Nothing Special   »   [go: up one dir, main page]

JPH0974297A - Radio wave absorber - Google Patents

Radio wave absorber

Info

Publication number
JPH0974297A
JPH0974297A JP18558296A JP18558296A JPH0974297A JP H0974297 A JPH0974297 A JP H0974297A JP 18558296 A JP18558296 A JP 18558296A JP 18558296 A JP18558296 A JP 18558296A JP H0974297 A JPH0974297 A JP H0974297A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
magnetic
support
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18558296A
Other languages
Japanese (ja)
Inventor
Keiko Kurata
桂子 倉田
Shigeo Aoyama
青山  茂夫
Yoshihisa Futagawa
佳央 二川
Masaru Chino
勝 千野
Shinichi Kitahata
慎一 北畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP18558296A priority Critical patent/JPH0974297A/en
Publication of JPH0974297A publication Critical patent/JPH0974297A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a radio wave absorber which is light in weight, easily controlled in production factors such as film thickness, and excellent in electromagnetic wave absorbing properties to radio waves of wide frequency bandwidth by a method wherein at least two or more of thin films each composed of a non-magnetic support and a magnetic layer deposited on either or both sides of the support are laminated to serve as a radio wave absorber. SOLUTION: Two of thin films each composed of a non-magnetic support 1 and a magnetic layer 3 deposited on either side of the support 1 are laminated for the formation of a radio wave absorber 5. The number of laminated thin films is determined depending on conditions such as frequency bandwidth of radio waves to absorb and required absorption capacity of an absorber. As mentioned above, thin films each composed of the non-magnetic support 1 and the magnetic layer 3 deposited on the support 1 are laminated for the formation of the radio wave absorber 5 excellent in radio wave absorbing properties, and the radio wave absorber 5 can be lessened in weight because it is less in magnetic material content than a conventional one. A radio wave absorber of this constitution is more easily controlled in film thickness than a radio wave absorbing sheet formed of a mixture of rubber or synthetic resin and magnetic material and capable of absorbing radio waves of wider frequency bandwidth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電波吸収体に関す
る。更に詳細には、本発明は、非磁性の片面あるいは両
面に磁性層を設けた薄膜を複数枚積層することにより形
成した電波吸収体に関する。
TECHNICAL FIELD The present invention relates to a radio wave absorber. More specifically, the present invention relates to a radio wave absorber formed by laminating a plurality of thin films each having a magnetic layer provided on one side or both sides of a non-magnetic layer.

【0002】[0002]

【従来の技術】高度情報化社会の進展に歩調を合わせ
て、近年、携帯電話をはじめとする移動体通信分野を中
心に電波の利用が急増している。実用化が開始されたP
HS(パーソナル・ハンディフォン・システム)や無線
LANなどの使用が更に一層本格化すれば、この流れは
ますます加速するものと予想される。一方、パーソナル
コンピュータやマイコン搭載の民生用電子機器類などは
既に広く普及しており、これらの機器が放射する電磁波
も加えて、これからの電波環境は多様化、複雑化、更に
は高周波帯域化の一途をたどるものと予測される。
2. Description of the Related Art The use of radio waves has been rapidly increasing in recent years, especially in the field of mobile communications such as mobile phones, in keeping with the progress of the advanced information society. P has been put into practical use
If the use of HS (Personal Handyphone System) and wireless LAN becomes even more serious, this trend is expected to accelerate. On the other hand, consumer electronic devices equipped with personal computers and microcomputers have already become widespread, and in addition to the electromagnetic waves radiated by these devices, the future radio environment will become diversified, complicated, and even in the high frequency band. It is expected to continue.

【0003】このため、上記機器から発生される電磁波
干渉及び/又は無線周波数干渉に起因する他の電子機
器、電子部品、コンピュータ、工作機械などの誤動作、
情報の漏洩、あるいはテレビ、ラジオのノイズなどのい
わゆ電磁波及び/又は無線周波数干渉障害は年々増加し
てきており、今後さらに増大することが懸念されてい
る。
Therefore, malfunctions of other electronic devices, electronic components, computers, machine tools, etc. due to electromagnetic wave interference and / or radio frequency interference generated from the above devices,
Information leakage, and so-called electromagnetic wave interference and / or radio frequency interference such as noise from television and radio are increasing year by year, and there is a concern that they will increase further in the future.

【0004】特に、電子装置、電子部品などの外装がプ
ラスチックで構成されている場合、外乱電磁波及び/又
は無線周波数干渉に対する防御は無に等しい。このた
め、このような装置または部品などには外乱電磁波及び
/又は無線周波数干渉に対する対策が採られている。
In particular, when the exterior of an electronic device, an electronic component or the like is made of plastic, there is no protection against disturbance electromagnetic waves and / or radio frequency interference. Therefore, measures against disturbance electromagnetic waves and / or radio frequency interference have been taken in such devices or parts.

【0005】このような電磁波障害対策には、通常、電
磁波シールドや電波吸収体が用いられる。電磁波シール
ドは反射により電磁波の内部への進入及び外部への放射
を防止するもので、金属で被覆あるいは導電性塗料を塗
布するなどが行われている。しかし、閉じこめられた電
磁波が機器内部で干渉を起こしやすく、また少しの間隙
で効果が低減するため継ぎ目や接合部分からの漏洩が効
果に大きな影響をもたらすといった欠点がある。そのた
め、吸収を伴って反射波及び透過波を低減させる効果を
有する電波吸収体が注目されている。
As a countermeasure against such electromagnetic interference, an electromagnetic shield or an electromagnetic absorber is usually used. The electromagnetic wave shield prevents the electromagnetic wave from entering the inside and radiating to the outside by reflection, and is coated with metal or coated with a conductive paint. However, the trapped electromagnetic waves are likely to cause interference inside the device, and the effect is reduced with a small gap, so that there is a drawback that leakage from a joint or a joint portion greatly affects the effect. Therefore, a radio wave absorber having an effect of reducing a reflected wave and a transmitted wave with absorption has been attracting attention.

【0006】電波吸収体は、入射してきた電波を熱エネ
ルギーに変換して、透過、あるいは反射する電波の強度
を大きく低減させることができる。電波吸収材料にはフ
ェライトやカーボンが多用されており、焼結フェライト
はVHF帯のような比較的低い周波数に対して有効であ
り、他方、カーボンは比較的高い周波数に対して有効で
ある。フェライトやカーボンをゴム、プラスチックなど
の有機物中に分散させた混合物の形で使用することもで
き、この場合は、電波吸収材料の含有率や複数の電波吸
収材料の利用などによって電波吸収特性を制御すること
ができる。
The radio wave absorber can convert incident radio waves into heat energy and greatly reduce the intensity of the transmitted or reflected radio waves. Ferrite and carbon are often used as the radio wave absorbing material, and sintered ferrite is effective for a relatively low frequency such as the VHF band, while carbon is effective for a relatively high frequency. It can also be used in the form of a mixture of ferrite and carbon dispersed in an organic substance such as rubber or plastic. In this case, the electromagnetic wave absorption characteristics can be controlled by the content rate of the electromagnetic wave absorption material or the use of multiple electromagnetic wave absorption materials. can do.

【0007】現在汎用されているフェライト焼結体は重
いため、施工性及び作業性に問題があり、マイクロ波帯
において電波吸収特性が著しく低下するため、その使用
範囲が限定されている。一方、電波吸収材料を合成樹脂
やゴムなどに分散するタイプの電波吸収体は薄膜化は可
能となるが、電波吸収特性に大きな影響を及ぼす膜厚の
制御が難しく、厳密な生産管理が必要である。
Since the ferrite sintered body which is widely used at present is heavy, there is a problem in workability and workability, and the electromagnetic wave absorption characteristic is remarkably deteriorated in the microwave band, so that its use range is limited. On the other hand, a type of electromagnetic wave absorber that disperses the electromagnetic wave absorbing material in synthetic resin or rubber can be made thin, but it is difficult to control the film thickness, which has a large effect on the electromagnetic wave absorption characteristics, and strict production control is required. is there.

【0008】また、前記分散型電波吸収体はフェライト
焼結体に比べ狭帯域となるため広帯域を必要とする用途
には適さない。そのため、数種類の電波吸収材料を複合
化あるいは、特開平6−140786号にみられるよう
に紙などに高誘電材をバインダに分散した塗料を塗布し
たシートを積層した電波吸収体、特開昭63−2339
7号に見られるような繊維基材に黒鉛粉末を含有した合
成樹脂層を積層した電波吸収体など多層化についても提
案がなされている。
Further, the dispersion type electromagnetic wave absorber has a narrower band than that of the ferrite sintered body and is not suitable for applications requiring a wide band. Therefore, a composite of several kinds of electromagnetic wave absorbing materials, or an electromagnetic wave absorber in which a sheet coated with a paint in which a high dielectric material is dispersed in a binder is laminated on paper or the like as disclosed in JP-A-6-140786, Japanese Patent Laid-Open No. Sho 63-63. -2339
Proposals have also been made for multilayering such as a radio wave absorber in which a synthetic resin layer containing graphite powder is laminated on a fiber substrate as shown in No. 7.

【0009】磁気テープを利用したものに関しては、特
開平6−198649及び特開平6−314428号に
見られるように廃磁気テープをカールさせた後、バイン
ダを加えて加圧成形した成形体が提案されている。この
成形体を電波吸収体として使用するためには、フェライ
トやカーボンブラックなどの電波吸収材料を作製時に添
加しなければならない。
Regarding the one using a magnetic tape, as disclosed in JP-A-6-198649 and JP-A-6-314428, a waste magnetic tape is curled, and then a binder is added and pressure molding is proposed. Has been done. In order to use this molded body as a radio wave absorber, a radio wave absorbing material such as ferrite or carbon black must be added at the time of manufacturing.

【0010】[0010]

【発明が解決しようとする課題】従って、本発明の目的
は、軽量で膜厚の制御などの生産管理が容易で、しかも
広帯域で優れた電磁波吸収特性を有する電波吸収体を提
供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a radio wave absorber which is light in weight, easy in production control such as film thickness control, and has excellent electromagnetic wave absorption characteristics in a wide band. .

【0011】[0011]

【課題を解決するための手段】前記課題は、非磁性の支
持体の片面あるいは両面に磁性層を設けてなる薄膜を少
なくとも2層以上積層したことを特徴とする電波吸収体
により解決される。
The above problems can be solved by a radio wave absorber characterized by laminating at least two layers of thin films each having a magnetic layer on one or both sides of a non-magnetic support.

【0012】[0012]

【発明の実施の形態】本発明の電波吸収体は、積層構造
であるため各層の境界で反射が起こり、或る磁性層で吸
収されずに透過した電波も再び別の磁性層に入射して吸
収される。よって、本発明の電波吸収体は単層構造のも
のに比べて、電波を吸収する効率がよく、一度入射した
電波を再び外部に反射することなく吸収することができ
る。また、異なる種類の薄膜を積層することにより広帯
域化が実現できる。一方、本発明に用いられている薄膜
は磁性層の厚さが薄いために薄膜の制御が比較的容易で
あり、そのため電波吸収体の薄膜の制御も容易になる。
BEST MODE FOR CARRYING OUT THE INVENTION Since the radio wave absorber of the present invention has a laminated structure, reflection occurs at the boundary of each layer, and radio waves transmitted without being absorbed by a certain magnetic layer are incident on another magnetic layer again. Be absorbed. Therefore, the radio wave absorber of the present invention has a higher efficiency of absorbing a radio wave than a single layer structure, and can absorb a once-incident radio wave without reflecting it again to the outside. In addition, a wide band can be realized by laminating thin films of different types. On the other hand, since the thin film used in the present invention has a thin magnetic layer, it is relatively easy to control the thin film. Therefore, the thin film of the electromagnetic wave absorber can be easily controlled.

【0013】図1は本発明の電波吸収体の構造を示す模
式的断面図である。(a)は非磁性の支持体1の片面に
磁性層3が設けられた薄膜を2層積層させた電波吸収体
5の構成断面図であり、(b)は非磁性の支持体1の両
面に磁性層3が設けられた薄膜を2層積層させた電波吸
収体5の構成断面図であり、(c)は非磁性の支持体1
の片面に磁性層3が設けられた薄膜を磁性層側を接着面
として2層積層させた電波吸収体5の構成断面図であ
り、(d)は非磁性の支持体1の片面に磁性層3が設け
られた薄膜を支持体側を接着面として2層積層させた電
波吸収体5の構成断面図であり、(e)は非磁性の支持
体1の片面あるいは両面に磁性層3が設けられた薄膜を
任意の面を接着面として4層積層させた電波吸収体5の
構成断面図である。
FIG. 1 is a schematic sectional view showing the structure of the radio wave absorber of the present invention. (A) is a cross-sectional view of a structure of a radio wave absorber 5 in which two thin films each having a magnetic layer 3 provided on one surface of a non-magnetic support 1 are laminated, and (b) is both surfaces of the non-magnetic support 1. FIG. 3 is a cross-sectional view of a structure of a radio wave absorber 5 in which two thin films each having a magnetic layer 3 provided therein are laminated, and FIG.
2D is a cross-sectional view of a structure of a radio wave absorber 5 in which two layers of thin films each having a magnetic layer 3 provided on one side thereof are laminated with the magnetic layer side as an adhesive surface, and FIG. 3 is a cross-sectional view of a structure of a radio wave absorber 5 in which two thin films provided with No. 3 are laminated with the support side as an adhesive surface, and (e) shows a magnetic layer 3 provided on one side or both sides of the non-magnetic support 1. FIG. 3 is a cross-sectional view of a configuration of a radio wave absorber 5 in which four layers of thin films are laminated with an arbitrary surface as an adhesive surface.

【0014】本発明の電波吸収体は、支持体と磁性層か
らなる薄膜を少なくとも2層以上積層して成形するが、
その積層数は、吸収したい電波の帯域や必要とする吸収
量など、使用する条件により変化させることができる。
The radio wave absorber of the present invention is formed by laminating at least two thin films each comprising a support and a magnetic layer.
The number of layers can be changed according to the conditions of use such as the band of radio waves to be absorbed and the required amount of absorption.

【0015】本発明の電波吸収体では、積層する薄膜の
種類は同一である必要はなく、種類の異なる様々な薄膜
を適宜混合して積層させることもできる。積層する際の
接着面は支持体と磁性層、磁性層と磁性層、支持体と支
持体など何れの態様でもよく、積層する薄膜も支持体の
両面に磁性層を設けてあるものと片面のみ設けてあるも
のを混合して用いても問題はない。
In the electromagnetic wave absorber of the present invention, the types of thin films to be laminated do not have to be the same, and various thin films of different types can be appropriately mixed and laminated. The adhesive surface at the time of laminating may be any mode such as a support and a magnetic layer, a magnetic layer and a magnetic layer, a support and a support, and the thin film to be laminated has only a magnetic layer provided on both sides of the support and one side only. There is no problem even if the provided ones are mixed and used.

【0016】非磁性の支持体上に磁性層を設けて形成し
た薄膜の積層方法としては、例えば、加圧成形などが用
いられるが、これに限定されるものではない。例えば、
必要に応じて接着剤などを使用して積層させることもで
きる。このような目的に適する接着剤の種類は当業者に
周知である。また、加熱しながら加圧することもでき
る。積層時の加圧条件は、薄膜の種類や積層数あるいは
接着剤を使用する場合には、その性質によって異なる
が、一般的に、1〜500kg/cm2の範囲内である
ことが好ましい。また、積層時に加熱する場合、その加
熱条件は一般的に、常温〜250℃の範囲内であること
が好ましい。
As a method for laminating thin films formed by providing a magnetic layer on a non-magnetic support, for example, pressure molding is used, but the method is not limited to this. For example,
If necessary, an adhesive or the like may be used for lamination. The types of adhesives suitable for such purpose are well known to those skilled in the art. It is also possible to apply pressure while heating. The pressurizing condition during lamination depends on the type of thin film, the number of laminations, and the properties of the adhesive when it is used, but it is generally preferable to be in the range of 1 to 500 kg / cm 2 . Moreover, when heating at the time of lamination, it is generally preferable that the heating condition is within a range of room temperature to 250 ° C.

【0017】2層以上の薄膜を積層させることにより形
成された本発明の電波吸収体の厚さは特に限定されない
が、一般的に、0.05mm〜20cmの範囲内である
ことが好ましい。0.05mm未満では吸収特性が劣化
するなどの不都合が生じ、一方20cm超では生産性が
劣ることから最大20cmまでが適当である。
The thickness of the radio wave absorber of the present invention formed by laminating two or more thin films is not particularly limited, but generally it is preferably in the range of 0.05 mm to 20 cm. If it is less than 0.05 mm, there arises such a disadvantage that the absorption characteristics are deteriorated. On the other hand, if it exceeds 20 cm, the productivity is poor.

【0018】本発明の電波吸収体を形成するのに使用さ
れる非磁性の支持体としては、紙又はポルオレフィン類
をラミネートした紙、プラスチック、布、不織布などが
挙げられるが、これらに限定されるものではなく、その
他の材料も使用できる。また、これら支持体の厚さは特
に限定されないが、支持体の厚みが増すと、積層電波吸
収体を作製したときの膜厚も増加するため、薄型電波吸
収体の作製を希望する場合、使用する支持体の厚みは1
mm以下であることが好ましい。
Examples of the non-magnetic support used to form the radio wave absorber of the present invention include, but are not limited to, paper or paper laminated with polyolefins, plastic, cloth, non-woven fabric and the like. Other materials can be used as well. The thickness of these supports is not particularly limited, but if the thickness of the support increases, the film thickness when the laminated electromagnetic wave absorber is manufactured also increases. The thickness of the support is 1
mm or less.

【0019】非磁性の支持体の表面に形成される磁性層
は、厚さ1mm以下で、フェライトなどの磁性粉末をバ
インダに混合した磁性塗料を支持体表面に塗布、乾燥さ
せて形成させるか、又は磁性金属材料を用いて真空蒸着
法、イオンプレーティング法、スパッタリング法などの
真空薄膜形成技術により形成させることができる。磁性
層の厚みを1mm以下に制御すれば、磁性層のそりや、
表層のひび割れを防止できる。また、製造の容易性、コ
ストなどの点から磁性層の形成法として塗布法が好まし
い。
The magnetic layer formed on the surface of the non-magnetic support has a thickness of 1 mm or less and is formed by coating the surface of the support with a magnetic coating material in which a magnetic powder such as ferrite is mixed with a binder and drying. Alternatively, it can be formed by using a vacuum thin film forming technique such as a vacuum deposition method, an ion plating method, and a sputtering method using a magnetic metal material. If the thickness of the magnetic layer is controlled to 1 mm or less, the warpage of the magnetic layer,
It is possible to prevent cracks on the surface layer. Further, the coating method is preferable as the method for forming the magnetic layer from the viewpoints of ease of production, cost, and the like.

【0020】塗布法により磁性層を形成する際に使用さ
れる磁性粉末としては、例えば、Ni−Zn系フェライ
ト、Mn−Zn系フェライト、MO・Fe23(ここ
で、MはMn,Co,Ni,Cu,Zn,Ba,Mgな
どである)、γ−Fe23、Fe34、Co−γ−Fe
23などの各種フェライトあるいはα−Fe、CrO3
などの磁気記録用材料が挙げられるが、これらに限定す
るものではではなく、磁性粉末であれば問題はない。ま
た前記磁性粉末にNiやCoなどの金属をメッキ等の方
法でコーティングしたような材料であっても使用するこ
とができる。これら磁性粉末の粒径は特に限定されない
が、一般的に、100μm以下であることが好ましい。
磁性粉末の粒径が大きすぎると成膜後の磁性層の表面性
及び物性を劣化させるので好ましくない。
The magnetic powder used when forming the magnetic layer by the coating method is, for example, Ni-Zn ferrite, Mn-Zn ferrite, MO.Fe 2 O 3 (where M is Mn, Co. , Ni, Cu, Zn, Ba, Mg, etc.), γ-Fe 2 O 3 , Fe 3 O 4 , Co-γ-Fe.
Various ferrites such as 2 O 3 or α-Fe, CrO 3
Examples of such magnetic recording materials include, but are not limited to, and magnetic powders are not a problem. Also, a material obtained by coating the magnetic powder with a metal such as Ni or Co by a method such as plating can be used. The particle size of these magnetic powders is not particularly limited, but is generally preferably 100 μm or less.
If the particle size of the magnetic powder is too large, the surface properties and physical properties of the magnetic layer after film formation are deteriorated, which is not preferable.

【0021】磁性層を形成するための磁性塗料中には、
前記磁性粉末の他に、カーボン、金属粉、導電性金属酸
化物及び高誘電材料などの補助添加剤を添加することも
できる。これら補助添加剤の粒径は、成膜後の表面性及
び物性の点から、100μm以下であることが好まし
い。また、磁性層中のこれら補助添加剤の配合量が、磁
性粉末に対して50wt%を越えると、磁性層の磁性粉末
含有率が低くなり、電波吸収特性が低下する恐れがある
ため、補助添加剤の配合量は磁性粉末に対して50wt%
未満であることが好ましい。
In the magnetic coating material for forming the magnetic layer,
In addition to the magnetic powder, auxiliary additives such as carbon, metal powder, conductive metal oxide, and high dielectric material may be added. The particle size of these auxiliary additives is preferably 100 μm or less from the viewpoint of surface properties and physical properties after film formation. If the content of these auxiliary additives in the magnetic layer exceeds 50 wt% with respect to the magnetic powder, the content of the magnetic powder in the magnetic layer will decrease, and the electromagnetic wave absorption characteristics may deteriorate. The compounding amount of the agent is 50 wt% with respect to the magnetic powder.
It is preferably less than.

【0022】前記磁性塗料の作製に使用されるバインダ
としては、例えば、ポリフェニレンサルファイド、ロジ
ン、セラック、クロロプレンゴム、ポリオレフィン樹
脂、塩化ビニリデン樹脂、ポリアミド樹脂、ポリエーテ
ルケトン樹脂、塩化ビニル樹脂、ポリエステル樹脂、ア
ルキド樹脂、フェノール樹脂、エポキシ樹脂、アクリル
樹脂、ウレタン樹脂、シリコン樹脂、セルロース樹脂、
酢酸ビニル樹脂などを使用することができる。また、必
要に応じて溶剤、分散剤、可塑剤、架橋剤、老化防止
剤、加硫促進剤などの助剤を添加することもできる。
Examples of the binder used for preparing the magnetic coating material include polyphenylene sulfide, rosin, shellac, chloroprene rubber, polyolefin resin, vinylidene chloride resin, polyamide resin, polyetherketone resin, vinyl chloride resin, polyester resin, Alkyd resin, phenol resin, epoxy resin, acrylic resin, urethane resin, silicon resin, cellulose resin,
Vinyl acetate resin or the like can be used. Further, if necessary, an auxiliary agent such as a solvent, a dispersant, a plasticizer, a cross-linking agent, an antioxidant and a vulcanization accelerator can be added.

【0023】前記磁性塗料を作製する場合、磁性粉末、
補助添加剤、バインダ及び助剤などの成分をニーダ、ボ
ールミル、サンドミル、ロールミル、ジェットミル、ホ
モジナイザなどの適宜の装置を用いて分散、混合させる
ことができる。その他の混合機、分散機、研磨機、粉砕
器などもその場に応じて適宜選択して使用できる。
In the case of producing the magnetic paint, magnetic powder,
Components such as auxiliary additives, binders and auxiliaries can be dispersed and mixed by using an appropriate device such as a kneader, ball mill, sand mill, roll mill, jet mill or homogenizer. Other mixers, dispersers, grinders, crushers and the like can be appropriately selected and used according to the situation.

【0024】磁性層はロールコータ、バーコータ、グラ
ビアコータ、キャストコータ、スプレイコータなどの常
用の塗布機で磁性塗料を支持体表面に塗布することによ
り磁性層を形成することができる。磁性層は非磁性の支
持体の片面あるいは両面に設けることができる。磁性層
の乾燥後の厚さは特に限定されないが、一般的に、0.
1μm以上であることが好ましい。磁性層の厚さが0.
1μm未満では均一な磁性層が形成されない可能性があ
る。また、磁性層以外に、潤滑層、保護層、バックコー
ト層などが設けられていても何ら差し支えがない。従っ
て、一般に市販されている塗布型磁気記録媒体あるいは
生産時に発生する磁気記録媒体廃材を用いて本発明の電
波吸収体を作製することもできる。
The magnetic layer can be formed by applying the magnetic coating material to the surface of the support with a conventional coating machine such as a roll coater, a bar coater, a gravure coater, a cast coater, and a spray coater. The magnetic layer can be provided on one side or both sides of the non-magnetic support. Although the thickness of the magnetic layer after drying is not particularly limited, it is generally 0.
It is preferably 1 μm or more. The thickness of the magnetic layer is 0.
If it is less than 1 μm, a uniform magnetic layer may not be formed. In addition to the magnetic layer, a lubricating layer, a protective layer, a back coat layer and the like may be provided without any problem. Therefore, the electromagnetic wave absorber of the present invention can be produced by using a commercially available coating type magnetic recording medium or a magnetic recording medium waste material generated at the time of production.

【0025】磁性層を真空薄膜形成技術により形成させ
る場合、Co,CoNi,CoNiP,CoCr、Fe
などの強磁性体を真空蒸着法によって長尺テープからな
る非磁性の支持体上に蒸着させる。この場合、非磁性の
支持体としてはプラスチックフィルムを使用することが
好ましい。このような真空蒸着法は当業者に周知であ
る。
When the magnetic layer is formed by the vacuum thin film forming technique, Co, CoNi, CoNiP, CoCr, Fe
A ferromagnetic material such as is deposited on a non-magnetic support made of a long tape by a vacuum deposition method. In this case, it is preferable to use a plastic film as the non-magnetic support. Such vacuum deposition methods are well known to those skilled in the art.

【0026】[0026]

【実施例】以下、具体例により本発明の電波吸収体の製
造及び効果を例証する。
EXAMPLES The production and effects of the radio wave absorber of the present invention will be illustrated below with specific examples.

【0027】実施例1 下記の組成1の成分類をボールミルで混合し、均質に分
散させ、磁性塗料を作製した。この磁性塗料をグラビア
ロールにより、ポリイミドフィルム(膜厚50μm)上
に、乾燥後の磁性層の膜厚が3μmになるように塗布し
た後、薄膜1を作製した。次に、薄膜1を500枚積層
し、180℃、100kg/cm2の条件下で60分間
加熱加圧下で成形して厚さ1.5cmの電波吸収体1を
作製した。電波吸収体1の電波吸収能を100〜110
0MHzの周波数範囲について測定した。
Example 1 The components of the following composition 1 were mixed by a ball mill and uniformly dispersed to prepare a magnetic coating material. This magnetic paint was applied onto a polyimide film (film thickness 50 μm) by a gravure roll so that the thickness of the dried magnetic layer would be 3 μm, and then a thin film 1 was prepared. Next, 500 thin films 1 were laminated and molded under heating and pressurization at 180 ° C. and 100 kg / cm 2 for 60 minutes to produce a radio wave absorber 1 having a thickness of 1.5 cm. The electric wave absorption capacity of the electric wave absorber 1 is 100 to 110.
The measurement was performed in the frequency range of 0 MHz.

【0028】電波吸収特性の測定はネットワークアナラ
イザを用いて行った。この実施例では、100MHz〜
1.1GHzの範囲で反射減衰量を測定し、評価した。
得られた測定結果を図2に示す。
The measurement of the radio wave absorption characteristic was performed using a network analyzer. In this embodiment, 100 MHz
The return loss was measured and evaluated in the range of 1.1 GHz.
The obtained measurement result is shown in FIG.

【0029】(組成1) 塩化ビニル樹脂 25重量部 α−Fe23 60重量部 カーボンブラック 10重量部 アルミナ 5重量部 トルエン 150重量部(Composition 1) Vinyl chloride resin 25 parts by weight α-Fe 2 O 3 60 parts by weight Carbon black 10 parts by weight Alumina 5 parts by weight Toluene 150 parts by weight

【0030】実施例2 下記の組成2の成分類をボールミルで混合し、均質に分
散させ、磁性塗料を作製した。この磁性塗料をグラビア
ロールにより、ポリエチレンテレフタレートフィルム
(膜厚10μm)上に、乾燥後の磁性層の膜厚が1μm
になるように塗布した後、薄膜2を作製した。次に、薄
膜2を1000枚積層し、130℃、70kg/cm2
の条件下で100分間加熱加圧下で成形して厚さ1cm
の電波吸収体2を作製した。電波吸収体2の電波吸収能
を実施例1と同様の方法で測定した。得られた測定結果
を図3に示す。
Example 2 The components of the following composition 2 were mixed by a ball mill and uniformly dispersed to prepare a magnetic coating material. This magnetic coating was gravure-rolled onto a polyethylene terephthalate film (film thickness 10 μm) to give a magnetic layer having a thickness of 1 μm after drying.
Then, the thin film 2 was prepared. Next, 1000 thin films 2 are laminated and 130 ° C., 70 kg / cm 2
Molded under heat and pressure for 100 minutes under conditions of 1cm thickness
The electromagnetic wave absorber 2 of was produced. The radio wave absorbing ability of the radio wave absorber 2 was measured by the same method as in Example 1. The obtained measurement result is shown in FIG.

【0031】(組成2) ウレタン樹脂 25重量部 セルロース樹脂 60重量部 Ni−Znフェライト粉末 10重量部 アルミナ 5重量部 トルエン 150重量部(Composition 2) Urethane resin 25 parts by weight Cellulose resin 60 parts by weight Ni-Zn ferrite powder 10 parts by weight Alumina 5 parts by weight Toluene 150 parts by weight

【0032】実施例3 市販のオーディオテープ(磁性層はγ−Fe23,磁性
層の厚さ5μm,ポリエチレンテレフタレートフィルム
の厚さ10μm)を700枚積層し、150℃、50k
g/cm2の条件下で120分間加熱加圧下で成形して
厚さ5mmの電波吸収体3を作製した。電波吸収体3の
電波吸収能を実施例1と同様の方法で測定した。得られ
た測定結果を図4に示す。
Example 3 700 sheets of commercially available audio tapes (magnetic layer: γ-Fe 2 O 3 , magnetic layer thickness: 5 μm, polyethylene terephthalate film thickness: 10 μm) were laminated at 150 ° C. and 50 k.
A radio wave absorber 3 having a thickness of 5 mm was produced by molding under heat and pressure for 120 minutes under the condition of g / cm 2 . The radio wave absorbing ability of the radio wave absorber 3 was measured by the same method as in Example 1. The obtained measurement result is shown in FIG.

【0033】比較例1 クロロプレンゴム100重量部に対し、可塑剤、老化防
止剤、加硫促進剤等の配合剤を30重量部、Co−γ−
Fe23を50重量部配合し、バンバリーミキサーで混
合し、ロールでシート状にし、厚さ5mmの電波吸収体
4を作製した。電波吸収体4の電波吸収能を実施例1と
同様に方法で測定した。得られた測定結果を図5に示
す。
Comparative Example 1 100 parts by weight of chloroprene rubber, 30 parts by weight of a compounding agent such as a plasticizer, an antioxidant and a vulcanization accelerator, and Co-γ-
Fe 2 O 3 was mixed in an amount of 50 parts by weight, mixed with a Banbury mixer, and rolled into a sheet to prepare a radio wave absorber 4 having a thickness of 5 mm. The radio wave absorbing ability of the radio wave absorber 4 was measured by the same method as in Example 1. The obtained measurement result is shown in FIG.

【0034】図2〜図4から明らかなように、本発明の
電波吸収体は、特定周波数にピークを有し、広帯域にお
いて反射減衰量10dB(90%)以上の吸収を示し
た。これに対し、図5に示した比較例1の磁性粉をゴム
に混合した電波吸収体は、吸収ピークの無い、全体的に
反射損失の低い電波吸収特性を示した。
As apparent from FIGS. 2 to 4, the radio wave absorber of the present invention has a peak at a specific frequency and exhibits a return loss of 10 dB (90%) or more in a wide band. On the other hand, the electromagnetic wave absorber in which the magnetic powder of Comparative Example 1 shown in FIG. 5 was mixed with rubber exhibited an electromagnetic wave absorption characteristic without an absorption peak and a low reflection loss as a whole.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
非磁性の支持体上に磁性層を設けた薄膜を複数枚積層す
ることにより、優れた電波吸収特性を示す電波吸収体を
作製することができる。本発明の電波吸収体は、従来品
に比べ磁性材料の含有率が低いため軽量化できる。ま
た、本発明の電波吸収体は積層構造であるため、ゴムや
合成樹脂などに磁性材料を混合したシート状電波吸収体
に比べ、膜厚の制御が容易であり、しかも広帯域の電波
を吸収することができる。
As described above, according to the present invention,
By laminating a plurality of thin films each provided with a magnetic layer on a non-magnetic support, a radio wave absorber exhibiting excellent radio wave absorption characteristics can be manufactured. The radio wave absorber of the present invention has a lower content ratio of the magnetic material than the conventional product, and thus can be made lightweight. Further, since the radio wave absorber of the present invention has a laminated structure, it is easier to control the film thickness than the sheet-like radio wave absorber in which a magnetic material is mixed with rubber, synthetic resin, etc. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電波吸収体の構造を示す模式的断面図
であり、(a)は非磁性の支持体の片面に磁性層が設け
られた薄膜を2層積層させた電波吸収体5構成断面図で
あり、(b)は非磁性の支持体の両面に磁性層が設けら
れた薄膜を2層積層させた電波吸収体の構成断面図であ
り、(c)は非磁性の支持体1の片面に磁性層3が設け
られた薄膜を磁性層側を接着面として2層積層させた電
波吸収体5の構成断面図であり、(d)は非磁性の支持
体1の片面に磁性層3が設けられた薄膜を支持体側を接
着面として2層積層させた電波吸収体5の構成断面図で
あり、(e)は非磁性の支持体1の片面あるいは両面に
磁性層3が設けられた薄膜を任意の面を接着面として4
層積層させた電波吸収体5の構成断面図である。
FIG. 1 is a schematic cross-sectional view showing the structure of a radio wave absorber of the present invention, (a) is a radio wave absorber 5 in which two thin films each having a magnetic layer provided on one surface of a non-magnetic support are laminated. FIG. 1B is a cross-sectional view of a structure, FIG. 6B is a cross-sectional view of a radio wave absorber in which two thin films each having a magnetic layer provided on both surfaces of a non-magnetic support are stacked, and FIG. 1 is a cross-sectional view of a structure of a radio wave absorber 5 in which two thin films each having a magnetic layer 3 provided on one side thereof are laminated with the magnetic layer side as an adhesive surface. FIG. FIG. 3 is a cross-sectional view of a structure of a radio wave absorber 5 in which two thin films provided with a layer 3 are laminated with the support side as an adhesive surface, and (e) the magnetic layer 3 is provided on one or both sides of the non-magnetic support 1. The thin film is bonded to any surface 4
FIG. 3 is a cross-sectional view of the configuration of the radio wave absorber 5 in which layers are laminated.

【図2】実施例1で得られた電波吸収体の電波吸収能を
示す特性図である。
FIG. 2 is a characteristic diagram showing the radio wave absorbing ability of the radio wave absorber obtained in Example 1.

【図3】実施例2で得られた電波吸収体の電波吸収能を
示す特性図である。
FIG. 3 is a characteristic diagram showing the radio wave absorbing ability of the radio wave absorber obtained in Example 2.

【図4】実施例3で得られた電波吸収体の電波吸収能を
示す特性図である。
FIG. 4 is a characteristic diagram showing the radio wave absorbing ability of the radio wave absorber obtained in Example 3.

【図5】比較例1で得られた電波吸収体の電波吸収能を
示す特性図である。
5 is a characteristic diagram showing the radio wave absorbing ability of the radio wave absorber obtained in Comparative Example 1. FIG.

【符号の説明】[Explanation of symbols]

1 非磁性の支持体 3 磁性層 5 電波吸収体 1 non-magnetic support 3 magnetic layer 5 radio wave absorber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千野 勝 神奈川県横須賀市林1丁目2番3号 (72)発明者 北畑 慎一 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaru Chino 1-3-2 Hayashi, Yokosuka City, Kanagawa Prefecture (72) Inventor Shinichi Kitabata 1-188 Yuta, Ibaraki City, Osaka Prefecture Hitachi Maxell Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非磁性の支持体の片面あるいは両面に磁
性層を設けてなる薄膜を少なくとも2層以上積層したこ
とを特徴とする電波吸収体。
1. A radio wave absorber comprising at least two thin films each having a magnetic layer provided on one or both sides of a non-magnetic support.
【請求項2】 前記非磁性の支持体に設けられた磁性層
が、少なくとも強磁性体あるいは常磁性体を含む磁性塗
料を支持体の表面に塗布することにより形成されたもの
である請求項1の電波吸収体。
2. The magnetic layer provided on the non-magnetic support is formed by applying a magnetic coating material containing at least a ferromagnetic material or a paramagnetic material on the surface of the support. Radio wave absorber.
【請求項3】 前記非磁性の支持体に設けられた磁性層
の厚さが1mm以下である請求項1の電波吸収体。
3. The radio wave absorber according to claim 1, wherein the thickness of the magnetic layer provided on the non-magnetic support is 1 mm or less.
JP18558296A 1995-06-30 1996-06-26 Radio wave absorber Withdrawn JPH0974297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18558296A JPH0974297A (en) 1995-06-30 1996-06-26 Radio wave absorber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-188007 1995-06-30
JP18800795 1995-06-30
JP18558296A JPH0974297A (en) 1995-06-30 1996-06-26 Radio wave absorber

Publications (1)

Publication Number Publication Date
JPH0974297A true JPH0974297A (en) 1997-03-18

Family

ID=26503195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18558296A Withdrawn JPH0974297A (en) 1995-06-30 1996-06-26 Radio wave absorber

Country Status (1)

Country Link
JP (1) JPH0974297A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158486A (en) * 2000-11-17 2002-05-31 Res Inst Electric Magnetic Alloys Electromagnetic wave absorbing film
JP2007129179A (en) * 2005-10-03 2007-05-24 Toda Kogyo Corp Conductive/magnetic filler, electromagnetic wave interference controlling sheet, flat cable for high frequency signal, flexible printed circuit board and method for manufacturing the sheet
KR100740175B1 (en) * 2003-11-03 2007-07-16 주식회사 이송이엠씨 Gasket for absorbing and shielding electron waves and Method for manufacturing gasket
JP2008211169A (en) * 2007-02-02 2008-09-11 Tdk Corp Sheet-like magnetic substance and its manufacturing method
US7625640B2 (en) 2004-02-24 2009-12-01 Shin-Etsu Polymer Co., Ltd. Electromagnetic noise suppressor, structure with electromagnetic noise suppressing function, and method of manufacturing the same
US7625633B2 (en) 2003-03-25 2009-12-01 Shin-Etsu Polymer., Ltd. Electromagnetic noise suppressor, article with electromagnetic noise suppressing function, and their manufacturing methods
CN102811595A (en) * 2012-07-31 2012-12-05 深圳光启创新技术有限公司 Broadband wave-absorbing material
US9837725B2 (en) 2012-07-31 2017-12-05 Kuang-Chi Innovative Technology Ltd. Wide-frequency wave-absorbing metamaterial, electronic device and method for obtaining wide-frequency wave-absorbing metamaterial

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158486A (en) * 2000-11-17 2002-05-31 Res Inst Electric Magnetic Alloys Electromagnetic wave absorbing film
US7625633B2 (en) 2003-03-25 2009-12-01 Shin-Etsu Polymer., Ltd. Electromagnetic noise suppressor, article with electromagnetic noise suppressing function, and their manufacturing methods
US7887911B2 (en) 2003-03-25 2011-02-15 Shin-Etsu Polymer Co., Ltd. Electromagnetic noise suppressor, article with electromagnetic noise suppressing function and their manufacturing methods
KR100740175B1 (en) * 2003-11-03 2007-07-16 주식회사 이송이엠씨 Gasket for absorbing and shielding electron waves and Method for manufacturing gasket
US7625640B2 (en) 2004-02-24 2009-12-01 Shin-Etsu Polymer Co., Ltd. Electromagnetic noise suppressor, structure with electromagnetic noise suppressing function, and method of manufacturing the same
US8017255B2 (en) 2004-02-24 2011-09-13 Shin-Etsu Polymer Co., Ltd. Electromagnetic noise suppressor, structure with electromagnetic noise suppressing function, and method of manufacturing the same
JP2007129179A (en) * 2005-10-03 2007-05-24 Toda Kogyo Corp Conductive/magnetic filler, electromagnetic wave interference controlling sheet, flat cable for high frequency signal, flexible printed circuit board and method for manufacturing the sheet
JP2008211169A (en) * 2007-02-02 2008-09-11 Tdk Corp Sheet-like magnetic substance and its manufacturing method
CN102811595A (en) * 2012-07-31 2012-12-05 深圳光启创新技术有限公司 Broadband wave-absorbing material
CN102811595B (en) * 2012-07-31 2014-06-04 深圳光启创新技术有限公司 Broadband wave-absorbing material
US9837725B2 (en) 2012-07-31 2017-12-05 Kuang-Chi Innovative Technology Ltd. Wide-frequency wave-absorbing metamaterial, electronic device and method for obtaining wide-frequency wave-absorbing metamaterial

Similar Documents

Publication Publication Date Title
US11515643B2 (en) Electromagnetic-wave-absorbing sheet
KR101790684B1 (en) Electromagnetic wave absorbing composite sheet
WO2018016522A1 (en) Electromagnetic absorber
JPS6250891B2 (en)
US6187120B1 (en) Method of manufacturing composite magnetic sheet
TW200913869A (en) Electromagnetic wave absorbing and shielding film, method of manufacturing the same, and cable including the same
JPH0974297A (en) Radio wave absorber
JP2023067902A (en) Composition for electromagnetic wave absorber, and electromagnetic wave absorber
KR20180137295A (en) Electromagnetic wave absorber
WO2019235539A1 (en) Electromagnetic wave absorber and electromagnetic wave absorber composition
JP3076473B2 (en) Laminated type anti-reflection body and anti-reflection method
JPH0697691A (en) Electromagnetic shield structure
JP2000348916A (en) Manufacture of magnetic sheet
JP3209456B2 (en) Radio wave antireflective body and radio wave antireflection method
KR102264959B1 (en) high-permeability magnetic sheet and manufacturing method thereof
JPH1027986A (en) Radio wave absorber
JP2000244171A (en) Method of producing magnetic sheet
JP4368666B2 (en) Method for producing composite particles
JP2003243877A (en) Magnetic shield composition, magnetic shield sheet, and power cable
JP2005019846A (en) Noise suppressing sheet
KR100291802B1 (en) Screen sheet for obstructing electromagnetic wave and magnetic field and method for making the same
KR100712836B1 (en) Multi-layered film for shielding electromagnetic interference and circuit board including the same
JP2784275B2 (en) Radio wave absorber
KR101510301B1 (en) Adhesive sheet for preparing the ferrite sheet complex
JP2003174280A (en) Electromagnetic wave absorber, its producing method and electronic apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902