JPH0964492A - Printed wiring board - Google Patents
Printed wiring boardInfo
- Publication number
- JPH0964492A JPH0964492A JP21156795A JP21156795A JPH0964492A JP H0964492 A JPH0964492 A JP H0964492A JP 21156795 A JP21156795 A JP 21156795A JP 21156795 A JP21156795 A JP 21156795A JP H0964492 A JPH0964492 A JP H0964492A
- Authority
- JP
- Japan
- Prior art keywords
- wiring board
- printed wiring
- resin
- resin layer
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0254—High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0266—Marks, test patterns or identification means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0296—Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
- H05K1/0298—Multilayer circuits
Landscapes
- Structure Of Printed Boards (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、IC,LSI等の半導
体装置を実装可能な、樹脂基板に配線パターンを形成し
たプリント配線板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a printed wiring board having a wiring pattern formed on a resin substrate, on which a semiconductor device such as an IC or LSI can be mounted.
【0002】[0002]
【従来の技術】従来、IC,LSI等の半導体装置を実
装可能なプリント配線板として樹脂基板が一般に用いら
れている。この樹脂基板は、高分子材料を結合材とする
樹脂基板上に銅箔からなる配線パターンを形成したもの
である。また、近年の半導体装置の高密度実装化(例え
ば、ICカードやPGA,BGA等の実装用)に伴い、
多層用樹脂基板が数多く用いられており、これらの中で
もガラスエポキシ基板が広く用いられている。このガラ
スエポキシ基板は、基材のガラス繊維を布状に編んだも
のにエポキシ樹脂を含浸させ、乾燥後に所要の厚さに積
層して表面に銅箔を重ねて加熱圧着したものである。2. Description of the Related Art Conventionally, a resin substrate is generally used as a printed wiring board on which a semiconductor device such as an IC or LSI can be mounted. This resin substrate is one in which a wiring pattern made of copper foil is formed on a resin substrate using a polymer material as a binder. In addition, with the recent high-density mounting of semiconductor devices (for mounting IC cards, PGAs, BGAs, etc.),
A large number of multilayer resin substrates are used, and among these, a glass epoxy substrate is widely used. This glass epoxy substrate is obtained by impregnating a glass fiber of a base material into a cloth shape, impregnating it with an epoxy resin, and after drying, laminating it to a required thickness, laminating a copper foil on the surface, and thermocompression bonding.
【0003】上記プリント配線板には、通常温度センサ
ー回路は装備されていなかった。従って、回路の安全性
を高めるため、実装部品の発熱や回路のショート等によ
る発熱を検出する温度センサー回路を設けるとすれば、
別部品としてサーミスタや温度ヒューズを用いて実装部
品の温度が異常に高温となった場合等に電源を遮断する
ような安全回路を別途構成する必要があった。The printed wiring board usually does not have a temperature sensor circuit. Therefore, in order to improve the safety of the circuit, if a temperature sensor circuit that detects the heat generated by the mounted components and the short circuit of the circuit is provided,
As a separate component, a thermistor or a thermal fuse was used, and it was necessary to separately configure a safety circuit that shuts off the power when the temperature of the mounted component becomes abnormally high.
【0004】[0004]
【発明が解決しようとする課題】このように、従来のプ
リント配線板には、温度センサー回路等は装備されてい
ないため、配線板上の実装部品の異常発熱や回路のショ
ート等による発熱により、プリント配線板の基材である
エポキシ樹脂が炭化若しくは発火するおそれがあっても
そのまま放置されていた。また、この対策として安全回
路を構成する場合には、サーミスタ等の別部品が必要と
なるため部品点数の増加による製造コストが上昇し、ま
た配線パターン上に電子部品が実装されるため、プリン
ト配線板上の設計面積を縮小して部品の高密度実装化の
ための妨げとなる。As described above, since the conventional printed wiring board is not equipped with a temperature sensor circuit or the like, due to abnormal heat generation of mounted components on the wiring board or heat generation due to short circuit of the circuit, Even if the epoxy resin, which is the base material of the printed wiring board, might be carbonized or ignited, it was left as it was. In addition, if a safety circuit is configured as a countermeasure against this, a separate component such as a thermistor is required, which increases the manufacturing cost due to an increase in the number of components, and electronic components are mounted on the wiring pattern. This reduces the design area on the board and hinders high-density mounting of components.
【0005】本発明の目的は、上記従来技術の課題を解
決し、従来のプリント配線板に比べて安全性を著しく高
め、高密度実装化に適したプリント配線板を提供するこ
とを目的とする。An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a printed wiring board which is significantly higher in safety than conventional printed wiring boards and which is suitable for high-density mounting. .
【0006】[0006]
【課題を解決するための手段】上記課題を解決するた
め、本発明は次の構成を備える。すなわち、樹脂基板に
配線パターンを形成したプリント配線板において、樹脂
層を挟んで該樹脂層の抵抗を検出するための電極パター
ンを対向配置したことを特徴とする。In order to solve the above problems, the present invention has the following constitution. That is, in a printed wiring board in which a wiring pattern is formed on a resin substrate, electrode patterns for detecting the resistance of the resin layer are opposed to each other with the resin layer sandwiched therebetween.
【0007】上記構成によれば、プリント配線板とし
て、例えば単層或いは多層ガラスエポキシ基板を用いた
場合、発熱する電子部品近傍に配置した電極パターン間
の樹脂層の温度がガラス転移点に到達した際の抵抗値を
当該基板と一体に装備した抵抗測定回路により測定する
と、信号発生回路により基板に供給される電源を遮断し
たり、アラームを発信して異常を報知する。According to the above structure, when a single-layer or multi-layer glass epoxy substrate is used as the printed wiring board, the temperature of the resin layer between the electrode patterns arranged in the vicinity of the heat-generating electronic component reaches the glass transition point. When the resistance value at that time is measured by a resistance measuring circuit integrally provided with the substrate, the power supply to the substrate is shut off by the signal generating circuit, or an alarm is issued to notify the abnormality.
【0008】[0008]
【発明の実施の形態】次に本発明に係るプリント配線板
の一実施例について図面を参照して説明する。本実施例
は、プリント配線板の一例として、電子部品を両面実装
可能なガラスエポキシ多層基板を用いて説明する。図1
はプリント配線板の要部構成を示す断面図、図2はプリ
ント配線板の回路構成を示すブロック説明図、図3はガ
ラスエポキシ樹脂の温度−抵抗特性を示すグラフであ
る。BEST MODE FOR CARRYING OUT THE INVENTION Next, one embodiment of a printed wiring board according to the present invention will be described with reference to the drawings. This embodiment will be described by using a glass epoxy multilayer substrate capable of mounting electronic components on both sides as an example of a printed wiring board. FIG.
2 is a cross-sectional view showing the main structure of the printed wiring board, FIG. 2 is a block diagram showing the circuit structure of the printed wiring board, and FIG. 3 is a graph showing the temperature-resistance characteristics of the glass epoxy resin.
【0009】先ず、図1〜図3を参照してガラスエポキ
シ多層基板の全体構成について説明する。図1におい
て、1はプリント配線板として用いられるガラスエポキ
シ多層基板である。このガラスエポキシ多層基板1は、
ガラスエポキシ基板2の両面に銅箔を張り合わせたもの
にドリルにより孔を開けてスルーホール3を形成し、無
電解銅メッキ4により上下面の導通を取った後、電解銅
メッキにより表面層に形成される配線パターンPとの電
気的導通を取って構成されている。First, the overall structure of a glass epoxy multilayer substrate will be described with reference to FIGS. In FIG. 1, reference numeral 1 is a glass epoxy multilayer substrate used as a printed wiring board. This glass epoxy multilayer substrate 1 is
A hole is formed by drilling a glass epoxy substrate 2 on which copper foil is attached on both sides to form a through hole 3 and electroless copper plating 4 is used to establish continuity between upper and lower surfaces, and then formed on a surface layer by electrolytic copper plating. The wiring pattern P is electrically connected to the wiring pattern P.
【0010】本実施例では、配線パターンPを形成した
表面層L1 、配線パターンPのグランド(GND)をと
るグランド層L2 、配線板に電源VCCを供給するL
3 層、配線パターンPを形成した表面層L4 、が樹脂層
5を介して順次積層された4層基板が用いられている。
上記ガラスエポキシ多層基板1の表面層L1 には、IC
等の半導体装置やトランス等の発熱性の高い電子部品6
がワイヤボンディングにより表面実装される。この発熱
性の高い電子部品6の実装面に対応して金属箔よりなる
電極パターン7,7が樹脂層5を介して表面層L1 及び
グランド層L2 にそれぞれ対向して形成されている。上
記電極パターン7,7は、例えば、半導体チップを搭載
するダイパッドやダイパッドヒートスプレッダ等に対応
させて、或いはこれらを兼用するように形成される。In this embodiment, a surface layer L 1 having a wiring pattern P formed thereon, a ground layer L 2 for taking a ground (GND) of the wiring pattern P, and a power supply V CC for supplying a power supply V CC to a wiring board.
A four-layer substrate in which three layers and a surface layer L 4 on which the wiring pattern P is formed are sequentially laminated via a resin layer 5 is used.
On the surface layer L 1 of the glass epoxy multilayer substrate 1, IC
Highly heat-generating electronic components such as semiconductor devices such as transformers 6
Are surface-mounted by wire bonding. Corresponding to the mounting surface of the electronic component 6 having high heat generation, electrode patterns 7 and 7 made of metal foil are formed to face the surface layer L 1 and the ground layer L 2 with the resin layer 5 interposed therebetween. The electrode patterns 7 and 7 are formed, for example, so as to correspond to a die pad on which a semiconductor chip is mounted, a die pad heat spreader, or the like, or to also serve as these.
【0011】尚、上記電極パターン7,7は、電子部品
6の実装面全面に対応させて設けても、或いは個々の電
子部品に対応させて部分的に設けることも可能である。
また、上記ガラスエポキシ多層基板1は導体層が4層に
限らず3層のものや更に多層の基板に適用することも可
能であり、更には単層のガラスエポシキ基板に適用する
ことも可能である。The electrode patterns 7 and 7 can be provided so as to correspond to the entire mounting surface of the electronic component 6, or can be provided partially corresponding to the individual electronic components.
Further, the glass epoxy multilayer substrate 1 can be applied not only to four conductor layers but also to one having three layers or a multilayer substrate, and further to a single-layer glass epoxy substrate. is there.
【0012】上記ガラスエポキシ多層基板1に内蔵され
る温度センサー回路構成について説明すると、図2に示
すように、電極パターン7,7は抵抗測定手段としての
抵抗測定回路8に接続されており、該抵抗測定回路8は
放熱用グランド回路9に接続されている。上記抵抗測定
回路8は、ガラスエポキシ樹脂層5を介して対向配置し
た電極パターン7,7間に所定電圧(例えば5V程度)
を印加して、当該電極パターン7,7間の樹脂層5の抵
抗値変化を検出するものである。上記抵抗測定回路8の
測定結果は制御手段としての信号発生回路10に入力さ
れ、該信号測定回路10は上記抵抗測定回路8により測
定した抵抗値がしきい値(例えば、後述するガラス転移
点)以下になるとガラスエポキシ多層基板1に供給する
電源VCCを遮断したり、アラーム回路によりアラームを
発信させて異常を報知するように構成されている。The structure of the temperature sensor circuit built in the glass epoxy multilayer substrate 1 will be described. As shown in FIG. 2, the electrode patterns 7 and 7 are connected to a resistance measuring circuit 8 as resistance measuring means. The resistance measuring circuit 8 is connected to the heat radiation ground circuit 9. The resistance measuring circuit 8 has a predetermined voltage (for example, about 5V) between the electrode patterns 7 and 7 arranged to face each other with the glass epoxy resin layer 5 interposed therebetween.
Is applied to detect a change in resistance value of the resin layer 5 between the electrode patterns 7 and 7. The measurement result of the resistance measuring circuit 8 is input to a signal generating circuit 10 as a control means, and the signal measuring circuit 10 uses the resistance value measured by the resistance measuring circuit 8 as a threshold value (for example, a glass transition point described later). In the following cases, the power supply V CC supplied to the glass epoxy multilayer substrate 1 is cut off, or an alarm is issued by an alarm circuit to notify the abnormality.
【0013】ここで、ガラスエポキシ多層基板1の温度
検出構造を具体的に説明すると、前述したガラスエポキ
シ基板2は、基材のガラス繊維を布状に編んだものにエ
ポキシ樹脂を含浸させ、乾燥後に所要の厚さに積層して
表面に銅箔を重ねて加熱圧着し、銅張積層板として形成
したものである。上記ガラスエポキシ樹脂は、銅箔の接
着性が良く、絶縁性に優れているため、基材として好適
に用いられる。Here, the temperature detecting structure of the glass epoxy multilayer substrate 1 will be described in detail. The glass epoxy substrate 2 described above is obtained by impregnating a glass fiber of a base material into a cloth shape by impregnating it with an epoxy resin and drying it. It is then formed into a copper-clad laminate by laminating it to a required thickness, stacking a copper foil on the surface, and thermocompression bonding. The glass epoxy resin has good adhesiveness to the copper foil and excellent insulating properties, and thus is preferably used as a base material.
【0014】また、上記ガラスエポキシ樹脂は、図3の
グラフに示すような温度−抵抗特性を有する。即ち、樹
脂の温度変化に対して電気抵抗が激変する、具体的には
温度が上昇すると抵抗値が激減する、性質がある。よっ
て、樹脂の温度が異常に上がると絶縁破壊を起こすおそ
れがある。また、上記ガラスエポキシ樹脂は、樹脂が溶
解する際に固体から液体になる前に固体よりややルーズ
な構造になるガラス転移点(一般に130°C〜140
°C)を有する。図3に示すように、上記ガラス転移点
付近まで温度が上昇すると抵抗値が激減するため、抵抗
測定回路8によりこのガラス転移点付近の抵抗値(例え
ば105 Ω程度)をしきい値として抵抗値変化をとらえ
て温度検出を行うことが可能となる。また上記抵抗測定
回路8は、測定値の変化が大きいためそれほど高精度に
検出する必要はなく、低コストで基板1に一体的に設計
可能である。The glass epoxy resin has temperature-resistance characteristics as shown in the graph of FIG. That is, there is a property that the electric resistance changes drastically with respect to the temperature change of the resin, specifically, the resistance value drastically decreases when the temperature rises. Therefore, if the temperature of the resin rises abnormally, dielectric breakdown may occur. Further, the glass epoxy resin has a glass transition point (generally 130 ° C to 140 ° C) which is a structure slightly looser than the solid before the resin is changed from solid to liquid when the resin is dissolved.
° C). As shown in FIG. 3, when the temperature rises near the glass transition point, the resistance value drastically decreases. Therefore, the resistance measuring circuit 8 sets the resistance value near the glass transition point (for example, about 10 5 Ω) as a threshold value. It becomes possible to detect the temperature by capturing the change in the value. Further, the resistance measuring circuit 8 does not need to be detected with high accuracy because the change in measured value is large, and can be integrally designed on the substrate 1 at low cost.
【0015】上記構成によれば、プリント配線板の必要
な箇所に、別部品ではなく配線板自体に温度センサー回
路を内蔵させることにより、樹脂層の温度がガラス転移
点に到達した場合に、配線板に供給する電源を遮断した
り、アラーム発信して報知することにより、従来のプリ
ント配線板に比べて配線板自体や実装される電子部品の
安全性を著しく高め、PL(Product・Liab
ility)法に適合した付加価値の高いプリント配線
板を提供できる。また、プリント配線板に形成される電
極パターンは、表面実装される発熱性の高い電子部品に
対応させて配置でき、しかもプリント配線板に一体に装
備することができるため、電子部品の高密度実装化に寄
与できるプリント配線板を提供できる。According to the above construction, by incorporating the temperature sensor circuit in the wiring board itself, not as a separate component, in the necessary portion of the printed wiring board, the wiring is formed when the temperature of the resin layer reaches the glass transition point. By shutting off the power supplied to the board or sending an alarm to notify, the safety of the wiring board itself and the electronic components to be mounted is significantly increased compared to the conventional printed wiring board, and PL (Product Liab)
It is possible to provide a high-value-added printed wiring board that conforms to the (i. In addition, the electrode pattern formed on the printed wiring board can be arranged corresponding to the electronic components with high heat generation that are surface-mounted, and can be integrated with the printed wiring board. It is possible to provide a printed wiring board that can contribute to realization.
【0016】次に、上述したプリント配線板の他の構成
について図4を参照して説明する。図4において、本実
施例のガラスエポキシ多層基板1は、配線パターンPを
形成した表面層L1 、配線板に電源VCCを供給するL2
層、配線パターンPのグランド(GND)をとるグラン
ド層L3 、配線パターンPを形成した表面層L4 、が樹
脂層5を介して順次積層された4層基板が用いられてい
る。Next, another structure of the above-mentioned printed wiring board will be described with reference to FIG. In FIG. 4, the glass epoxy multilayer substrate 1 of the present embodiment has a surface layer L 1 on which a wiring pattern P is formed and L 2 which supplies power V CC to the wiring board.
A four-layer substrate is used in which a layer, a ground layer L 3 for taking the ground (GND) of the wiring pattern P, and a surface layer L 4 on which the wiring pattern P is formed are sequentially laminated via a resin layer 5.
【0017】上記基板1には、抵抗測定回路8に接続す
る電極パターンA,B,C,Dが形成されている。具体
的には、電極パターンA,Bは電源VCCを供給するL2
層、電極パターンC,Dは表面層L4 にそれぞれ設けら
れており、基板1内の全面に設けたグランド層L3 との
間に所定電圧(例えば5V程度)を印加して抵抗値の変
化を測定するように構成されている。Electrode patterns A, B, C and D connected to the resistance measuring circuit 8 are formed on the substrate 1. Specifically, the electrode patterns A and B are L 2 which supplies the power source V CC.
The layers and the electrode patterns C and D are respectively provided on the surface layer L 4 , and a predetermined voltage (for example, about 5 V) is applied between the layer and the electrode patterns C and D and the ground layer L 3 provided on the entire surface of the substrate 1 to change the resistance value. Is configured to measure.
【0018】上記構成によれば、電極パターンA,B,
C,Dを配線パターンP間に配置し、グランド層L3 を
電極として兼用することにより、簡略化した構成で配線
板面の複数箇所において抵抗値を測定して樹脂層の温度
がガラス転移点に到達した場合に、制御手段により配線
板に供給する電源の遮断等を行うことにより、安全性を
著しく高めた付加価値の高いプリント配線板を提供でき
る。According to the above structure, the electrode patterns A, B,
By disposing C and D between the wiring patterns P and also using the ground layer L 3 as an electrode, the resistance value is measured at a plurality of points on the surface of the wiring board with a simplified structure and the temperature of the resin layer is the glass transition point. When the temperature reaches, the control means cuts off the power supply to the wiring board, etc., whereby it is possible to provide a printed wiring board of high added value with significantly improved safety.
【0019】以上、本発明の好適な実施例について種々
述べてきたが、本発明は上述の実施例に限定されるので
はなく、例えば、片面実装用のガラスエポキシ基板等に
も適用可能であり、また、PGA,BGA等の種々の半
導体チップを実装可能なパッケージにも適用可能であ
る。また、プリント配線板の材質としては、エポキシ樹
脂に限定されるものではなく、例えばポリイミド樹脂や
変成ポリイミド樹脂等を用いることができ、更にはその
他の樹脂であっても温度がガラス転移点に達すると急激
な抵抗値変化を起こす性質を有する樹脂については適用
することが可能である。このように、発明の精神を逸脱
しない範囲で多くの改変を施し得るのはもちろんであ
る。Although various preferred embodiments of the present invention have been described above, the present invention is not limited to the above-mentioned embodiments, but can be applied to, for example, a single-sided mounting glass epoxy substrate or the like. Also, the present invention can be applied to a package in which various semiconductor chips such as PGA and BGA can be mounted. Further, the material of the printed wiring board is not limited to the epoxy resin, for example, a polyimide resin or a modified polyimide resin can be used, and even if other resin is used, the temperature reaches the glass transition point. Then, it can be applied to a resin having a property of causing a rapid change in resistance value. In this way, it goes without saying that many modifications can be made without departing from the spirit of the invention.
【0020】[0020]
【発明の効果】本発明は前述したように、プリント配線
板の必要な箇所に、別部品ではなく樹脂基板自体に樹脂
層(例えばガラスエポキシ樹脂層)の抵抗を検出する電
極パターンを一体に装備したことにより、樹脂層の温度
が上昇してしきい値(例えばガラス転移点)に到達した
場合に、配線板に供給する電源を遮断したり、アラーム
発信して報知することにより、従来のプリント配線板に
比べて配線板自体や実装される電子部品の安全性を著し
く高め、PL法に適合した付加価値の高いプリント配線
板を提供できる。また、電極パターンはプリント配線板
に実装される発熱性の高い電子部品に対応させて配置で
き、しかもプリント配線板に一体に装備することができ
るため、電子部品の高密度実装化に寄与できるプリント
配線板を提供できる。As described above, according to the present invention, the electrode pattern for detecting the resistance of the resin layer (for example, the glass epoxy resin layer) is integrally provided not at another component but at the necessary portion of the printed wiring board, as described above. As a result, when the temperature of the resin layer rises and reaches a threshold value (for example, glass transition point), the power supply to the wiring board is shut off or an alarm is sent to notify It is possible to significantly enhance the safety of the wiring board itself and the electronic components to be mounted as compared with the wiring board, and provide a printed wiring board having a high added value that is compatible with the PL method. In addition, the electrode pattern can be arranged corresponding to the electronic components with high heat generation mounted on the printed wiring board, and can be integrated with the printed wiring board, which contributes to high-density mounting of electronic components. A wiring board can be provided.
【図1】プリント配線板の要部構成を示す断面図であ
る。FIG. 1 is a cross-sectional view showing a main configuration of a printed wiring board.
【図2】プリント配線板の回路構成を示すブロック説明
図である。FIG. 2 is a block diagram illustrating a circuit configuration of a printed wiring board.
【図3】ガラスエポキシ樹脂の抵抗温度特性を示すグラ
フである。FIG. 3 is a graph showing resistance temperature characteristics of glass epoxy resin.
【図4】他例に係るプリント配線板の要部構成を示す断
面図及び回路構成を示すブロック説明図である。FIG. 4 is a cross-sectional view showing a configuration of main parts of a printed wiring board according to another example and a block explanatory diagram showing a circuit configuration.
1 ガラスエポキシ多層基板 2 ガラスエポキシ基板 3 スルーホール 4 無電解銅メッキ 5 樹脂層 6 電子部品 7,A,B,C,D 電極パターン 8 抵抗測定回路 9 放熱用グランド回路 10 信号発生回路 P 配線パターン 1 Glass Epoxy Multilayer Substrate 2 Glass Epoxy Substrate 3 Through Hole 4 Electroless Copper Plating 5 Resin Layer 6 Electronic Components 7, A, B, C, D Electrode Pattern 8 Resistance Measurement Circuit 9 Heat Dissipation Ground Circuit 10 Signal Generation Circuit P Wiring Pattern
Claims (4)
ント配線板において、 樹脂層を挟んで該樹脂層の抵抗を検出するための電極パ
ターンを対向配置したことを特徴とするプリント配線
板。1. A printed wiring board in which a wiring pattern is formed on a resin substrate, and electrode patterns for detecting the resistance of the resin layer are opposed to each other with a resin layer sandwiched therebetween.
板に実装される電子部品の放熱部材として兼用されるこ
とを特徴とする請求項1記載のプリント配線板。2. The printed wiring board according to claim 1, wherein one of the electrode patterns is also used as a heat dissipation member of an electronic component mounted on the resin substrate.
脂層を積層してなる多層樹脂基板を用い、前記電極パタ
ーンはいずれかの樹脂層間の抵抗を検出することを特徴
とする請求項1又は請求項2記載のプリント配線板。3. The resin substrate is a multilayer resin substrate formed by laminating a plurality of resin layers on a thin plate-shaped base material, and the electrode pattern detects resistance between any one of the resin layers. The printed wiring board according to claim 1 or 2.
載するパッケージに形成されていることを特徴とする請
求項1,請求項2,又は請求項3記載のプリント配線
板。4. The printed wiring board according to claim 1, wherein the electrode pattern is formed on a package on which a semiconductor chip is mounted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21156795A JPH0964492A (en) | 1995-08-21 | 1995-08-21 | Printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21156795A JPH0964492A (en) | 1995-08-21 | 1995-08-21 | Printed wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0964492A true JPH0964492A (en) | 1997-03-07 |
Family
ID=16607928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21156795A Pending JPH0964492A (en) | 1995-08-21 | 1995-08-21 | Printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0964492A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009501441A (en) * | 2005-07-13 | 2009-01-15 | バレオ・エチユード・エレクトロニク | Improved printed circuit configured to detect accidental heating |
-
1995
- 1995-08-21 JP JP21156795A patent/JPH0964492A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009501441A (en) * | 2005-07-13 | 2009-01-15 | バレオ・エチユード・エレクトロニク | Improved printed circuit configured to detect accidental heating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7800916B2 (en) | Circuitized substrate with internal stacked semiconductor chips, method of making same, electrical assembly utilizing same and information handling system utilizing same | |
TWI412306B (en) | Capacitor/resistor device and printed circuit board having the same, and manufacturing method thereof | |
US6646886B1 (en) | Power connection structure | |
EP1443560A2 (en) | Multi-chip electronic package having laminate carrier and method of making same | |
EP1443561A2 (en) | Stacked chip electronic package having laminate carrier and method of making same | |
US7750248B2 (en) | Dielectric lamination structure, manufacturing method of a dielectric lamination structure, and wiring board including a dielectric lamination structure | |
JP4669392B2 (en) | Metal core multilayer printed wiring board | |
KR101298280B1 (en) | Embedded printed circuit board and manufacturing method thereof | |
JP2008124080A (en) | Substrate, semiconductor device using the same, and testing method and manufacturing method for semiconductor device | |
KR20120008982A (en) | Manufacturing method of multilayer circuit board and multilayer circuit board | |
US20120307466A1 (en) | Component-embedded substrate | |
JP2001015929A (en) | Multilayer board | |
US6967398B2 (en) | Module power distribution network | |
KR100820633B1 (en) | Electronic circuit board and manufacturing method | |
US11690173B2 (en) | Circuit board structure | |
JP2010212375A (en) | Ic loading substrate, printed wiring board, and manufacturing method | |
US8957320B2 (en) | Printed wiring board | |
JP2004289133A (en) | Chip package | |
JPH0964492A (en) | Printed wiring board | |
KR100725481B1 (en) | Electronic element embedded printed circuit board and its manufacturing method | |
JPH03142943A (en) | Combination of semiconductor device and printed wiring board structure | |
JPH09116268A (en) | Printed wiring board | |
KR20090083614A (en) | Printed circuit board | |
JP4015900B2 (en) | Method for manufacturing multilayer printed wiring board incorporating chip resistor | |
JP2874734B2 (en) | Multilayer wiring board for high frequency devices |