高速
に内部事故を検出し、保護指令を出力する。In this case, the output of the logical product circuit 26 is output through the logical sum circuit 27, and the protection command is issued regardless of the output of the anti-time limit determination unit 23 (FIG. 7). According to the present embodiment, before the HOC determination unit 29 operates, the counter time limit determination unit 23
The anti-time limit operation is performed, and in a large current area at the time of an internal accident, the internal accident is detected at high speed and a protection command is output.
【0044】又、上記実施例に限定されるものではな
く、動作量|Id|と比率演算部17でk2倍された抑制
量|Ir|とから加算回路19を介して合成電気量を得、
ここで得られた合成電気量を反限時判定部23及びHOC
判定部24に導入するようにしてもよい。そして、反限時
判定部23では(7) 式を判定することになる。Further, the present invention is not limited to the above embodiment, and the combined electric quantity is obtained from the operation quantity | Id | and the suppression quantity | Ir |
The combined electric quantity obtained here is used as the counter time limit determination unit 23 and the HOC.
You may make it introduce | transduce into the determination part 24. Then, the counter time limit determination unit 23 determines the expression (7).
【数6】 ∫(|Id|−k2・|Ir|)dt≧k5(k5は定数) ……(7) [Equation 6] ∫ (| Id | −k2 · | Ir |) dt ≧ k5 (k5 is a constant) …… (7)
【0045】図8は図6の変形例であり、本変形例では
HOC判定部29の入力を変えたものである。即ち、図8
に示されるように、比率演算部34及び加算回路35を別に
設け、動作量|Ir|と比率演算部34でk8倍された抑
制量|Ir|を、加算回路35を通して合成電気量として
得、この合成電気量をもとにHOC判定部29にて、(8)
式を判定するものである。FIG. 8 is a modification of FIG. 6, in which the input of the HOC determination unit 29 is changed. That is, FIG.
As shown in FIG. 3, the ratio calculation unit 34 and the addition circuit 35 are separately provided, and the operation amount | Ir | and the suppression amount | Ir | multiplied by k8 in the ratio calculation unit 34 are obtained as the combined electricity amount through the addition circuit 35. Based on this combined quantity of electricity, the HOC determination unit 29 (8)
The expression is determined.
【数7】 |Id|−k8・|Ir|≧k5(k5は定数) ………(8) [Expression 7] | Id | -k8 · | Ir | ≧ k5 (k5 is a constant) ……… (8)
【0046】図9は本発明の請求項4に係る比率差動継
電器の一実施例の構成図である。図9において図1と同
一部分については同一符号を付して説明を省略する。本
実施例では反限時判定部30の入力を、動作量として置き
かえたものである。即ち、反限時判定部30の入力を動作
量|Id|からとしたものである。FIG. 9 is a block diagram of an embodiment of a ratio differential relay according to claim 4 of the present invention. In FIG. 9, the same parts as those in FIG. In this embodiment, the input of the anti-time limit determination section 30 is replaced with the motion amount. That is, the input of the anti-time limit determination unit 30 is based on the motion amount | Id |.
【0047】したがって、DF1判定部20の判定出力と
DF2判定部21の判定出力は論理積回路22を通して論理
積され、この出力が反限時判定部30への起動入力として
導入される。Therefore, the determination output of the DF1 determination section 20 and the determination output of the DF2 determination section 21 are logically ANDed through the AND circuit 22, and this output is introduced as a start input to the anti-time limit determination section 30.
【0048】反限時判定部30では起動入力があるときは
動作量|Id|の積算が所定の値以上となるかを(9) 式
にて判定する。そして(9) 式を満たした場合には保護指
令を出力する。又、論理積回路22を通して導入される起
動入力がないときは、(10)式と動作量|Id|の積算を
クリアする。When there is a start-up input, the anti-time limit determination section 30 determines whether or not the cumulative value of the operation amount | Id | is greater than or equal to a predetermined value by the equation (9). Then, when the expression (9) is satisfied, a protection command is output. When there is no start input introduced through the AND circuit 22, the equation (10) and the integration of the operation amount | Id | are cleared.
【0049】[0049]
【数8】 ∫|Id|dt≧k5(k5は定数) ………(9) ∫|Id|dt=0 ……………………(10)[Equation 8] ∫ | Id | dt ≧ k5 (k5 is a constant) ……… (9) ∫ | Id | dt = 0 …………………… (10)
【0050】本実施例によれば、保護範囲外部事故電流
によるCT飽和の影響でDF1とDF2の両方がその動
作判定式を満たしてしまい、動作域に至ったとしても反
限時判定部30により、保護指令の出力には至らず、保護
範囲外部事故電流によるCT飽和の影響で誤動作をする
ことはない。According to the present embodiment, both the DF1 and DF2 satisfy the motion judgment formula due to the influence of CT saturation due to the protection range external fault current, and even if the motion range is reached, the anti-time limit judgment unit 30 causes The protection command is not output, and malfunction does not occur due to the effect of CT saturation due to the fault current outside the protection range.
【0051】[0051]
【発明の効果】以上説明したように、本発明によれば比
率差動継電器の外部遠方端事故で事故電流が小さく、か
つ過渡直流分が長時間発生したときに、比率差動継電器
に適用しているCTが飽和を起こしても誤動作しない比
率差動継電器を提供することが可能となる。As described above, according to the present invention, when the fault current is small due to the external far end accident of the ratio differential relay and the transient DC component is generated for a long time, the present invention is applied to the ratio differential relay. It is possible to provide a ratio differential relay that does not malfunction even if the CT that is saturated is saturated.
【図1】本発明の請求項1に係る比率差動継電器の一実
施例の構成図。FIG. 1 is a configuration diagram of an embodiment of a ratio differential relay according to claim 1 of the present invention.
【図2】図1の比率差動継電器の特性図。FIG. 2 is a characteristic diagram of the ratio differential relay shown in FIG.
【図3】図1の変形例。FIG. 3 is a modification of FIG.
【図4】本発明の請求項2に係る比率差動継電器の一実
施例の構成図。FIG. 4 is a configuration diagram of an embodiment of a ratio differential relay according to claim 2 of the present invention.
【図5】図4の比率差動継電器の特性図。5 is a characteristic diagram of the ratio differential relay shown in FIG. 4;
【図6】本発明の請求項3に係る比率差動継電器の一実
施例の構成図。FIG. 6 is a configuration diagram of an embodiment of a ratio differential relay according to claim 3 of the present invention.
【図7】図6の比率差動継電器の特性図。7 is a characteristic diagram of the ratio differential relay of FIG.
【図8】図6の変形例。FIG. 8 is a modification of FIG.
【図9】本発明の請求項4に係る比率差動継電器の一実
施例の構成図。FIG. 9 is a configuration diagram of an embodiment of a ratio differential relay according to claim 4 of the present invention.
【図10】図9の比率差動継電器の特性図。FIG. 10 is a characteristic diagram of the ratio differential relay shown in FIG. 9.
【図11】比率差動継電器の適用例。FIG. 11 is an application example of a ratio differential relay.
【図12】従来の比率差動継電器を説明するための機能ブ
ロック図。FIG. 12 is a functional block diagram for explaining a conventional ratio differential relay.
【図13】従来の比率差動継電器の特性図。FIG. 13 is a characteristic diagram of a conventional ratio differential relay.
【図14】従来の比率差動継電器の問題点を説明するため
の特性図。FIG. 14 is a characteristic diagram for explaining problems of the conventional ratio differential relay.
【図15】保護範囲外部の遠方端事故による動作量の発生
を説明するための図。FIG. 15 is a diagram for explaining the generation of a motion amount due to a far end accident outside the protection range.
11 動作量作成部 12,13,14 振幅値演算部 15 抑制量作成部 16,17,32,34 係数演算部 18,19,33,35 加算回路 20 DF1判定部 21 DF2判定部 22,26 論理積回路 23,30 反限時判定部 25,29 HOC判定部 27 論理和回路 87 比率差動継電器 11 Motion amount creation unit 12, 13, 14 Amplitude value calculation unit 15 Suppression amount creation unit 16, 17, 32, 34 Coefficient calculation unit 18, 19, 33, 35 Adder circuit 20 DF1 determination unit 21 DF2 determination unit 22, 26 Logic Product circuit 23, 30 Reverse limit time determination unit 25, 29 HOC determination unit 27 OR circuit 87 Ratio differential relay
フロントページの続き (72)発明者 祖父江 哲也 東京都府中市晴見町二丁目24番地の1 東 芝システムテクノロジー株式会社内Front page continuation (72) Inventor Tetsuya Sobue 1-24-2 Harumi-cho, Fuchu-shi, Tokyo Inside Toshiba System Technology Co., Ltd.
Claims (4)
ンプリングして、アナログ/ディジタル変換されたディ
ジタル量として取り込み、前記交流電流のディジタル量
をもとに演算を行なう演算部と、前記演算部により前記
交流電流のディジタル量をもとにベクトル和及びスカラ
ー和を演算し、ベクトル和を動作量、スカラー和を抑制
量として前記動作量と抑制量との関係から得られる合成
電気量が所定値以上となったときに保護指令を出力する
第1の演算要素を有する比率差動継電器において、前記
合成電気量が所定値以上となったときに動作する前記第
1の演算要素出力を条件に、前記合成電気量を積算し、
ここで積算した合成電気量の値が所定値以上となったと
きに保護指令を出力する第2の演算要素を備えたことを
特徴とする比率差動継電器。1. An arithmetic unit for sampling two or more alternating currents at a constant time interval, taking in as an analog / digital converted digital amount, and performing an arithmetic operation based on the digital amount of the alternating current; Part calculates a vector sum and a scalar sum based on the digital value of the alternating current, and the vector sum is an operation amount, and the scalar sum is a suppression amount, and a combined electric amount obtained from the relationship between the operation amount and the suppression amount is predetermined. In a ratio differential relay having a first arithmetic element that outputs a protection command when the value becomes equal to or more than a value, the first arithmetic element output that operates when the combined electricity amount becomes a predetermined value or more is used as a condition. , Integrating the combined electricity quantity,
A ratio differential relay characterized by comprising a second arithmetic element for outputting a protection command when the value of the integrated electric quantity accumulated here becomes a predetermined value or more.
する第3の演算要素を付加し、第1の演算要素出力と第
3の演算要素出力とが共に導出されたとき動作する論理
積出力と、第2の演算要素出力との論理和出力を保護指
令とする手段を備えたことを特徴とする請求項1記載の
比率差動継電器。2. A logic which adds a third arithmetic element to be output when the operation amount exceeds a predetermined value and operates when both the first arithmetic element output and the third arithmetic element output are derived. The ratio differential relay according to claim 1, further comprising means for setting a logical sum output of the product output and the second operation element output as a protection command.
電気量が所定値以上となったときに出力する第4の演算
要素を付加し、第1の演算要素出力と第4の演算要素出
力とが共に導出されたとき動作する論理積出力と、第2
の演算要素出力との論理和出力を保護指令とする手段を
備えたことを特徴とする請求項1記載の比率差動継電
器。3. A fourth arithmetic element for outputting when the combined electric quantity obtained from the relationship between the operation amount and the suppression amount becomes a predetermined value or more, and the first arithmetic element output and the fourth arithmetic element are added. A logical product output that operates when both the output and
2. The ratio differential relay according to claim 1, further comprising means for making a logical sum output with the output of the arithmetic element as a protection command.
量との関係から得られる合成電気量が所定値以上となっ
たことを条件に動作量を積算し、この積算値が所定値以
上となったときに出力する第5の演算要素を備えたこと
を特徴とする請求項1記載の比率差動継電器。4. In place of the second calculation element, the operation amount is integrated on condition that the combined electricity amount obtained from the relationship between the operation amount and the suppression amount is equal to or more than a predetermined value, and the integrated value is set to a predetermined value. The ratio differential relay according to claim 1, further comprising a fifth arithmetic element that outputs a value equal to or greater than a value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26942495A JP3558309B2 (en) | 1995-09-22 | 1995-09-22 | Ratio differential relay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26942495A JP3558309B2 (en) | 1995-09-22 | 1995-09-22 | Ratio differential relay |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0993788A true JPH0993788A (en) | 1997-04-04 |
JP3558309B2 JP3558309B2 (en) | 2004-08-25 |
Family
ID=17472237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26942495A Expired - Fee Related JP3558309B2 (en) | 1995-09-22 | 1995-09-22 | Ratio differential relay |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3558309B2 (en) |
-
1995
- 1995-09-22 JP JP26942495A patent/JP3558309B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3558309B2 (en) | 2004-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | A new method for power system transient instability detection | |
ZA200300254B (en) | Electronic protective relay with variable and fixed delay tally time of current protection. | |
US4530025A (en) | Current ratio-differential relay | |
WO1985000932A1 (en) | Phase relay for ac power transmission line protection | |
KR100307034B1 (en) | Reverse Phase Overcurrent Relay | |
JPH0993788A (en) | Ratio differential relay | |
Kasztenny et al. | Generator protection and CT saturation problems and solutions | |
RU2096885C1 (en) | Method and device for ground fault protection of generator stator winding | |
JP3003421B2 (en) | Protective relay | |
Nimtaj et al. | A comparison of two numerical relay low impedance restricted earth fault algorithms in power transformer | |
JPH0642765B2 (en) | Ratio differential relay | |
JPS6147048B2 (en) | ||
JP3231415B2 (en) | Differential relay | |
JP2988799B2 (en) | Transformer protection relay | |
JPS6366135B2 (en) | ||
RU2088014C1 (en) | Method for backup protection of line with tapped transformers | |
JPH05236636A (en) | Ratio differential relay | |
JP2874316B2 (en) | Distance relay | |
JPS6327927B2 (en) | ||
JPH09191559A (en) | Digital protective relay | |
JPH0715863A (en) | Transformer protective relay device | |
JPH09121459A (en) | Method for controlling self-excited reactive power compensator | |
CN100367610C (en) | Fault component transformer longitudinal error protecting method with zero sequence ratio brake | |
CN100367612C (en) | Fault component transformer longitudinal error protecting element with zero sequence ratio brake | |
JPH0670446A (en) | Digital relay for selective grounded phase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040517 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080528 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090528 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090528 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100528 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110528 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110528 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120528 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120528 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140528 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |