JPH0953988A - Apparatus for measuring coloring of liquid - Google Patents
Apparatus for measuring coloring of liquidInfo
- Publication number
- JPH0953988A JPH0953988A JP20411095A JP20411095A JPH0953988A JP H0953988 A JPH0953988 A JP H0953988A JP 20411095 A JP20411095 A JP 20411095A JP 20411095 A JP20411095 A JP 20411095A JP H0953988 A JPH0953988 A JP H0953988A
- Authority
- JP
- Japan
- Prior art keywords
- coloring
- liquid
- calibration
- light
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、液体の着色を自動
計測する装置に用いられるもので、特に、装置の着色測
定校正機構に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in an apparatus for automatically measuring the coloring of a liquid, and more particularly to a coloring measurement / calibration mechanism of the apparatus.
【0002】[0002]
【従来の技術】従来から様々な産業分野において各種の
液体の着色測定が行われており、例えば、水道分野にお
ける水の着色測定に関しては「色度」という便宜的な指
標を用いた方法が普及している。しかし従来の測定装置
(例えば特開平4−9746号公報に示されている装
置)は単色光(390nm)の吸光度に基づいて「色
度」を求めており、液体の着色の一面を捉えているに過
ぎず、着色を適正かつ簡便に測定できる装置が望まれて
いた。2. Description of the Related Art Conventionally, various liquids have been measured for coloring in various industrial fields. For example, a method using a convenient index called "chromaticity" is widely used for measuring the coloring of water in the water supply field. are doing. However, the conventional measuring device (for example, the device disclosed in Japanese Patent Laid-Open No. 4-9746) obtains "chromaticity" based on the absorbance of monochromatic light (390 nm), and catches one side of coloring of the liquid. However, there is a demand for an apparatus that can appropriately and easily measure coloration.
【0003】本願出願人が先に提案した特願平6−20
6227号では、上のような状況を解消すべく、国際照
明委員会が規定したCIEのXYZ表色系等色関数によ
る相対分光感度特性に対応した三刺激値データを求め、
それらを基に構成する三次元表色空間上で着色度および
色相という概念を導入することで、目視と同等の着色測
定が可能なことを示した。Japanese Patent Application No. 6-20 previously proposed by the applicant of the present application
In No. 6227, in order to solve the above situation, tristimulus value data corresponding to the relative spectral sensitivity characteristic by the CIE XYZ color system color matching function defined by the International Commission on Illumination is obtained,
By introducing the concepts of degree of coloring and hue on the three-dimensional color space constructed based on them, we showed that it is possible to measure coloration equivalent to visual observation.
【0004】一方、液体の着色測定に際しては、測定の
変動要因となる光源光量の変動や、測定環境の汚れ等の
影響を補正するため、試料液を通過しないリファレンス
光測定による補正および、無着色の試料液測定による無
着色点(ゼロ点)の校正機構導入が慣例であった。しか
し、極めて微少な着色(水道水の着色など)や、ごく僅
かな着色の差を測定する場合には、上記のような変動補
正を行っても正確な測定が難しいという問題があった。
この原因は、従来の補正や校正では、測定光路とリファ
レンス光路とで測定光のスペクトルが異なる変化をする
場合、スペクトル依存性を示す測定光路の汚れや変形が
起きた場合、受光素子の特性変化が生じた場合など、全
体の測定系でスペクトル強度形状の変化があると測定条
件変動を補正できないことにあった。On the other hand, when measuring the color of a liquid, in order to correct the fluctuation of the light amount of the light source, which is a factor of fluctuation of the measurement, and the influence of dirt in the measurement environment, correction by reference light measurement that does not pass through the sample liquid and non-coloring It was customary to introduce a calibration mechanism for the non-colored point (zero point) by measuring the sample liquid of. However, in the case of measuring an extremely minute color (coloring of tap water, etc.) or a very small color difference, there is a problem that accurate measurement is difficult even if the above-described variation correction is performed.
The cause of this is that in conventional correction and calibration, the characteristics of the light-receiving element change when the spectrum of the measurement light changes differently between the measurement light path and the reference light path, when the measurement light path shows spectral dependence and is deformed. If there is a change in the spectrum intensity shape in the entire measurement system, such as in the case of occurrence, it is impossible to correct the measurement condition variation.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、前記
特願平6−206227号における三次元表色空間を用
いた液体の着色測定機能に対応した校正機構を有し、試
料となる液体の微少な着色および、ごく僅かな着色の差
を正確に測定できる装置を提供して従来の問題を解決す
ることである。An object of the present invention is to provide a liquid sample as a sample having a calibration mechanism corresponding to the liquid color measuring function using the three-dimensional color space in Japanese Patent Application No. 6-206227. It is an object of the present invention to solve the conventional problems by providing an apparatus capable of accurately measuring the minute coloring and the slight difference in coloring.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するた
め、本発明による液体の着色測定装置では、光源、試料
とする液体を入れるフローセル、光源から出射しフロー
セルを透過する光の波長を複数の種類に選択する分光
部、フローセルと分光部とを通る光源からの光を検出す
る光検出器、光検出器からの信号に基づき、測定値を着
色度および色相として演算出力する信号処理部を備えた
液体の着色測定装置に、校正用着色フィルタと、校正演
算を行う演算部とを加えることにより、ごく僅かな着色
の差を正確に測定することが可能になる。In order to solve the above-mentioned problems, in a liquid coloring measuring apparatus according to the present invention, a light source, a flow cell containing a liquid to be a sample, and a wavelength of light emitted from the light source and transmitted through the flow cell are set to a plurality of wavelengths. Equipped with a spectroscopic unit that selects the type, a photodetector that detects light from a light source that passes through the flow cell and the spectroscopic unit, and a signal processing unit that arithmetically outputs the measurement value as the coloring degree and hue based on the signal from the photodetector. It is possible to accurately measure a very slight difference in color by adding a color filter for calibration and an arithmetic unit for performing a calibration operation to the liquid color measuring device.
【0007】以下に本発明の構成図(図1)と三次元表
色空間図(図2、図3)を用いて着色測定原理および校
正原理を示す。図1は本発明の測定原理を示したもので
ある。光源1からの光を分光用光学フィルタ8に通し、
CIEのXYZ表色系等色関数に対応するように、赤、
緑、青の光を作る。これらの光は、それぞれフローセル
3中の試料液を通過すると減衰する。あらかじめ、無着
色液を透過した光の光量を光検出器6で検出し、演算部
7でこれを100%として記憶しておく。そして、試料
液を透過した光の光量測定を行い、無着色液の透過光量
に対する試料液の透過率を演算部で計算して出力X,
Y,Zを得る。これらの出力から式.(1) に従ってx、
y、wを算出すれば、図2に示した三次元表色空間上の
1点(測定点S)として着色を評価できる。The principle of coloring measurement and the principle of calibration will be shown below using the configuration diagram (FIG. 1) and the three-dimensional color space diagram (FIGS. 2 and 3) of the present invention. FIG. 1 shows the measurement principle of the present invention. The light from the light source 1 is passed through the spectral optical filter 8,
To correspond to the CIE XYZ color system color matching function, red,
Creates green and blue light. These lights are attenuated as they pass through the sample liquid in the flow cell 3. The light amount of the light that has passed through the uncolored liquid is detected by the photodetector 6 in advance, and is stored as 100% in the calculation unit 7. Then, the amount of light transmitted through the sample liquid is measured, the transmittance of the sample liquid with respect to the amount of transmitted light of the non-colored liquid is calculated by the calculation unit, and the output X,
Get Y and Z. From these outputs, x according to equation (1),
If y and w are calculated, coloring can be evaluated as one point (measurement point S) on the three-dimensional color space shown in FIG.
【0008】[0008]
【数1】 [Equation 1]
【0009】図2の三次元表色空間のxy平面は、CI
E1931xy色度図と呼ばれるもので、w 軸は透過光
の明るさの減少の度合いを表している。ここでX、Y、
Zの値が等しいと、x=y=1/3=0.333とな
り、さらにその条件を満たすものうち、明るさの減少の
度合いが0(w=0すなわちY=1)の点を、無着色点
(W)としている。The xy plane of the three-dimensional color space of FIG.
This is called an E1931xy chromaticity diagram, and the w axis represents the degree of decrease in the brightness of transmitted light. Where X, Y,
When the values of Z are equal, x = y = 1/3 = 0.333, and even if the condition is satisfied, the point where the degree of decrease in brightness is 0 (w = 0, that is, Y = 1) is excluded. The coloring point (W) is used.
【0010】図2の三次元表色空間上に測定点を表した
のがS点、それをxy平面上に投影したのがP点であ
る。本願出願人は前出の特願6−206227号におい
て、試料液の着色度を三次元表色空間上での無着色点W
と測定点Sとの距離と定義し、試料水の色相はxy平面
の色度図上の点Pが含まれる領域の色から判定すること
としている。The measurement point is represented on the three-dimensional color space of FIG. 2 by point S, and the point P is projected on the xy plane. In the above-mentioned Japanese Patent Application No. 6-206227, the applicant of the present application sets the coloring degree of the sample liquid to a non-colored point W in the three-dimensional color space.
And the measurement point S, the hue of the sample water is determined from the color of the area including the point P on the chromaticity diagram on the xy plane.
【0011】図3に校正の原理を示す。従来から行われ
てきた無着色点の測定は、三次元表色空間上の基準点W
点を校正することに相当する。従って、本発明の方法を
導入し、着色を把握している(波長・透過率特性が分か
っている)校正用着色フィルタ2を光路に挿入すれば、
三次元空間上でさらに1点の基準点N点を校正できる。
これは、先に述べたような種々な要因によって変動した
三次元空間上の基準軸(Vf )を正しい位置(Vn )に
校正することを意味する。したがって、この機構を付加
すれば、変動に対して空間を正しく補正でき、着色測定
を正確に行うことができる。FIG. 3 shows the principle of calibration. The conventional measurement of the uncolored point is based on the reference point W in the three-dimensional color space.
Equivalent to calibrating the points. Therefore, by introducing the method of the present invention and inserting the coloring filter 2 for calibration which grasps coloring (wavelength / transmittance characteristics are known) into the optical path,
One more reference point N can be calibrated in the three-dimensional space.
This means calibrating the reference axis (Vf) in the three-dimensional space, which has been changed by various factors as described above, to the correct position (Vn). Therefore, if this mechanism is added, the space can be correctly corrected for variations, and coloring measurement can be accurately performed.
【0012】従来の液体の着色測定装置でも、一次元的
特性測定に関しては校正方法が確立されたものがあった
(例えば水道水の色度測定を校正する色度標準液)が、
三次元表色空間を用いた着色測定を正確かつ簡便に校正
できる機構としては本発明は画期的なものである。Even in the conventional liquid color measuring device, there has been established a calibration method for one-dimensional characteristic measurement (for example, chromaticity standard solution for calibrating chromaticity measurement of tap water).
The present invention is epoch-making as a mechanism capable of accurately and simply calibrating a color measurement using a three-dimensional color space.
【0013】[0013]
【発明の実施の形態】図1は本発明の第1の実施例の構
成図である。校正用着色フィルタ2は光源1から光検出
器6の間ならばどこに配置されても効果は変わらない。
連続的に液体着色を測定するような場合には、校正用着
色フィルタ2を定期的に光路に挿入し、変動補正を行う
ことで正確な測定を継続できる。測定の際には校正用着
色フィルタを光路から外す。1 is a block diagram of the first embodiment of the present invention. The effect does not change wherever the calibration color filter 2 is arranged between the light source 1 and the photodetector 6.
In the case where liquid coloring is continuously measured, the calibration coloring filter 2 is periodically inserted into the optical path to correct fluctuations, whereby accurate measurement can be continued. At the time of measurement, remove the color filter for calibration from the optical path.
【0014】図3は校正用着色フィルタとして市販のN
Dフィルタを使用した例である。NDフィルタとは所定
の波長領域全域にわたり一定の減衰率を示すフィルタで
あり、これを光路に挿入することにより、光のスペクト
ルのバランスを変化させずに(色を変えずに)光量を低
下させることができる。したがって、フローセルに無着
色液を満たした状態で光路に校正用着色フィルタを挿入
すれば、校正基準点は透明→灰色→黒という無彩色の軸
上にのり、基準軸は図3に示したように校正される。FIG. 3 shows a commercially available N as a color filter for calibration.
This is an example using a D filter. The ND filter is a filter that shows a constant attenuation rate over the entire predetermined wavelength region, and by inserting this into the optical path, the light amount is reduced without changing the balance of the spectrum of light (without changing the color). be able to. Therefore, if a color filter for calibration is inserted into the optical path while the flow cell is filled with a non-colored liquid, the calibration reference point will be on the achromatic axis of transparent → gray → black, and the reference axis will be as shown in Fig. 3. Is calibrated to.
【0015】NDフィルタを校正用に用いた場合の演算
式を以下に示す。ここで、無着色液の透過光量をBl 、
そこにNDフィルタを挿入したときの透過光量をNd 、
実際の試料液の透過光量をSp 、NDフィルタの透過率
をA、実際の試料液の透過率をNとする。校正がない場
合は、An arithmetic expression when the ND filter is used for calibration is shown below. Here, the transmitted light amount of the uncolored liquid is Bl,
The amount of transmitted light when an ND filter is inserted there is Nd,
Let Sp be the actual amount of transmitted light of the sample liquid, A be the transmittance of the ND filter, and N be the transmittance of the actual sample liquid. If there is no calibration,
【0016】[0016]
【数2】 [Equation 2]
【0017】NDフィルタによる校正がある場合は、If there is calibration by the ND filter,
【0018】[0018]
【数3】 (Equation 3)
【0019】[0019]
【数4】 (Equation 4)
【0020】となり、オフセットやスパンの変動等の影
響を受けずに着色測定が行える。Therefore, the color measurement can be performed without being affected by the offset and the fluctuation of the span.
【0021】[0021]
【発明の効果】本発明の液体の着色測定装置では、例え
ば測定波長領域全域に渡って等しい透過率を示すなどと
いったように着色の程度を把握できている(波長- 透過
率特性が分かっている)着色フィルタを用いることによ
り、前述の三次元表色空間を利用し着色度および色相と
いう概念を導入した着色測定に対応した新規の校正機能
を確立した。これにより、極めて微少な着色(水道水の
着色など)やごく僅かな着色の差を測定する場合にも、
測定光路とリファレンス光路とでの測定光スペクトルの
異なる変化、スペクトル依存性を示す測定光路の汚れや
変形、受光素子の特性変化といった変動を補正でき、正
確な測定を行うことを可能にした。With the liquid coloring measuring apparatus of the present invention, it is possible to grasp the degree of coloring, for example, to show the same transmittance over the entire measurement wavelength range (wavelength-transmittance characteristics are known. ) By using a color filter, a new proofreading function was established that utilizes the above-mentioned three-dimensional color space and introduces the concepts of coloring degree and hue. This makes it possible to measure extremely minute colors (coloring of tap water, etc.) and even very small differences in color,
It is possible to correct different changes in the measurement light spectrum between the measurement light path and the reference light path, stains and deformations of the measurement light path exhibiting spectral dependence, and changes in the characteristics of the light-receiving element, thus enabling accurate measurement.
【0022】図4 (a) 、 (b) は上述の効果を調べる
ため、着色評価の基準となる4種の標準液を調合し、こ
の液を目視限界付近の濃度まで3〜4段階に希釈した試
料液を使用して、三次元表色空間上に現れる測定結果の
xy平面色度図上への投影点をプロットした実験例であ
る。本発明導入前の図4 (a) では、同一種類の試料液
で希釈度を高めた場合、じぐざぐの経路をたどるものが
ある。これは色領域が交錯していて、色判別のための領
域分けが不能な部分がある。これに対して、本発明導入
後の図4 (b) では、同一種類の試料液で希釈度を高め
た場合、測定値は無着色点(x=y=0.333)に向
かう直線になっており、各種類の試料液の色相判別の分
解能が格段に向上していることがわかる。4 (a) and 4 (b), in order to investigate the above-mentioned effects, four kinds of standard solutions which are the criteria for coloring evaluation were prepared, and the solutions were diluted in 3 to 4 steps to a concentration near the visual limit. It is the experiment example which plotted the projection point on the xy plane chromaticity diagram of the measurement result which appears in a three-dimensional color space using the sample liquid. In FIG. 4 (a) before the introduction of the present invention, when the dilution degree is increased with the same type of sample liquid, there is a trace of a jagged path. This is because the color areas are interlaced, and there is a portion where the area cannot be divided for color discrimination. On the other hand, in FIG. 4 (b) after the introduction of the present invention, when the dilution degree is increased with the same type of sample solution, the measured value becomes a straight line toward the uncolored point (x = y = 0.333). Therefore, it can be seen that the resolution of the hue discrimination of each type of sample liquid is remarkably improved.
【図1】本発明の実施例の構成図FIG. 1 is a configuration diagram of an embodiment of the present invention.
【図2】xy色度図を示し (a) は三次元表色空間図
と、それを用いた着色度、色相の説明図、 (b) はxy
色度図と色相判定の説明図FIG. 2 shows an xy chromaticity diagram (a) is a three-dimensional color space diagram and an explanatory diagram of the coloring degree and hue using it, and (b) is xy
Illustration of chromaticity diagram and hue judgment
【図3】校正用着色フィルタとしてNDフィルタを用い
た場合の三次元表色空間上で行われる校正の概念図FIG. 3 is a conceptual diagram of calibration performed in a three-dimensional color space when an ND filter is used as a calibration color filter.
【図4】校正用着色フィルタとしてNDフィルタを用い
た場合に着色測定機能が向上した例を示した色度図、
(a) が発明導入前、 (b) が導入後の色度図FIG. 4 is a chromaticity diagram showing an example in which a color measurement function is improved when an ND filter is used as a calibration color filter.
(a) is the chromaticity diagram before the invention is introduced, and (b) is the chromaticity diagram after the invention is introduced.
【符号の説明】 1 光源 2 校正フィルタ 3 フローセル 4a 光学窓 4b 光学窓 5a 流入弁 5b 流出弁 6 光検出器 7 演算部 8 分光用光学フィルタ[Explanation of reference numerals] 1 light source 2 calibration filter 3 flow cell 4a optical window 4b optical window 5a inflow valve 5b outflow valve 6 photodetector 7 arithmetic unit 8 spectroscopic optical filter
───────────────────────────────────────────────────── フロントページの続き (72)発明者 多田 弘 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 原田 健治 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroshi Tada 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. No. 1 inside Fuji Electric Co., Ltd.
Claims (2)
ル、光源から出射しフローセルを透過する光の波長を複
数の種類に選択可能な分光部、フローセルと分光部を通
る光源からの光を検出する光検出器、光検出器からの信
号に基づき、測定値を着色度として演算出力する信号処
理部を備えて成ることを特徴とする三次元表色空間を用
いた液体の着色測定装置において、校正用着色フィルタ
と、校正演算を行う演算部を有することを特徴とする液
体の着色測定装置。1. A light source, a flow cell containing a liquid to be a sample, a spectroscopic unit capable of selecting a plurality of types of wavelengths of light emitted from the light source and passing through the flow cell, and light from the light source passing through the flow cell and the spectroscopic unit is detected. A photo-detector, a liquid color-measuring device using a three-dimensional color space, characterized by comprising a signal processing unit for calculating and outputting a measured value as a coloring degree based on a signal from the photo-detector. A coloring measurement apparatus for liquids, comprising: a coloring filter for use with a liquid; and a calculation unit for performing a calibration calculation.
相として演算出力する信号処理部を備えたことを特徴と
する液体の着色測定装置。2. A liquid color measuring apparatus according to claim 1, further comprising a signal processing section for calculating and outputting a measured value as a hue.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20411095A JPH0953988A (en) | 1995-08-10 | 1995-08-10 | Apparatus for measuring coloring of liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20411095A JPH0953988A (en) | 1995-08-10 | 1995-08-10 | Apparatus for measuring coloring of liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0953988A true JPH0953988A (en) | 1997-02-25 |
Family
ID=16484975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20411095A Pending JPH0953988A (en) | 1995-08-10 | 1995-08-10 | Apparatus for measuring coloring of liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0953988A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007003202A (en) * | 2005-06-21 | 2007-01-11 | Cti Science System Co Ltd | Coloration monitoring method and coloration monitoring device of sewage treated water |
WO2023176492A1 (en) * | 2022-03-17 | 2023-09-21 | パナソニックIpマネジメント株式会社 | Image capture system |
-
1995
- 1995-08-10 JP JP20411095A patent/JPH0953988A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007003202A (en) * | 2005-06-21 | 2007-01-11 | Cti Science System Co Ltd | Coloration monitoring method and coloration monitoring device of sewage treated water |
WO2023176492A1 (en) * | 2022-03-17 | 2023-09-21 | パナソニックIpマネジメント株式会社 | Image capture system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100238960B1 (en) | Apparatus for chromatic vision measurement | |
JPH05253256A (en) | Decision of color of translucent object, such as teeth and apparatus therefor | |
CN101324468B (en) | Low stray light rapid spectrometer and measurement method thereof | |
AU764447B2 (en) | Fiber color grading system | |
CN104062010B (en) | A kind of light splitting light source colour illumination photometry instrument optimizing scaling algorithm | |
CN105157842A (en) | Double-optical path color measuring spectrophotometer with repetitive optimization device and optimization method | |
CN113155287B (en) | Spectacle lens color measuring device | |
CN113252310A (en) | Method for measuring tristimulus value and transmittance of spectacle lens | |
JPH0953988A (en) | Apparatus for measuring coloring of liquid | |
Griesser | Instrumental measurement of fluorescence and determination of whiteness: review and advances | |
JP3261888B2 (en) | Liquid color detection device | |
JPH10115585A (en) | Method for self-diagnosing apparatus for measuring color and turbidity of liquid | |
JPS62127635A (en) | Color determining system for precisely measuring parameter inducting discoloration | |
CN106885630A (en) | A kind of method and device that spectral measurement is carried out based on color | |
CN1519558A (en) | Device for measuring transmission factor of optical glass | |
KR20170006073A (en) | Apparatus for concentration detection using led spectrophotometer | |
JPH0125017B2 (en) | ||
JPH11344382A (en) | Method for measuring tinted degree of solution | |
CN215811539U (en) | Spectacle lens quality detection device | |
JP2001318001A (en) | Color measuring instrument | |
JP2000019106A (en) | Method for measuring light transmittance of liquid | |
RU2059211C1 (en) | Method of measurement of colour of leather or other similar materials | |
JPS61233328A (en) | Colorimetric color difference meter | |
JPS62137527A (en) | Spectral distribution inspecting device | |
KR100255500B1 (en) | Apparatus and method for measurement and decision of color matching for 3d objects |