JPH0972845A - Optical measuring apparatus for light-scattering and -absorbing body - Google Patents
Optical measuring apparatus for light-scattering and -absorbing bodyInfo
- Publication number
- JPH0972845A JPH0972845A JP7251892A JP25189295A JPH0972845A JP H0972845 A JPH0972845 A JP H0972845A JP 7251892 A JP7251892 A JP 7251892A JP 25189295 A JP25189295 A JP 25189295A JP H0972845 A JPH0972845 A JP H0972845A
- Authority
- JP
- Japan
- Prior art keywords
- light
- point
- light receiving
- incident
- receiving point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は生体酸素モニタなどの光
散乱・吸収体の光学的測定装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measuring device for a light scattering / absorbing body such as a biological oxygen monitor.
【0002】[0002]
【従来の技術】酸素モニタでは被検体の一部に測定光を
入射し、その被検体の他の部分から出てくる光を検出
し、複数の波長で測定した吸光度変化量の重みつき一次
結合として目的成分の変化量を求めている。2. Description of the Related Art In an oxygen monitor, measurement light is made incident on a part of a subject, light emitted from other parts of the subject is detected, and a weighted linear combination of absorbance change amounts measured at a plurality of wavelengths is detected. As the change amount of the target component.
【0003】その方法を具体的に示すと、酸素化ヘモグ
ロビン、脱酸素化ヘモグロビンの濃度変化量をそれぞれ
Δ〔HbO2〕、Δ〔Hb〕とし、散乱成分等による平
行移動量をSと表し、波長λ1、λ2、λ3に対する酸素
化ヘモグロビンの分子吸光度をそれぞれe1,e2,
e3、脱酸素化ヘモグロビンの分子吸光度をそれぞれ
b1,b2,b3とすれば、波長λ1,λ2,λ3についてヘ
モグロビン濃度と吸光度の線形性を仮定して、対応する
吸光度変化ΔA1、ΔA2、ΔA3は ΔA1=e1Δ〔HbO2〕+b1Δ〔Hb〕+S ΔA2=e2Δ〔HbO2〕+b2Δ〔Hb〕+S ΔA3=e3Δ〔HbO2〕+b3Δ〔Hb〕+S ……(a) とかける。これをΔ〔HbO2〕、Δ〔Hb〕、Sを未
知数とする連立方程式として解けば、 Δ〔HbO2〕=k11ΔA1+k12ΔA2+k13ΔA3 Δ〔Hb〕 =k21ΔA1+k22ΔA2+k23ΔA3 ……(b) の形の解が得られる。また(a)式で散乱成分等による
平行移動量Sを考慮しない方法も可能であり、その場合
はS=0として解けば、未知数が2つで式が3つになる
ので、最小自乗法で解けばよく、解の形はやはり(b)
式になる。The method will be specifically described. Δ [HbO 2 ] and Δ [Hb] are the changes in concentration of oxygenated hemoglobin and deoxygenated hemoglobin, respectively, and the parallel shift amount due to scattering components is S. The molecular absorbances of oxygenated hemoglobin for wavelengths λ 1 , λ 2 , and λ 3 are e 1 , e 2 , and
Assuming that the molecular absorbances of e 3 and deoxygenated hemoglobin are b 1 , b 2 and b 3 , respectively, assuming the linearity between the hemoglobin concentration and the absorbance for wavelengths λ 1 , λ 2 and λ 3 , the corresponding absorbance changes ΔA 1 , ΔA 2 and ΔA 3 are ΔA 1 = e 1 Δ [HbO 2 ] + b 1 Δ [Hb] + S ΔA 2 = e 2 Δ [HbO 2 ] + b 2 Δ [Hb] + S ΔA 3 = e 3 Δ [ HbO 2 ] + b 3 Δ [Hb] + S ... (a) If this is solved as a simultaneous equation with Δ [HbO 2 ], Δ [Hb], and S as unknowns, Δ [HbO 2 ] = k 11 ΔA 1 + k 12 ΔA 2 + k 13 ΔA 3 Δ [Hb] = k 21 ΔA A solution of the form 1 + k 22 ΔA 2 + k 23 ΔA 3 (b) is obtained. It is also possible to use the method (a) in which the parallel displacement S due to the scattering component is not taken into consideration. In that case, if S = 0 is solved, there are two unknowns and three expressions, so the least squares method is used. You only have to solve it, and the form of the solution is (b)
It becomes an expression.
【0004】一方、均一な光散乱・吸収体の特性は吸収
係数μaと等価散乱係数μs’(=(1−g)μs;μ
sは散乱係数、gは非等方性パラメータ)の2つの光学
定数により記述することができる。図1に示されるよう
に、半無限体の一部に単位1のデルタ関数のパルス光を
時刻0に入射させ、その入射点からρmm離れた点の1
mm2から時刻tに出る光の強度R(ρ,t)は次の
(1)式で与えられる(APPLIED OPTICS, Vol.28, No.1
2, pp.2331-2336 (1989)参照)。On the other hand, the characteristics of a uniform light scattering / absorbing material are as follows: absorption coefficient μa and equivalent scattering coefficient μs' (= (1-g) μs; μ
It can be described by two optical constants, s is a scattering coefficient and g is an anisotropic parameter. As shown in FIG. 1, pulsed light of a delta function of unit 1 is made incident on a part of a semi-infinite body at time 0, and 1 at a point ρ mm away from the incident point.
The intensity R (ρ, t) of the light emitted from mm 2 at time t is given by the following equation (1) (APPLIED OPTICS, Vol.28, No.1).
2, pp.2331-2336 (1989)).
【数3】 ここで、Dは拡散係数であり、D=1/3(μa+μ
s’)、cは媒体中での光速、Z0=1/μs’であ
る。入射点から一定の距離だけ離れた受光点で光の強度
を時間分解法により測定し、(1)式にあてはめれば、
光学定数μaとμs’を個々に求めることができ、現在
その方向での検討が進められている。(Equation 3) Here, D is a diffusion coefficient, and D = 1/3 (μa + μ
s ′) and c are the speed of light in the medium, Z 0 = 1 / μs ′. If the light intensity is measured by the time-resolved method at the light receiving point that is separated from the incident point by a certain distance, and is applied to equation (1),
The optical constants μa and μs ′ can be individually calculated, and studies are currently underway in that direction.
【0005】[0005]
【発明が解決しようとする課題】従来の酸素モニタでの
測定は、測定開始点を零として、それからの変化量の測
定に限られており、絶対量の測定はなされていない。絶
対量を測定しようとすれば、現在のところ時間分解法に
より求める方法しか検討がなされていないが、時間分解
法は装置が大型となり、価格も高価となるので、簡易な
測定装置としては実現することができない。そのため、
定常光法で光学定数の絶対値を求めることが長らく求め
られてきたが、これまで有用な方法が見出されていな
い。The measurement by the conventional oxygen monitor is limited to the measurement of the amount of change from the starting point of measurement being zero, and the measurement of the absolute amount is not performed. At present, only the method of obtaining the absolute amount by the time-resolved method has been studied to measure the absolute amount.However, the time-resolved method requires a large device and is expensive, so it can be realized as a simple measuring device. I can't. for that reason,
Although it has been long sought to obtain the absolute value of the optical constant by the stationary light method, no useful method has been found so far.
【0006】本発明の第1の目的は、定常光法で光学定
数の絶対測定を行なう装置を提供することである。ここ
で、絶対量とはその時点の量であればよく、それが単位
を持たない比の形であるか、特定の単位を有する本来の
絶対量であるかは問わない。特定の時刻からの変化分だ
けの測定量でなく、その時点の測定量を絶対量と称すこ
とにする。A first object of the present invention is to provide a device for making absolute measurement of optical constants by the stationary light method. Here, the absolute amount may be the amount at that time, and it does not matter whether it is in the form of a ratio having no unit or the original absolute amount having a specific unit. Not only the measured amount of change from a specific time, but the measured amount at that time is called an absolute amount.
【0007】入射点と受光点との距離が複数種類あるプ
ローブを用いた場合、入射点と受光点との距離のずれが
積μa・μs’の測定値に影響を与える。入射点が共通
で受光点が複数設けられている場合、受光面積が大きい
ときは受光面積もμa・μs’の測定値に影響を与える
し、複数の受光点の受光器間の感度の違いもμa・μ
s’の測定値に影響を与える。入射点が複数で受光点が
共通の場合には入射光量の違いもμa・μs’の測定値
に影響を与える。これらの入射光量、受光面積、受光器
の感度などは装置関数であり、出荷時に工場で個々の装
置について較正がなされるが、装置が経時変化して光源
の強度が変化したときや、受光器の感度が変化したとき
は再較正をしなければならない。そこで、本発明の第2
の目的は、そのような装置関数の較正手段を備えること
である。When a probe having a plurality of distances between the incident point and the light receiving point is used, the deviation of the distance between the incident point and the light receiving point affects the measured value of the product μa · μs'. When the light receiving area is large and the light receiving area is large, the light receiving area also affects the measured value of μa · μs', and the difference in the sensitivity between the light receivers at the plurality of light receiving points also occurs. μa ・ μ
Affects the measured value of s'. When there are a plurality of incident points and a common light receiving point, the difference in the amount of incident light also affects the measured value of μa · μs ′. The amount of incident light, the light receiving area, the sensitivity of the light receiver, etc. are device functions, and each device is calibrated at the factory at the time of shipment, but when the device changes over time and the intensity of the light source changes, If the sensitivity of the changes, the recalibration must be done. Therefore, the second aspect of the present invention
The purpose of is to provide a means for calibrating such a device function.
【0008】[0008]
【課題を解決するための手段】本発明は、検出した光か
ら被検体の吸収係数μaと等価散乱係数μs’の積μa
・μs’を一括した量として算出する演算部を備えた測
定装置である。被検体の1点に入射した光が入射点から
距離を離れた点から再放射される強さの理論式におい
て、積μa・μs’が常に一括して現れ、再放射される
光の強さを入射点からの距離の関数として測定すれば、
時間分解法を用いることなく積μa・μs’の絶対値を
求めることができる。さらに複数の波長で求められた、
複数個の(μa・μs’)の組の間の比を計算すれば、
被検体のμaの比率という意味での被検体の酸素化度の
絶対値(変化量ではないその時点の値)を算出すること
ができる。これは後述するようにμs’の波長依存性が
各検体についてほぼ等しいので、複数波長の(μa・μ
s’)の組の間の比によりμs’が消去されμaだけが
残るという理由による。According to the present invention, the product μa of the absorption coefficient μa of the subject and the equivalent scattering coefficient μs ′ from the detected light is used.
-It is a measuring device equipped with a calculation unit that calculates μs' as a collective amount. In the theoretical formula of the intensity of the light incident on one point of the object to be re-emitted from a point distant from the incident point, the product μa · μs' always appears as a unit and the intensity of the re-emitted light If is measured as a function of distance from the point of incidence,
The absolute value of the product μa · μs ′ can be obtained without using the time-resolved method. Furthermore, it was calculated at multiple wavelengths,
By calculating the ratio between multiple (μa · μs') pairs,
The absolute value of the oxygenation degree of the subject in the sense of the ratio of μa of the subject (the value at that time, which is not the change amount) can be calculated. This is because the wavelength dependence of μs' is almost the same for each sample, as will be described later.
This is because the ratio between the sets of s ') erases μs' and leaves only μa.
【0009】本発明は、光散乱・吸収体である被検体の
一部に測定光を入射し、その被検体上で前記測定光の入
射点から離れた受光点で測定光を受光するとともに、入
射点と受光点との距離を複数種類に異ならせるように入
射点と受光点のうちの一方が複数個設けられているプロ
ーブを備えた測定光学系と、受光点と入射点の1つの組
における受光点と入射点との距離をa1、その組の受光
点での受光強度をI1、そのときの受光器の出力信号を
S1とし、受光点と入射点の他の組における受光点と入
射点との距離をa2、その組の受光点での受光強度を
I2、そのときの受光器の出力信号をS2としたとき、プ
ローブの入射点が共通で受光点が複数のとき、S1=k1
I1(k1は入射点からの距離a1にある受光点の受光器
の定数)、S2=k2I2(k2は入射点からの距離a2に
ある受光点の受光器の定数)として、According to the present invention, the measuring light is made incident on a part of the object which is a light scattering / absorbing body, and the measuring light is received on the object at a light receiving point apart from the incident point of the measuring light. A measuring optical system including a probe provided with a plurality of one of an incident point and a light receiving point so that the distance between the incident point and the light receiving point is different from each other, and one set of the light receiving point and the incident point. The distance between the light receiving point and the incident point at is a 1 , the light receiving intensity at the light receiving point of the set is I 1 , and the output signal of the light receiver at that time is S 1 , and the light receiving at the other set of the light receiving point and the incident point is performed. distance a 2 between the point and the incident point, the received light intensity I 2 at the set of the light receiving point, when the output signal of the photodetector at the time and S 2, a plurality light receiving point is the point of incidence probes in common Then S 1 = k 1
I 1 (k 1 is the constant of the light receiver at the light receiving point at the distance a 1 from the incident point), S 2 = k 2 I 2 (k 2 is the light receiver at the light receiving point at the distance a 2 from the incident point) Constant)
【数4】 に基づいてμa・μs’を求め、プローブの入射点が複
数で受光点が共通のとき、受光点からの距離a1にある
入射点への入射光強度をIo1、受光点からの距離a2に
ある入射点への入射光強度をIo2とし、S1=kI1、S
2=kI2(kは受光点の受光器の定数)として、(Equation 4) On the basis seeking .mu.a · .mu.s', when the incident point of the probe light receiving point is common to a plurality, Io 1 the incident light intensity to the incident point at a distance a 1 from the receiving point, distance a from the receiving point the incident light intensity to the incident point on the second and Io 2, S 1 = kI 1 , S
2 = kI 2 (k is the constant of the receiver at the receiving point),
【数5】 に基づいてμa・μs’を求める演算部とを備えてい
る。装置定数の較正を行なうために、μaとμs’のそ
れぞれ又はその積μa・μs’が既知のキャリブレータ
を用いて入射点と受光点との距離の異なる複数の光出力
を測定することにより、上記式中の装置定数を決定する
較正部をさらに備えている。(Equation 5) And an arithmetic unit for obtaining μa · μs ′ based on In order to calibrate the device constant, by measuring a plurality of optical outputs having different distances between the incident point and the light receiving point using a calibrator whose μa and μs ′ or their product μa · μs ′ is known, A calibration unit for determining the device constant in the equation is further provided.
【0010】一般的に、(μa・μs’)を1つの定数
として扱えば、定常光による絶対測定が可能であること
を示す。定常光の扱いは(1)式を時間積分すればよ
く、その結果は次の(2)式になる。In general, if (μa · μs') is treated as one constant, it is possible to perform absolute measurement with stationary light. To handle the stationary light, the expression (1) may be integrated over time, and the result is the following expression (2).
【数6】 (Equation 6)
【0011】ここで、拡散係数D=1/3(μa+μ
s’)において、μaはμs’の約1/100であるの
で、μaは無視することができ、D=1/3μs’とし
ても全く差し支えがない。これを、(2)式に代入し、
またa=(ρ2+Z0 2)1/2とおけば、次の(3)式とな
る。Here, the diffusion coefficient D = 1/3 (μa + μ
In s'), .mu.a is about 1/100 of .mu.s', so .mu.a can be ignored, and D = 1/3 .mu.s' is completely acceptable. Substituting this into equation (2),
Further, if a = (ρ 2 + Z 0 2 ) 1/2, then the following equation (3) is obtained.
【数7】 (Equation 7)
【0012】(3)式では(μa・μs’)が1つの積
の形で一緒に現れていることが注目される。このこと
は、定常光方式ではμaとμs’は区別できず、常に一
括して扱わざるを得ないことを意味している。しかし、
(μa・μs’)を1つの光学定数と考えると、(3)
式の光学定数はただ1つになるので、計算で求めること
が容易になる。なお、測定を多波長で行なえば、(μa
・μs’)は各波長ごとに求まるので、後述するように
各波長での(μa・μs’)の比を求める演算につなげ
ることができる。It is noted that in equation (3), (μa · μs') appear together in the form of one product. This means that μa and μs ′ cannot be distinguished in the stationary light system and must always be handled collectively. But,
Considering (μa · μs') as one optical constant, (3)
Since there is only one optical constant in the equation, it becomes easy to obtain by calculation. If the measurement is performed at multiple wavelengths, (μa
Since .mu.s ') is obtained for each wavelength, it can be connected to an operation for obtaining the ratio of (.mu.a.mu.s') at each wavelength as described later.
【0013】(3)式を変形すると、次の(4)式にな
る。By modifying the equation (3), the following equation (4) is obtained.
【数8】 (Equation 8)
【0014】実際に測定する場合、aは数十mmであ
り、十分に大きいと考えることができるので、(4)式
の最終項の1/aは0又は小さい定数と近似することが
できる。その結果、(4)式のln(2πa2R)をf(a)と
おけば、図2に示されるように、(4)式はaの一次式
となる。そこで、2種類の距離a1,a2で出射率Rを測
定し、そこからf(a1),f(a2)を求めれば、(4)
式の直線の傾きはIn the actual measurement, a is several tens of millimeters and can be considered to be sufficiently large, so 1 / a of the final term of the equation (4) can be approximated to 0 or a small constant. As a result, if ln (2πa 2 R) in the equation (4) is represented by f (a), the equation (4) becomes a linear equation of a, as shown in FIG. Therefore, if the emission rate R is measured at two types of distances a 1 and a 2 and f (a 1 ) and f (a 2 ) are obtained from it, then (4)
The slope of the straight line of the formula is
【数9】 となるので、(5)式からμa・μs’を求めることが
できる。[Equation 9] Therefore, μa · μs ′ can be obtained from the equation (5).
【0015】実測では、出射率RはR=I/Io(I:
出射光強度、Io:入射光強度)であり、出射光は受光
器での出力信号S(=kI,k:定数)で与えられる。
受光点と入射点の1つの組における受光点と入射点との
距離をa1、その組の受光点での受光強度をI1、そのと
きの受光器の出力信号をS1とし、受光点と入射点の他
の組における受光点と入射点との距離をa2、その組の
受光点での受光強度をI2、そのときの受光器の出力信
号をS2とする。プローブの入射点が共通で受光点が複
数のとき、S1=k1I1、S2=k2I2とすれば、(5)
式は次の(6a)式となる。In the actual measurement, the emission rate R is R = I / Io (I:
Emission light intensity, Io: incident light intensity), and the emission light is given by an output signal S (= kI, k: constant) at the light receiver.
The distance between the light receiving point and the incident point in one set of the light receiving point and the incident point is a 1 , the received light intensity at the light receiving point of the set is I 1 , the output signal of the light receiver at that time is S 1 , and the light receiving point is Let a 2 be the distance between the light receiving point and the incident point in the other set of the light receiving point and the light receiving intensity at the light receiving point of the set be I 2 , and the output signal of the light receiver at that time be S 2 . When the incident point of the probe is common and there are multiple light receiving points, if S 1 = k 1 I 1 and S 2 = k 2 I 2 , then (5)
The formula is the following formula (6a).
【数10】 すなわち、(Equation 10) That is,
【数11】 [Equation 11]
【0016】一方、プローブの入射点が複数で受光点が
共通のとき、受光点からの距離a1にある入射点への入
射光強度をIo1、受光点からの距離a2にある入射点へ
の入射光強度をIo2とし、S1=kI1、S2=kI2(k
は受光点の受光器の定数)とすれば、(5)式は次の
(6b)式となる。On the other hand, when there are a plurality of incident points of the probe and the light receiving point is common, the incident light intensity at the incident point at the distance a 1 from the light receiving point is Io 1 , and the incident point at the distance a 2 from the light receiving point is Suppose that the incident light intensity on the beam is Io 2 , S 1 = kI 1 , S 2 = kI 2 (k
Is the constant of the light receiver at the light receiving point), the equation (5) becomes the following equation (6b).
【数12】 すなわち、(Equation 12) That is,
【数13】 (Equation 13)
【0017】( μa・μs’の利用法と有用性 )次
に、μa・μs’の利用法と有用性について説明する。
μa・μs’をμas’と表わす。 μas’=μa・μs’……(7) これが各波長、例えばλ1,λ2,λ3で求められ、各時
刻tで求められているとする。すなわち μas'(λi,t) (i=1,2,3) である。(Usage and Usefulness of μa · μs ′) Next, the use and usefulness of μa · μs ′ will be described.
μa · μs ′ is expressed as μas ′. μas ′ = μa · μs ′ (7) It is assumed that this is obtained at each wavelength, for example, λ 1 , λ 2 , λ 3 , and at each time t. That is, μas' (λi, t) (i = 1,2,3).
【0018】この光学定数μas’が積の形になってい
る利点は、μs’は短波長側でやや大きくなるものの、
波長依存性は小さいと考えられており、かつ波長依存性
f(λ)と試料依存性とに分離できることである。そこ
で、 μas’=f(λi)・s(t) ……(8) と表わす。f(λi)は波長依存項、s(t)は個別の検体
と時間tによる項で、波長によらない項である。The advantage that the optical constant μas ′ is in the form of a product is that μs ′ is slightly larger on the short wavelength side,
It is considered that the wavelength dependence is small, and the wavelength dependence f (λ) and the sample dependence can be separated. Therefore, it is expressed as μas ′ = f (λi) · s (t) (8). f (λi) is a wavelength-dependent term, s (t) is a term depending on the individual specimen and time t, and is a term not depending on the wavelength.
【0019】(8)式の値を例えば3波長について求
め、それらの比をとると、s(t)が消え、次のようにな
る。 m1=μas'(λ1)/μas'(λ3) =(f(λ1)/f(λ3))(μa(λ1)/μa(λ3)) =f13・(μa(λ1)/μa(λ3)) m2=μas'(λ2)/μas'(λ3) =(f(λ2)/f(λ3))(μa(λ2)/μa(λ3)) =f23・(μa(λ2)/μa(λ3)) 故に、 μa(λ1)=μa(λ3)×(m1/f13) μa(λ2)=μa(λ3)×(m2/f23) ……(9) が得られる。これから吸収係数の比が求まる。すなわ
ち、 μa(λ1):μa(λ2):μa(λ3) (m1/f13):(m2/f23):1 ……(10)When the value of the equation (8) is obtained for, for example, three wavelengths and their ratio is taken, s (t) disappears and the following is obtained. m 1 = μas '(λ 1 ) / μas' (λ 3 ) = (f (λ 1 ) / f (λ 3 )) (μa (λ 1 ) / μa (λ 3 )) = f 13 · (μa ( λ 1 ) / μa (λ 3 )) m 2 = μas '(λ 2 ) / μas' (λ 3 ) = (f (λ 2 ) / f (λ 3 )) (μa (λ 2 ) / μa (λ 3 )) = f 23 · (μa (λ 2 ) / μa (λ 3 )) Therefore, μa (λ 1 ) = μa (λ 3 ) × (m 1 / f 13 ) μa (λ 2 ) = μa (λ 3 ) × (m 2 / f 23 ) ... (9) is obtained. From this, the ratio of absorption coefficients can be obtained. That is, μa (λ 1 ): μa (λ 2 ): μa (λ 3 ) (m 1 / f 13 ) :( m 2 / f 23 ): 1 (10)
【0020】もし、吸収係数μa(λ1),μa(λ2)及び
μa(λ3)μaがそれぞれ酸素化ヘモグロビン量[Hb
O2]、ヘモグロビン量[Hb]及びチトクロムオキシ
ダーゼ量[Cyt]のみからきたものであるとすれば、
上記3波長の比からこれらの成分の量比が求まることに
なり、従来は変化量Δ[HbO2]、Δ[Hb]及びΔ
[Cyt]の比しか求められなかった状態から、絶対値
の比が求められるところまで進歩したことになる。すな
わち、変化量ではなく、比としてのその時点の量が求め
られる。If the absorption coefficients μa (λ 1 ), μa (λ 2 ), and μa (λ 3 ) μa are the oxygenated hemoglobin amount [Hb,
O 2 ], the amount of hemoglobin [Hb] and the amount of cytochrome oxidase [Cyt],
The amount ratio of these components can be obtained from the ratio of the above three wavelengths, and conventionally the change amounts Δ [HbO 2 ], Δ [Hb] and Δ
This means that progress has been made from the state where only the ratio of [Cyt] was required to the place where the ratio of absolute values was required. That is, not the amount of change but the amount at that point in time as a ratio is obtained.
【0021】μaの各波長の比を表わす量は、酸素化度
の情報である。一方、血液量の情報はμaの絶対値と
(8)式のs(t)の方に含まれているので、(10)式
の比によっては評価することはできない。しかし、等吸
収点(λ=805nm)におけるμas’=μa(80
5)×μs'(805)が血液量の情報を与える。The quantity representing the ratio of μa to each wavelength is information on the degree of oxygenation. On the other hand, the blood volume information is included in the absolute value of μa and s (t) in the equation (8), and therefore cannot be evaluated by the ratio in the equation (10). However, at the isosbestic point (λ = 805 nm) μas ′ = μa (80
5) × μs ′ (805) gives information on blood volume.
【0022】[0022]
【実施例】図3は一実施例を表わす。プローブ20には
レーザダイオードなどの1個の光源Lと、光源Lから距
離a1,a2の位置にそれぞれ受光器D1,D2が設けられ
ており、光源Lと受光器D1,D2が被検体2に接触させ
られて使用され。受光器D1,D2の検出信号がそれぞれ
S1,S2となる。μa・μs’演算部14はCPUによ
り実現され、(6a)式に基づいてμa・μs’を算出
する。μa・μs’は各波長ごとに算出され、それらは
表示部16に表示される。酸素化度、血液量演算部18
では、(10)式に与えられるような吸収係数の比を算
出したり、等吸収点でのμa・μs’から血液量を算出
する。複数の波長で測定を行なうことがでる装置とする
には、光源Lに代えてレーザ装置から複数波長のレーザ
光λ1,λ2,λ3が切り換えて発信され、送光ファイバ
を介して被検体に送られるようにすればよい。EXAMPLE FIG. 3 shows an example. The probe 20 is provided with one light source L such as a laser diode, and light receivers D 1 and D 2 at positions a 1 and a 2 from the light source L, respectively, and the light source L and the light receivers D 1 and D 2 are provided. 2 is used in contact with the subject 2. The detection signals of the photo detectors D 1 and D 2 are S 1 and S 2 , respectively. The μa · μs ′ calculation unit 14 is realized by a CPU and calculates μa · μs ′ based on the equation (6a). μa · μs ′ is calculated for each wavelength and displayed on the display unit 16. Oxygenation and blood volume calculator 18
Then, the ratio of absorption coefficients as given by the equation (10) is calculated, or the blood volume is calculated from μa · μs ′ at the isosbestic point. In order to make an apparatus capable of measuring at a plurality of wavelengths, laser light of a plurality of wavelengths λ 1 , λ 2 , λ 3 is switched and emitted from the laser device instead of the light source L, and is transmitted via a light transmitting fiber. It may be sent to the sample.
【0023】装置定数の較正について説明する。図4は
入射点の光源Lが共通で、受光点の受光器が複数個(D
1,D2)設けられているプローブ20の一例を表わした
ものである。プローブ20では送受光部間ピッチが決ま
っており、受光面積が距離aに影響を与えないほど小さ
い場合には、(6a)式中で未知数としての装置定数は
ln(k1/k2)のみであるので、μaとμs’のそれぞれ又
はその積μa・μs’が既知の較正用キャリブレータは
1つでよい。Calibration of device constants will be described. In FIG. 4, the light source L at the incident point is common, and a plurality of light receivers at the light receiving point (D
1 , D 2 ) is an example of the provided probe 20. In the probe 20, the pitch between the light transmitting and receiving portions is fixed, and when the light receiving area is so small that it does not affect the distance a, the device constant as an unknown in Equation (6a) is
Since there is only ln (k 1 / k 2 ), only one calibrator for calibration in which μa and μs ′ or their product μa · μs ′ is known is sufficient.
【0024】図4(B)のようにキャリブレータ22に
プローブ20を装着して測定を行なえば、装置定数ln(k
1/k2)は ln(k1/k2)=(a1-a2)(3μa・μs’)1/2 - ln(S2/S1) -
ln(a2/a1)2 として求めることができる。When the probe 20 is attached to the calibrator 22 as shown in FIG. 4 (B) and measurement is performed, the device constant ln (k
1 / k 2 ) is ln (k 1 / k 2 ) = (a 1 -a 2 ) (3 μa · μs') 1/ 2- ln (S 2 / S 1 )-
It can be obtained as ln (a 2 / a 1 ) 2 .
【0025】受光面積が距離aに影響を与えるほど大き
い場合や、距離aにずれがある場合には、(6a)式中
で未知数としての装置定数は 1/(a2-a1)と{1/(a2-a1)}ln(k1a2 2/k2a1 2) の2つになるので、2種類の較正用キャリブレータを用
いて測定を行ない、連立方程式を解いて装置定数を決定
する。When the light receiving area is large enough to affect the distance a or when the distance a is deviated, the device constant as an unknown in the equation (6a) is 1 / (a 2 -a 1 ) and { Since 1 / (a 2 -a 1 )} ln (k 1 a 2 2 / k 2 a 1 2 ), two types of calibration calibrators are used for measurement, and simultaneous equations are solved to solve the device. Determine the constant.
【0026】入射点の光源が複数個設けられ、受光点の
受光器が共通になっている場合も同様に較正を行なうこ
とができる。ただし、この場合は、受光面積が距離aに
影響を与えないほど小さい場合には、(6b)式中で未
知数としての装置定数はln(Io1/Io2)のみとなり、1
種類のキャリブレータを用いて、 ln(Io1/Io2)=(a1-a2)(3μa・μs’)1/2 - ln(S2/
S1) - ln(a2/a1)2 として求めることができる。When a plurality of light sources at the incident point are provided and the light receiver at the light receiving point is common, the calibration can be similarly performed. However, in this case, if the light receiving area is so small that it does not affect the distance a, the device constant as an unknown in Equation (6b) is only ln (Io 1 / Io 2 ).
Using various kinds of calibrators, ln (Io 1 / Io 2 ) = (a 1 −a 2 ) (3 μa · μs ′) 1/2 − ln (S 2 /
It can be obtained as S 1 )-ln (a 2 / a 1 ) 2 .
【0027】また、受光面積が距離aに影響を与えるほ
ど大きい場合や、距離aにずれがある場合には、(6
b)式中で未知数としての装置定数は 1/(a2-a1)と{1/(a2-a1)}ln(Io1a2 2/Io2a1 2) の2つになるので、2種類の較正用キャリブレータを用
いて測定を行ない、連立方程式を解いて装置定数を決定
する。求められた装置定数は較正部を実現するCPUに
保持され、図4(C)のように未知試料24にプローブ
20を装着して測定を行なう際に使用される。較正の精
度を上げるために、さらに多くのキャリブレータを用い
てもよい。If the light receiving area is large enough to affect the distance a or if there is a deviation in the distance a, (6
In equation (b), there are two unknown device constants, 1 / (a 2 -a 1 ) and {1 / (a 2 -a 1 )} ln (Io 1 a 2 2 / Io 2 a 1 2 ). Therefore, measurement is performed using two types of calibration calibrators, and simultaneous equations are solved to determine the device constant. The obtained device constant is held in the CPU that realizes the calibration unit, and is used when the probe 20 is attached to the unknown sample 24 to perform the measurement as shown in FIG. More calibrators may be used to increase the accuracy of the calibration.
【0028】[0028]
【発明の効果】本発明では、定常光法で被検体上で測定
光の入射点から異なる距離だけ離れた複数の受光点で測
定光を受光することにより、吸収係数μaと等価散乱係
数μs’との積μa・μs’の絶対値を求めることがで
き、従来不可能であった定常光法による光学定数の絶対
測定が可能になる。従来は時間分解法であれば光学定数
の絶対測定の可能性はあるが、定常光法で絶対測定を行
なうものはない。その結果、本発明によれば、光学定数
の絶対測定を安価な定常光方式の装置で実現できる。さ
らに、本発明では従来からの懸案であった濃度の絶対値
を比例係数を除いて簡単な方法で得ることができる。キ
ャリブレータを用いて装置定数を較正することにより、
複数の受光器のゲインや受光面積に関係なく、複数の受
光器の感度のドリフトを含め、装置全体を一括して較正
することができ、正確にμa・μs’を測定することが
できる。したがって、例えばヘモグロビン量の絶対測定
において、正確さを向上させることができる。装置にキ
ャリブレータを付属品として装備しておくことにより、
必要に応じて簡単に較正を行なうことができるようにな
り、出荷時だけの較正の限界を越えることができる。According to the present invention, the absorption light μa and the equivalent scattering coefficient μs ′ are obtained by receiving the measurement light at a plurality of light receiving points which are separated from the incident point of the measurement light on the subject by different distances by the stationary light method. The absolute value of the product μa · μs' can be obtained, and the absolute measurement of the optical constant by the stationary light method, which has been impossible in the past, becomes possible. Conventionally, there is a possibility of absolute measurement of optical constants if the time-resolved method is used, but there is no method that performs absolute measurement by the stationary light method. As a result, according to the present invention, absolute measurement of optical constants can be realized with an inexpensive stationary light type apparatus. Furthermore, in the present invention, the absolute value of the concentration, which has been a concern in the past, can be obtained by a simple method except for the proportional coefficient. By calibrating the instrument constants using a calibrator,
Irrespective of the gains and the light receiving areas of the plurality of light receivers, the entire apparatus can be calibrated in a lump including the drift of the sensitivity of the plurality of light receivers, and μa · μs ′ can be accurately measured. Therefore, for example, in the absolute measurement of the amount of hemoglobin, the accuracy can be improved. By equipping the device with a calibrator as an accessory,
Calibration can be easily performed when necessary, and the limit of calibration at the time of shipment can be exceeded.
【図1】光散乱・吸収体におけるパルス光入射と出射を
示す図である。FIG. 1 is a diagram showing pulsed light incidence and emission in a light scattering / absorbing body.
【図2】本発明でμa・μs’を求める方法を示す図で
ある。FIG. 2 is a diagram showing a method for obtaining μa · μs ′ in the present invention.
【図3】一実施例における光学系を概略断面図で示し、
演算部をブロック図で示す図である。FIG. 3 is a schematic sectional view showing an optical system according to an embodiment,
It is a figure which shows a calculating part with a block diagram.
【図4】一実施例における動作を示す図であり、(A)
はプローブの断面図、(B)は較正動作を示す断面図、
(C)は未知試料の測定動作を示す断面図である。FIG. 4 is a diagram showing an operation in one embodiment, (A)
Is a cross-sectional view of the probe, (B) is a cross-sectional view showing the calibration operation,
(C) is a sectional view showing a measurement operation of an unknown sample.
2 被検体 4 送光ファイバ 8−1,8−2 受光ファイバ 10−1,10−2 検出器 14 μa・μs’演算部 18 酸素化度・血液量演算部 20 プローブ 22 キャリブレータ 24 未知試料 2 subject 4 light transmitting fiber 8-1, 8-2 light receiving fiber 10-1, 10-2 detector 14 μa · μs ′ calculator 18 oxygenation / blood volume calculator 20 probe 22 calibrator 24 unknown sample
Claims (2)
定光を入射し、その被検体上で前記測定光の入射点から
離れた受光点で測定光を受光するとともに、入射点と受
光点との距離を複数種類に異ならせるように入射点と受
光点のうちの一方が複数個設けられているプローブを備
えた測定光学系と、 受光点と入射点の1つの組における受光点と入射点との
距離をa1、その組の受光点での受光強度をI1、そのと
きの受光器の出力信号をS1とし、受光点と入射点の他
の組における受光点と入射点との距離をa2、その組の
受光点での受光強度をI2、そのときの受光器の出力信
号をS2としたとき、 前記プローブの入射点が共通で受光点が複数のとき、S
1=k1I1(k1は入射点からの距離a1にある受光点の
受光器の定数)、S2=k2I2(k2は入射点からの距離
a2にある受光点の受光器の定数)として、 【数1】 に基づいてμa・μs’を求め、 前記プローブの入射点が複数で受光点が共通のとき、受
光点からの距離a1にある入射点への入射光強度をI
o1、受光点からの距離a2にある入射点への入射光強度
をIo2とし、S1=kI1、S2=kI2(kは受光点の受
光器の定数)として、 【数2】 に基づいてμa・μs’を求める演算部と、を備えたこ
とを特徴とする光学的測定装置。 ただし、μa;吸収係数 μs’=(1−g)μs; μs;散乱係数 g;散乱の非等方性パラメータ1. A measurement light is made incident on a part of a subject which is a light scattering / absorbing body, and the measurement light is received on the subject at a light receiving point distant from the incident point of the measurement light, and the incident point is And a light receiving point, a measuring optical system equipped with a probe provided with a plurality of one of an incident point and a light receiving point so that the distance between the light receiving point and the light receiving point is different, The distance between the point and the incident point is a 1 , the received light intensity at the light receiving point of the set is I 1 , the output signal of the light receiver at that time is S 1 , and the light receiving point in another set of the light receiving point and the incident point is When the distance from the incident point is a 2 , the received light intensity at the light receiving point of the set is I 2 , and the output signal of the photodetector at that time is S 2 , the incident point of the probe is common and the light receiving points are plural. When S
1 = k 1 I 1 (k 1 is the constant of the light receiving point at the distance a 1 from the incident point), S 2 = k 2 I 2 (k 2 is the light receiving point at the distance a 2 from the incident point) Constant of the light receiver of On the basis seeking .mu.a · .mu.s', when said light receiving point of incidence point in a plurality of probes is common, the incident light intensity to the incident point at a distance a 1 from the receiving point I
o 1, the incident light intensity to the incident point at a distance a 2 from the light receiving point and Io 2, as S 1 = kI 1, S 2 = kI 2 (k is a constant of the light receiver of the light receiving point), Equation 2] An optical measuring device comprising: a calculating unit that calculates μa · μs ′ based on However, μa; absorption coefficient μs ′ = (1-g) μs; μs; scattering coefficient g; anisotropic parameter of scattering
・μs’が既知のキャリブレータを用いて入射点と受光
点との距離の異なる複数の光出力を測定することによ
り、上記式中の装置定数を決定する較正部をさらに備え
ている請求項1に記載の光学的測定装置。2. Each of μa and μs ′ or their product μa
. Further comprising a calibrator for determining a device constant in the above formula by measuring a plurality of light outputs having different distances between an incident point and a light receiving point using a calibrator having a known μs ′. The optical measuring device described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7251892A JPH0972845A (en) | 1995-09-04 | 1995-09-04 | Optical measuring apparatus for light-scattering and -absorbing body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7251892A JPH0972845A (en) | 1995-09-04 | 1995-09-04 | Optical measuring apparatus for light-scattering and -absorbing body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0972845A true JPH0972845A (en) | 1997-03-18 |
Family
ID=17229508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7251892A Pending JPH0972845A (en) | 1995-09-04 | 1995-09-04 | Optical measuring apparatus for light-scattering and -absorbing body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0972845A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002139420A (en) * | 2000-10-30 | 2002-05-17 | Hamamatsu Photonics Kk | Calibration method of scattered absorber measuring apparatus and scattered absorber measuring apparatus using the same |
-
1995
- 1995-09-04 JP JP7251892A patent/JPH0972845A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002139420A (en) * | 2000-10-30 | 2002-05-17 | Hamamatsu Photonics Kk | Calibration method of scattered absorber measuring apparatus and scattered absorber measuring apparatus using the same |
JP4499270B2 (en) * | 2000-10-30 | 2010-07-07 | 浜松ホトニクス株式会社 | Scattering absorber measuring apparatus calibration method and scattering absorber measuring apparatus using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5773301A (en) | Method for optically determining total hemoglobin concentration | |
US4882492A (en) | Non-invasive near infrared measurement of blood analyte concentrations | |
CA2266284C (en) | Self referencing photosensor | |
CA1127865A (en) | Method and device for analysis with color identification test paper | |
US5696580A (en) | Method of and apparatus for measuring absorbance, component concentration or specific gravity of liquid sample | |
US20100041969A1 (en) | Measuring device and method for optically determining the concentration of blood sugar and/or lactate in biological systems | |
JP4643273B2 (en) | Apparatus for blood measurement | |
JPH08136448A (en) | Measuring method for scattering characteristics and absorption characteristics within scatter absorbing body and device thereof | |
US7239901B2 (en) | Tissue spectrometer with improved optical shutter | |
JPH08304272A (en) | Method and instrument for optical measurement | |
JP3859746B2 (en) | Optical measuring device for light absorber | |
Johnston et al. | Performance comparison between high and low resolution spectrophotometers used in a white light surface plasmon resonance sensor | |
EP1069426B1 (en) | Method and device for measuring concentration of absorbing component of scattering/absorbing body | |
JP3903147B2 (en) | Non-destructive sugar content measuring device for fruits and vegetables | |
EP0903571A2 (en) | Apparatus and method for determining the concentration of specific substances | |
JP2795197B2 (en) | Optical scattering / absorber measuring device | |
JPH0972845A (en) | Optical measuring apparatus for light-scattering and -absorbing body | |
US20030147078A1 (en) | Method for the long-term stable and well-reproducible spectrometric measurement of the concentrations of components of aqueous solutions, and device for carrying out said method | |
JP4328129B2 (en) | Scattering absorber measurement apparatus calibration method, calibration apparatus, and scattering absorber measurement system using the same | |
JPH11248622A (en) | Urinalysis device | |
JPH08313429A (en) | Cell for spectrophotometer | |
JPH07306139A (en) | Method and instrument for measuring concentration of component, etc., of liquid sample | |
JPH09182740A (en) | Biological photomeasuring device | |
JPH0843301A (en) | Method and device for measuring absorbance, component concentration or specific gravity of liquid sample | |
JP2002116087A (en) | Wavelength-measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20081115 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20081115 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20091115 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20101115 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101115 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |