Nothing Special   »   [go: up one dir, main page]

JPH0986924A - Spherical agglomerated particle and its production - Google Patents

Spherical agglomerated particle and its production

Info

Publication number
JPH0986924A
JPH0986924A JP7253005A JP25300595A JPH0986924A JP H0986924 A JPH0986924 A JP H0986924A JP 7253005 A JP7253005 A JP 7253005A JP 25300595 A JP25300595 A JP 25300595A JP H0986924 A JPH0986924 A JP H0986924A
Authority
JP
Japan
Prior art keywords
particles
spherical agglomerated
particle
aluminum hydroxide
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7253005A
Other languages
Japanese (ja)
Inventor
Satoshi Araha
智 新葉
Toshiyuki Mizoe
利之 溝江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP7253005A priority Critical patent/JPH0986924A/en
Publication of JPH0986924A publication Critical patent/JPH0986924A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Glanulating (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an inorganic filler for resin, consisting of a spherical agglomerated particle composed of fine particles of aluminum hydroxide, having an average secondary particle diameter falling within a prescribed range, the average minor diameter and the average major diameter/minor diameter ratio of primary particle restricted within respective specific ranges and excellent dimensional stability and to obtain a carrier for a fluidized layer catalyst having excellent flowability and high strength. SOLUTION: The spherical agglomerated particle has an average secondary particle diameter (A) of 0.5-200μm, a minor diameter of an average primary particle of 1/20 of the diameter A and a major diameter/minor diameter ratio of <=10. The particle can be produced by adding water to a solution of sodium aluminate having an Na2 O concentration of >=100g/L and an Na2 /Al2 O3 molar ratio of <=1.3 under stirring to lower the Na2 O concentration to <=70g/L, depositing aluminum hydroxide at <=40 deg.C and subjecting the precipitate to filtration, washing and drying. The produced spherical agglomerated particle is baked at 400-1200 deg.C for several sec to 24hr to obtain a transition alumina keeping the form of the spherical agglomerated particle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は微細粒子の凝集粒に
よって構成された球状粒子に関するものであり、詳しく
は難燃剤、各種充填材、触媒担体、顔料、吸着剤等に用
いられる水酸化アルミニウム、遷移アルミナ、αアルミ
ナよりなる球状凝集粒子およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to spherical particles composed of agglomerated fine particles, and more specifically, aluminum hydroxide used for flame retardants, various fillers, catalyst carriers, pigments, adsorbents, etc. TECHNICAL FIELD The present invention relates to spherical agglomerated particles made of transition alumina and α-alumina and a method for producing the same.

【0002】[0002]

【従来の技術】水酸化アルミニウムは従来より物理学的
特性、結晶学的特性を生かして難燃剤、充填材等に広く
用いられている。これらの用途に用いられている水酸化
アルミニウムは通常過飽和アルミン酸ナトリウム溶液に
種子として微粒の水酸化アルミニウムを添加して晶析を
行うバイヤー法で得られたものである。しかしてバイヤ
ー法で得られた水酸化アルミニウム粒子の形状はギブサ
イトの晶癖を持つ六角柱状から板状もしくは該形状粒子
の凝集体である。一般にこのような異方性形状の粒子を
フィーラーとして樹脂に充填した場合、成形体の機械強
度が向上する反面、反りや変形が起こり精密部品には不
適な材料となる。このような成形体の反りや変形を抑え
るためには球状粒子の充填が望ましい。球状の水酸化ア
ルミニウムを得る方法としては特開昭63−21550
9号公報が開示されている。該公報はアルカリ金属アル
ミン酸塩から水酸化アルミニウムを析出させる間に、ア
ルカリ金属アルミン酸塩のpHを変え、アルカリ金属ア
ルミン酸塩溶液に一価及び多価アルコールを添加するこ
とにより、球状の水酸化アルミニウム粒子を得るという
ものである。しかし、該公報に開示された方法で得られ
る粒子は六角柱状粒子が放射状に凝集したものであり見
かけ上球状の外観を有するだけで、実質的には球状では
ない。 従って、該粒子は充填性が悪く、また粒子の強
度が低く樹脂充填材として満足すべき物性は期待できな
い。
2. Description of the Related Art Aluminum hydroxide has hitherto been widely used as a flame retardant, a filler and the like by taking advantage of physical properties and crystallographic properties. The aluminum hydroxide used for these purposes is usually obtained by the Bayer method in which finely grained aluminum hydroxide as seeds is added to a supersaturated sodium aluminate solution for crystallization. The shape of the aluminum hydroxide particles obtained by the Bayer method is from hexagonal columns having gibbsite crystal habit to plate-like particles or aggregates of the particles. Generally, when a resin is filled with particles having such an anisotropic shape as a feeler, the mechanical strength of the molded body is improved, but warping or deformation occurs, which makes the material unsuitable for precision parts. In order to suppress such warpage and deformation of the molded body, it is desirable to fill the spherical particles. As a method for obtaining spherical aluminum hydroxide, JP-A-63-21550
No. 9 publication is disclosed. The publication discloses that while precipitating aluminum hydroxide from an alkali metal aluminate, the pH of the alkali metal aluminate is changed, and monohydric and polyhydric alcohols are added to the alkali metal aluminate solution to obtain spherical water. This is to obtain aluminum oxide particles. However, the particles obtained by the method disclosed in this publication are hexagonal columnar particles that are radially aggregated and have an apparently spherical appearance, but are not substantially spherical. Therefore, the particles have poor packing properties, and the strength of the particles is low, so that physical properties that are satisfactory as a resin filler cannot be expected.

【0003】一方、原油クラッキング用流動床触媒担体
として用いられる活性アルミナは粒径100μ程度の球
状粒子が適している。 現在、触媒担体用途に用いられ
る球状粒子は、粉砕等により得られた微粒水酸化アルミ
ニウムをスプレードライヤー等を用いて顆粒化した後に
焼成するというプロセスを経て製造されている。しかし
スプレードライヤーによる顆粒化は高コストなプロセス
であり、得られる活性アルミナの製造コストを引き上げ
ている。特開昭63−215509号公報でも球状活性
アルミナ及びその製法が開示されているが、該粒子の形
態は六角柱状粒子が放射状に凝集した構造であるため、
該粒子を触媒担体に共した場合は相互衝突により粉砕さ
れチッピングが生じやすく触媒担体としての寿命が短く
なるという欠点を有している。
On the other hand, spherical particles having a particle size of about 100 μ are suitable for the activated alumina used as a fluidized bed catalyst carrier for crude oil cracking. Currently, spherical particles used for catalyst carrier applications are manufactured through a process in which fine aluminum hydroxide obtained by pulverization or the like is granulated using a spray dryer or the like and then fired. However, granulation with a spray dryer is a costly process, raising the cost of producing the resulting activated alumina. Japanese Patent Application Laid-Open No. 63-215509 also discloses a spherical activated alumina and a method for producing the same, but since the shape of the particles is a structure in which hexagonal columnar particles are radially aggregated,
When the particles are used together with the catalyst carrier, they have a drawback that they are crushed by mutual collision and chipping is likely to occur and the life of the catalyst carrier is shortened.

【0004】[0004]

【発明が解決しようとする課題】本発明の第1の目的
は、優れた寸法安定性を付与する廉価な樹脂充填用無機
フィラーの提供にあり、さらに第2の目的は、流動性に
優れ、かつ高強度を有する特に流動層触媒用担体に適し
た約30μm〜約200μm程度の粗大球状活性アルミ
ナを安価に提供することにある。かかる事情下に鑑み、
本発明者らは操作が容易でかつ低コストで実質的に球状
の粒子を開発すべく鋭意検討した結果、バイヤー法に準
じ特定のアルミン酸ソーダ溶液を特定条件で析出せし
め、さらに必要に応じこれを焼成する場合には、上記目
的を満足した水酸化アルミニウムやアルミナが得られる
ことを見いだし本発明を完成するに至った。
The first object of the present invention is to provide an inexpensive inorganic filler for resin filling which gives excellent dimensional stability, and a second object thereof is excellent fluidity. Another object of the present invention is to provide a coarse spherical activated alumina of about 30 μm to about 200 μm, which has a high strength and is suitable for a carrier for a fluidized bed catalyst, at a low cost. In view of such circumstances,
As a result of intensive studies to develop substantially spherical particles that are easy to operate and low cost, the present inventors have allowed a specific sodium aluminate solution to be precipitated under specific conditions according to the Bayer method, and further if necessary. It was found that aluminum hydroxide and alumina satisfying the above-mentioned object can be obtained when calcination is carried out, and the present invention has been completed.

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、平均
二次粒子径が0.5〜200μmであり、該二次粒子を
構成する平均一次粒子の短径が平均二次粒子径の20分
の1以下で且つ長径/短径の比が10以下である水酸化
アルミニウムの微細粒子凝集体で構成されたことを特徴
とする球状凝集粒子、さらにはこれら凝集粒子を焼成し
た上記形骸を有する遷移アルミナ、或いはαアルミナの
球状凝集粒子を提供する。さらにはNa2 O濃度100
g/l以上、Na2 O/Al2 3 のモル比が1.3以
下のアルミン酸ソーダ溶液を攪拌下、Na2 O濃度が7
0g/l以下になる如く水を添加し、液温40度以下で
水酸化アルミニウムを析出させ、次いで該析出物を濾
過、洗浄し、乾燥することを特徴とする平均二次粒子径
が0.5〜200μmであり、該二次粒子を構成する平
均一次粒子の短径が平均二次粒子径の20分の1以下で
且つ長径/短径の比が10以下である球状凝集粒子、さ
らにはこれら凝集粒子を焼成した上記形骸を有する遷移
アルミナ、或いはαアルミナ球状凝集粒子の製造方法を
提供するものである。
That is, according to the present invention, the average secondary particle diameter is 0.5 to 200 μm, and the short diameter of the average primary particles constituting the secondary particles is 20 minutes of the average secondary particle diameter. Of 1 or less and a ratio of major axis / minor axis of 10 or less, the spherical agglomerate particles are characterized by being composed of a fine particle agglomerate of aluminum hydroxide, and a transition having the above-mentioned skeleton obtained by firing these agglomerate particles Provide spherical agglomerated particles of alumina or α-alumina. Furthermore, the Na 2 O concentration is 100
While stirring a sodium aluminate solution having a molar ratio of g / l or more and Na 2 O / Al 2 O 3 of 1.3 or less, the Na 2 O concentration was 7 or less.
Water is added so as to be 0 g / l or less, aluminum hydroxide is precipitated at a liquid temperature of 40 ° C. or less, and then the precipitate is filtered, washed, and dried to have an average secondary particle diameter of 0. Spherical aggregated particles having a diameter of 5 to 200 μm, a minor axis of the average primary particles constituting the secondary particles being 1/20 or less of the average secondary particle diameter and a major axis / minor axis ratio of 10 or less, and The present invention provides a method for producing transition alumina or α-alumina spherical agglomerated particles having the above skeleton obtained by firing these agglomerated particles.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明における球状凝集粒子の平均二次粒子径は約0.
5μm〜約200μmであり、さらに用途別では樹脂充
填用フィラーとしては約0.5〜50mμ、好ましくは
約1〜30mμ、触媒担体としては約30μm〜約20
0μm、好ましくは約40μm〜約150μmである。
樹脂充填用フィラーとして適用する場合、平均二次粒子
径が約0.5μm未満では樹脂充填時の混練粘度が高く
なりすぎて混練が困難であり、50μmを越える場合に
は成形体の強度が低下する。また触媒担体用として適用
する場合、30μm未満では流動層触媒としての使用時
に飛散によるロスが大きくなる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The average secondary particle diameter of the spherical aggregated particles in the present invention is about 0.
5 μm to about 200 μm, and further according to the application, as a resin filling filler, about 0.5 to 50 mμ, preferably about 1 to 30 μm, and a catalyst carrier, about 30 μm to about 20.
It is 0 μm, preferably about 40 μm to about 150 μm.
When applied as a filler for resin filling, if the average secondary particle size is less than about 0.5 μm, the kneading viscosity at the time of resin filling becomes too high and the kneading is difficult, and if it exceeds 50 μm, the strength of the molded product decreases. To do. When applied as a catalyst carrier, if it is less than 30 μm, the loss due to scattering becomes large when used as a fluidized bed catalyst.

【0007】また、本発明の球状凝集粒子は、1次粒子
の短径が2次粒子の20分の1以下、好ましくは1/2
5〜1/500、且つ長径/短径の比が10以下、好ま
しくは2〜8の凝集体で構成された球状水酸化アルミニ
ウム、或いはこれを焼成してなる遷移アルミナ(活性ア
ルミナ)或いはαアルミナであることが必須である。本
発明において凝集を形成する1次粒子の粒径が2次粒子
の粒径の20分の1より大きい場合は2次粒子の表面の
凹凸が大きくなり流動性、耐機械的強度等が低下し良好
な充填物性、触媒物性が得られない。また1次粒子の形
状についても同様な現象が生じるため、長径/短径の比
は10以下である必要がある。
Further, in the spherical agglomerated particles of the present invention, the short diameter of the primary particles is 1/20 or less of that of the secondary particles, preferably 1/2.
Spherical aluminum hydroxide composed of agglomerates of 5 to 1/500 and a ratio of major axis / minor axis of 10 or less, preferably 2 to 8, or transition alumina (activated alumina) or α-alumina obtained by firing the spherical aluminum hydroxide. Is mandatory. In the present invention, when the particle size of the primary particles forming the agglomerates is larger than 1/20 of the particle size of the secondary particles, the surface irregularities of the secondary particles become large and the fluidity, mechanical strength, etc. decrease. Good packing properties and catalyst properties cannot be obtained. Since the same phenomenon occurs in the shape of the primary particles, the ratio of major axis / minor axis needs to be 10 or less.

【0008】本発明の球状凝集水酸化アルミニウム粒子
の結晶型はギブサイトまたはバイヤライトもしくはこれ
らの混晶である。粒子が無定型の結晶で構成されている
場合には加熱時の分解温度が低くなり、樹脂成形時に熱
分解、脱水反応が起こり製品の外観不良、強度不足を引
き起こす可能性がある。さらに触媒用途に用いる場合は
該形骸を有する水酸化アルミニウムを焼成して遷移アル
ミナ、活性アルミナとして使用される。
The crystal form of the spherical aggregated aluminum hydroxide particles of the present invention is gibbsite, bayerite or a mixed crystal thereof. When the particles are composed of amorphous crystals, the decomposition temperature during heating becomes low, which may cause thermal decomposition and dehydration reaction during resin molding, resulting in poor appearance of the product and insufficient strength. Further, when it is used for a catalyst, it is used as transition alumina or activated alumina by firing aluminum hydroxide having the form.

【0009】本発明の上記物性を有する球状凝集粒子の
製造方法は特に制限されるものではないが、例えば以下
に示した様な簡便な方法で得られる。高過飽和度のアル
ミン酸ソーダ水溶液を攪拌しつつ、水をすばやく添加す
る。水を添加後の液温は40℃以下、好ましくは0℃〜
35℃、より好ましくは5℃〜30℃であり、その状態
でしばらく放置し、析出した水酸化アルミニウムを濾過
し、洗浄、乾燥して本発明の球状水酸化アルミニウムを
得ることができる。当該製法で用いられるアルミン酸ソ
ーダ溶液は1.3以下のモル比を有し、かつNa2 O換
算のソーダ濃度は100g/l以上であることが望まし
い。また、水で希釈後のアルミン酸ソーダ水溶液中のソ
ーダ濃度はNa2 O換算で70g/l以下、液温は約4
0℃以下、好ましくは約35℃以下にする。それ故、予
めアルミン酸ソーダ溶液を40℃付近、或いは40℃以
下に冷却後、水を添加して析出せしめてもよく、また水
の代わりに希薄なアルミン酸ソーダ溶液を用いてもよ
い。アルミン酸ソーダ水溶液中への水の添加は可能な限
り速やかに行うことが好ましく、特に制限されるもので
はないが、工業的規模で実施する場合には、容器内にア
ルミン酸ソーダ溶液と水を同時に添加、供給し、攪拌し
つつ析出せしめる方法が推奨される。析出時間はアルミ
ン酸ソーダ溶液の濃度、析出時の液温等にもよるが、通
常攪拌下、約5時間〜約10日、普通には約10時間〜
約5日間保持した後、必要に応じて析出した水酸化アル
ミニウムを溶液中に保持し(熟成)、析出物を濾過、洗
浄、乾燥すればよい。濾過、洗浄、乾燥は通常のバイヤ
ー法に於ける公知の方法が適用される。
The method for producing the spherical agglomerated particles having the above-mentioned physical properties of the present invention is not particularly limited, but the spherical agglomerated particles can be obtained, for example, by a simple method as shown below. Water is added quickly while stirring the highly supersaturated aqueous sodium aluminate solution. The liquid temperature after adding water is 40 ° C or lower, preferably 0 ° C to
The temperature is 35 ° C., more preferably 5 ° C. to 30 ° C., and in that state, the spherical aluminum hydroxide of the present invention can be obtained by allowing the precipitated aluminum hydroxide to be filtered, washed and dried. It is desirable that the sodium aluminate solution used in the manufacturing method has a molar ratio of 1.3 or less and the sodium concentration in terms of Na 2 O is 100 g / l or more. The soda concentration in the sodium aluminate aqueous solution after diluted with water is 70 g / l or less in terms of Na 2 O, and the liquid temperature is about 4
The temperature is 0 ° C or lower, preferably about 35 ° C or lower. Therefore, the sodium aluminate solution may be preliminarily cooled to about 40 ° C. or below 40 ° C., and then water may be added to cause precipitation, or a dilute sodium aluminate solution may be used in place of water. It is preferable to add water to the aqueous solution of sodium aluminate as quickly as possible, and it is not particularly limited, but when carrying out on an industrial scale, the sodium aluminate solution and water are put in a container. A method of simultaneously adding, supplying and precipitating with stirring is recommended. The precipitation time depends on the concentration of the sodium aluminate solution, the liquid temperature at the time of precipitation, etc., but is usually about 5 hours to about 10 days, usually about 10 hours under stirring.
After holding for about 5 days, the precipitated aluminum hydroxide may be held in the solution (aged) if necessary, and the precipitate may be filtered, washed and dried. For filtration, washing, and drying, known methods in ordinary Bayer method are applied.

【0010】このような方法を採用することにより通常
平均二次粒子径が0.5〜200μmであり、該二次粒
子を構成する平均一次粒子の短径が平均二次粒子径の2
0分の1以下で且つ長径/短径の比が10以下である微
細粒子が凝集した水酸化アルミニウムの球状凝集粒子が
得られる。
By adopting such a method, the average secondary particle diameter is usually 0.5 to 200 μm, and the short diameter of the average primary particles constituting the secondary particles is 2 of the average secondary particle diameter.
Spherical agglomerated particles of aluminum hydroxide in which fine particles having a ratio of major axis / minor axis of 10 or less and 10 or less are aggregated are obtained.

【0011】また、このようにして得られた水酸化アル
ミニウムの球状凝集粒子を数秒〜24時間、400℃〜
1200℃の温度で焼成することにより上記形骸を有す
る遷移アルミナを得ることができる。更にαアルミナを
得る場合には約1時間〜約48時間、約1000℃〜約
1200℃の温度で焼成すればよい。上記に於いて遷移
アルミナとはρ、χ、δ、η、κ、γ等の結晶形を有す
る、水酸化アルミニウムを焼成しαアルミナに至までの
所謂、中間アルミナをさすものである。また、その焼成
装置は電気炉、トンネルキルン、流動焼成炉等のバイヤ
ー法、或いはアルミニウムアルコキサイトの加水分解法
等により公知の焼成装置を適用すればよい。
Further, the spherical agglomerated particles of aluminum hydroxide obtained as described above are heated at 400 ° C. for several seconds to 24 hours.
By calcining at a temperature of 1200 ° C., a transition alumina having the above-mentioned skeleton can be obtained. Further, when α-alumina is obtained, it may be calcined at a temperature of about 1000 ° C. to about 1200 ° C. for about 1 hour to about 48 hours. In the above, the transitional alumina refers to so-called intermediate alumina which has a crystal form of ρ, χ, δ, η, κ, γ and the like, and which is obtained by firing aluminum hydroxide to form α alumina. Further, as the firing device, a known firing device may be applied by a Bayer method such as an electric furnace, a tunnel kiln, a fluidized firing furnace, or a hydrolysis method of aluminum alkoxide.

【0012】[0012]

【実施例】以下に本発明を実施例によりさらに詳細に説
明するが、本発明はこれに限定されるものではない。
尚、本実施例に於いて凝集粒子の大きさは得られた粒子
を走査型顕微鏡写真に撮り、その視野内に見られる粒子
より20個を無作為に選択し測定した平均値を用いた。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
In the present example, the size of the agglomerated particles was obtained by taking a scanning micrograph of the obtained particles and randomly selecting 20 particles from the particles in the field of view and using the average value thereof.

【0013】実施例1 10℃に冷却した800mlのアルミン酸ソーダ水溶液
(モル比:Na2 O/Al2 3 =1.2、Na2 O含
有量=300g/1)を2リットルのセパラブルフラス
コに仕込み、200rpmの速度で撹拌しながら、10
℃の脱イオン水1120mlを2秒間で加え、10℃で
16時間撹拌し、熟成を行ったのち、析出した水酸化ア
ルミニウムを濾過、分離し、脱イオン水で洗浄後、12
0℃で2時間乾燥して水酸化アルミニウムを得た。得ら
れた水酸化アルミニウムを走査型顕微鏡写真により観察
したところ、1次粒子の短径は0.2μ、長径/短径は
6.5、2次粒子の粒径は8.1μで、実質、球状の凝
集粒子であった。
Example 1 800 ml of a sodium aluminate aqueous solution (molar ratio: Na 2 O / Al 2 O 3 = 1.2, Na 2 O content = 300 g / 1) cooled to 10 ° C. was separated into 2 liters of separable. Charge into a flask and stir at a speed of 200 rpm for 10
After adding 1120 ml of deionized water at 0 ° C for 2 seconds and stirring at 10 ° C for 16 hours for aging, the precipitated aluminum hydroxide was filtered and separated, and washed with deionized water.
Aluminum hydroxide was obtained by drying at 0 ° C. for 2 hours. When the obtained aluminum hydroxide was observed by a scanning micrograph, the minor axis of the primary particles was 0.2 μ, the major axis / minor axis was 6.5, and the particle size of the secondary particles was 8.1 μ. The particles were spherical aggregates.

【0014】実施例2 10℃に冷却した200mlのアルミン酸ソーダ水溶液
(モル比:Na2 O/Al2 3 =1.2、Na2 O含
有量=300g/1)を2リットルのセパラブルフラス
コに仕込み、200rpmの速度で撹拌しながら、10
℃の脱イオンン水1800mlを2秒間で加え、10℃
で5日間撹拌し、熟成を行ったのち、析出した水酸化ア
ルミニウムを濾過、分離し、脱イオン水で洗浄後、12
0℃で2時間乾燥して水酸化アルミニウムを得た。得ら
れた水酸化アルミニウムを走査型顕微鏡写真により観察
したところ、1次粒子の短径は1.8μm、長径/短径
は2、2次粒子の粒径は41.2μで、実質、球状の凝
集粒子であった。
Example 2 200 ml of an aqueous sodium aluminate solution (molar ratio: Na 2 O / Al 2 O 3 = 1.2, Na 2 O content = 300 g / 1) cooled to 10 ° C. was separated into 2 liters of separable. Charge into a flask and stir at a speed of 200 rpm for 10
Add 1800 ml of deionized water at ℃ for 2 seconds,
After stirring for 5 days and aging, the precipitated aluminum hydroxide was filtered and separated, and washed with deionized water.
Aluminum hydroxide was obtained by drying at 0 ° C. for 2 hours. When the obtained aluminum hydroxide was observed by a scanning micrograph, the minor axis of the primary particles was 1.8 μm, the major axis / minor axis was 2, and the particle diameter of the secondary particles was 41.2 μ, which was substantially spherical. It was an aggregated particle.

【0015】[0015]

【発明の効果】本発明で得られた球状凝集水酸化アルミ
ニウム及びこれを焼成して得られる遷移アルミナ、活性
アルミナ粒子は、微粒子の凝集によって構成され、2次
粒子表面の凹凸が該2次粒子直径に対して小さいことよ
り、樹脂充填用フィラーとして用いた場合には成形体の
反りや変形をが少なく、また原油クラッキング用触媒担
体として用いた場合には、流動性、耐粉化性等の機械的
強度にも優れており、しかもバイヤー法に準じた簡便、
平易な製造方法により得ることが可能で廉価であること
より、その産業上の利用価値は頗る大なるものである。
The spherical agglomerated aluminum hydroxide obtained in the present invention and the transition alumina and activated alumina particles obtained by firing the spherical aluminium hydroxide are formed by agglomeration of fine particles, and the irregularities on the surface of the secondary particles are the secondary particles. Since it is smaller than the diameter, there is little warpage or deformation of the molded product when used as a filler for resin filling, and when used as a catalyst carrier for crude oil cracking, fluidity, pulverization resistance, etc. It also has excellent mechanical strength, and is simple and conforms to the Buyer method.
Since it can be obtained by a simple manufacturing method and is inexpensive, its industrial utility value is enormous.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 平均二次粒子径が0.5〜200μmで
あり、該二次粒子を構成する平均一次粒子の短径が平均
二次粒子径の20分の1以下で且つ長径/短径の比が1
0以下である水酸化アルミニウムの微細粒子で構成され
たことを特徴とする球状凝集粒子。
1. The average secondary particle diameter is 0.5 to 200 μm, and the short diameter of the average primary particles constituting the secondary particles is 1/20 or less of the average secondary particle diameter and the long diameter / short diameter. Ratio of 1
A spherical agglomerated particle comprising a fine particle of aluminum hydroxide of 0 or less.
【請求項2】 水酸化アルミニウム粒子が、少なくとも
バイヤライト、あるいはギブサイトの結晶形を主として
有する粒子で構成されることを特徴とする請求項1記載
の球状凝集粒子。
2. The spherical agglomerated particles according to claim 1, wherein the aluminum hydroxide particles are composed mainly of at least bayerite or particles having a gibbsite crystal form.
【請求項3】 請求項1記載の水酸化アルミニウムの球
状凝集粒子を熱処理して得られた該球状凝集粒子の形骸
を保持した遷移アルミナよりなる球状凝集粒子。
3. A spherical agglomerated particle made of transition alumina which retains the form of the spherical agglomerated particle obtained by heat-treating the spherical agglomerated particle of aluminum hydroxide according to claim 1.
【請求項4】 請求項1記載の水酸化アルミニウムの球
状凝集粒子を熱処理して得られた該球状凝集粒子の形骸
を保持したαアルミナよりなる球状凝集粒子。
4. A spherical agglomerated particle made of α-alumina, which retains the form of the spherical agglomerated particle obtained by heat-treating the spherical agglomerated particle of aluminum hydroxide according to claim 1.
【請求項5】 Na2 O濃度100g/l以上、Na2
O/Al2 3 のモル比が1.3以下のアルミン酸ソー
ダ溶液を攪拌下、Na2 O濃度が70g/l以下になる
如く水を添加し、液温40℃以下で水酸化アルミニウム
を析出させ、次いで該析出物を濾過、洗浄し、乾燥する
ことを特徴とする請求項1記載の球状凝集粒子の製造方
法。
5. A Na 2 O concentration of 100 g / l or more, Na 2
While stirring a sodium aluminate solution having an O / Al 2 O 3 molar ratio of 1.3 or less, water was added so that the Na 2 O concentration was 70 g / l or less, and aluminum hydroxide was added at a liquid temperature of 40 ° C. or less. The method for producing spherical agglomerated particles according to claim 1, wherein the particles are precipitated, then the precipitate is filtered, washed, and dried.
【請求項6】 請求項5の方法で得た球状凝集粒子を数
秒〜24時間、400℃〜1200℃の温度で焼成する
ことを特徴とする請求項3記載の遷移アルミナよりなる
球状凝集粒子の製造方法。
6. The spherical agglomerated particles of transition alumina according to claim 3, wherein the spherical agglomerated particles obtained by the method of claim 5 are fired at a temperature of 400 ° C. to 1200 ° C. for several seconds to 24 hours. Production method.
【請求項7】 請求項5の方法で得た球状凝集粒子を1
時間〜48時間、1000℃〜1200℃の温度で焼成
することを特徴とする請求項4記載のαアルミナよりな
る球状凝集粒子の製造方法。
7. The spherical agglomerated particles obtained by the method of claim 5,
The method for producing spherical agglomerated particles of α-alumina according to claim 4, wherein the firing is performed at a temperature of 1000 ° C to 1200 ° C for a time of 48 hours.
JP7253005A 1995-09-29 1995-09-29 Spherical agglomerated particle and its production Pending JPH0986924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7253005A JPH0986924A (en) 1995-09-29 1995-09-29 Spherical agglomerated particle and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7253005A JPH0986924A (en) 1995-09-29 1995-09-29 Spherical agglomerated particle and its production

Publications (1)

Publication Number Publication Date
JPH0986924A true JPH0986924A (en) 1997-03-31

Family

ID=17245172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7253005A Pending JPH0986924A (en) 1995-09-29 1995-09-29 Spherical agglomerated particle and its production

Country Status (1)

Country Link
JP (1) JPH0986924A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035089A1 (en) * 1998-01-08 1999-07-15 Nissan Chemical Industries, Ltd. Alumina powder, process for producing the same and polishing composition
JP2005035878A (en) * 2003-06-27 2005-02-10 Nissan Chem Ind Ltd Method of manufacturing acidic aqueous gibbsite sol
US7306665B2 (en) 2001-12-14 2007-12-11 Hitachi Chemical Co., Ltd. Friction material composition and friction material using the composition
WO2008053536A1 (en) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Alumina powder, process for producing the same, and use thereof
JP2008525168A (en) * 2004-12-23 2008-07-17 ナノシル エス.エー. Method for synthesizing supported catalysts for the production of carbon nanotubes
JP2009242136A (en) * 2008-03-28 2009-10-22 Sumitomo Chemical Co Ltd Production method of aluminum hydroxide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035089A1 (en) * 1998-01-08 1999-07-15 Nissan Chemical Industries, Ltd. Alumina powder, process for producing the same and polishing composition
US6440187B1 (en) * 1998-01-08 2002-08-27 Nissan Chemical Industries, Ltd. Alumina powder, process for producing the same and polishing composition
US7306665B2 (en) 2001-12-14 2007-12-11 Hitachi Chemical Co., Ltd. Friction material composition and friction material using the composition
JP2005035878A (en) * 2003-06-27 2005-02-10 Nissan Chem Ind Ltd Method of manufacturing acidic aqueous gibbsite sol
JP2008525168A (en) * 2004-12-23 2008-07-17 ナノシル エス.エー. Method for synthesizing supported catalysts for the production of carbon nanotubes
WO2008053536A1 (en) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Alumina powder, process for producing the same, and use thereof
US8354091B2 (en) 2006-10-31 2013-01-15 Denki Kagaku Kogyo Kabushiki Kaisha Alumina powder and method for preparing the same as well as use thereof
JP5227801B2 (en) * 2006-10-31 2013-07-03 電気化学工業株式会社 Alumina powder, production method thereof, and use thereof
JP2009242136A (en) * 2008-03-28 2009-10-22 Sumitomo Chemical Co Ltd Production method of aluminum hydroxide

Similar Documents

Publication Publication Date Title
US12122720B2 (en) Process for the production of geopolymer or geopolymer composite
EP0384603B1 (en) Process for the production of magnesium oxide
US11440843B2 (en) Modified geopolymer and modified geopolymer composite and process for the production thereof
JP4281943B2 (en) Method for producing plate-like alumina particles
JPH04500947A (en) Small α-alumina particles and plates
JPH0460928B2 (en)
JPH06510272A (en) Improved mixed metal oxide crystal powder and its synthesis method
JPH0986924A (en) Spherical agglomerated particle and its production
JPH0137331B2 (en)
JPH1121125A (en) Fine thin platy boehmite particles and their production
JPWO2003097527A1 (en) Particulate aluminum nitride and method for producing the same
JP2003034523A (en) Method for manufacturing coated magnesium oxide powder
US4774068A (en) Method for production of mullite of high purity
JPH06263437A (en) Production of platy boehmite particles
JP2003034522A (en) Method for manufacturing coated magnesium oxide powder
JP2000272917A (en) Aluminum silicate for resin packing, its production and transparent resin composition containing the same
JPH06329411A (en) Production of flaky transition alumina
US4626420A (en) Synthetic fraipontite and process for preparation thereof
JP3610510B2 (en) Method for producing alumina hydrate dispersion
US2794783A (en) Colloidal silica products
JPH0647459B2 (en) Silica-based filler and method for producing the same
JP6129025B2 (en) Silica-alumina shaped particles
CN117326579B (en) Method for preparing monodisperse hexagonal flaky alpha-alumina at ultralow temperature
EP0582644B1 (en) Process for preparing mixed oxides
JP3260143B2 (en) Crystalline layered silicic acid and method for producing the same