JPH0938467A - Purifying device for exhaust gas and purifying method of exhaust gas - Google Patents
Purifying device for exhaust gas and purifying method of exhaust gasInfo
- Publication number
- JPH0938467A JPH0938467A JP7224441A JP22444195A JPH0938467A JP H0938467 A JPH0938467 A JP H0938467A JP 7224441 A JP7224441 A JP 7224441A JP 22444195 A JP22444195 A JP 22444195A JP H0938467 A JPH0938467 A JP H0938467A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- hydrocarbon
- catalyst
- hydrocarbons
- nox
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、自動車、建設機械、船
舶等の輸送手段や発電機等からの排ガス、特にこれらに
用いられるディーゼル機関から排出される排気ガスの浄
化装置、より詳細にはこれらの排ガス中の窒素酸化物
(NOx)の浄化装置、及び、これらの浄化方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for purifying exhaust gas from vehicles such as automobiles, construction machinery and ships, generators, etc. The present invention relates to a purification device for nitrogen oxides (NOx) in the exhaust gas and a purification method for these.
【0002】[0002]
【従来の技術】ディーゼルエンジンは希薄空燃比で運転
され、仕事当たりの化石燃料消費量が従来のガソリンエ
ンジンに比べて少なく、地球温暖化物質である二酸化炭
素(CO2)の排出量を抑制できる利点がある。しか
し、その排気ガスが、炭化水素(以下、HCということ
もある。)、一酸化炭素(CO)等の還元性成分を完全
酸化させるに要する化学量論量より過剰の酸素を含有す
るため、排気ガス中のNOxの除去は従来の技術では困
難であった。2. Description of the Related Art A diesel engine operates at a lean air-fuel ratio, consumes less fossil fuel per work than a conventional gasoline engine, and can suppress the emission of carbon dioxide (CO 2 ) which is a global warming substance. There are advantages. However, the exhaust gas contains oxygen in excess of the stoichiometric amount required to completely oxidize reducing components such as hydrocarbons (hereinafter sometimes referred to as HC) and carbon monoxide (CO). Removal of NOx in exhaust gas has been difficult with conventional techniques.
【0003】近年、このような希薄空燃比の排気ガス
を、Cu,Co等の遷移金属でイオン交換したゼオライ
ト触媒、メタロシリケート触媒またはアルミノフォスフ
ェート触媒(米国特許第4297328号、特開昭63
−100919号、特開平3−127628号、特開平
3−229620号、特開平1−112488号)、あ
るいはPt,Pd,Rh等の貴金属をゼオライト、アル
ミナ等の多孔質金属酸化物に担持した触媒(特開平3−
221143号、特開平3−221144号)と接触さ
せ、NOxを排ガス中のHCによって選択的に還元除去
するHC選択還元方法が種々提案された。しかしこれら
の触媒はいずれもHCのNOx還元への選択性が低く、
特にディーゼルエンジン排気ガスのように残存するメタ
ン換算炭化水素量(以下、THCということもある。)
のNOxに対するモル比が1以下の場合、NOxの除去
率は不十分であった。このためディーゼルエンジン排気
ガスをNOx還元触媒と接触させる前に微量のHCを排
気ガスに添加することによってNOx除去率を高める方
法(例えば特開平5−44444号)が提案された。In recent years, a zeolite catalyst, a metallosilicate catalyst or an aluminophosphate catalyst, in which exhaust gas having such a lean air-fuel ratio is ion-exchanged with a transition metal such as Cu or Co (US Pat. No. 4,297,328, Japanese Patent Laid-Open No. 63-328328).
No. 100919, JP-A-3-127628, JP-A-3-229620, JP-A-1-112488), or a catalyst in which a noble metal such as Pt, Pd, Rh is supported on a porous metal oxide such as zeolite or alumina. (JP-A-3-
No. 221143 and JP-A-3-221144), various HC selective reduction methods have been proposed in which NOx is selectively reduced and removed by HC in exhaust gas. However, all of these catalysts have low selectivity for NOx reduction of HC,
In particular, the amount of methane-converted hydrocarbons that remains like diesel engine exhaust gas (hereinafter also referred to as THC).
When the molar ratio of NOx to NOx was 1 or less, the removal rate of NOx was insufficient. Therefore, there has been proposed a method of increasing the NOx removal rate by adding a slight amount of HC to the exhaust gas before bringing the diesel engine exhaust gas into contact with the NOx reduction catalyst (for example, JP-A-5-44444).
【0004】しかしながら、通常ディーゼルエンジンの
燃料として用いられるのは灯油、軽油や重油であり、こ
のような高沸点の炭化水素はNOxの還元剤として必ず
しも効果的でなく、NOx還元の選択性か低いために、
過剰の炭化水素が必要となり、燃費の悪化を招くととも
に浮遊粒子状物質(以下、PMということもある。)の
増加を招くことになった。他方、NOxの還元剤として
好適な、例えばC2〜C5の炭化水素、就中オレフィン
類を排気ガスに添加することは、ディーゼルエンジンの
燃料貯蔵容器とは別にこれらの還元剤の貯蔵容器が必要
になり、実用的ではない。However, kerosene, light oil, and heavy oil are usually used as fuels for diesel engines. Such high boiling point hydrocarbons are not always effective as NOx reducing agents, and NOx reduction selectivity is low. for,
Excessive hydrocarbon is required, which leads to deterioration of fuel efficiency and an increase in suspended particulate matter (hereinafter sometimes referred to as PM). On the other hand, the addition of a C 2 to C 5 hydrocarbon, especially olefins, suitable as a reducing agent for NOx to the exhaust gas means that a storage container for these reducing agents is provided separately from the fuel storage container for the diesel engine. Needed and not practical.
【0005】そこでディーゼルエンジン燃料を改質また
は分解してNOx還元に好適な炭化水素に変えてNOx
還元触媒と接触させる方法が種々考案された。 (1)特開平5−59933号には、炭化水素改質触媒
を充填した反応管と炭化水素を加熱するヒーターとをそ
なえたリアクターハウジングを用い、炭化水素をポンプ
で改質反応管にフィードし、改質された炭化水素を噴射
ノズルから排気ガスに添加する排ガス浄化装置が、
(2)特開平5−222923号や特開平6−1088
25号には、エンジンの液体燃料を予め改質触媒で改質
し気液分離または貯蔵した後、この改質炭化水素を圧送
ポンプを介して噴射ノズルから噴射添加する装置が、
(3)特公平6−61427号には、排ガス中へ燃料導
入部から燃料炭化水素を導入し、排ガスと該炭化水素の
混合物とした後、これを炭化水素分解触媒よりなる第1
触媒層に接触させ、燃料を主としてC2〜C4の不飽和
炭化水素へと改質させ、しかる後NOx還元触媒よりな
る第2触媒層と接触させる方法などが開示されていた。Then, the diesel engine fuel is reformed or decomposed into hydrocarbons suitable for NOx reduction, and NOx is converted.
Various methods of contacting with a reducing catalyst have been devised. (1) In JP-A-5-59933, a reactor housing provided with a reaction tube filled with a hydrocarbon reforming catalyst and a heater for heating the hydrocarbon is used, and the hydrocarbon is fed to the reforming reaction tube by a pump. , An exhaust gas purification device that adds reformed hydrocarbons to exhaust gas from an injection nozzle,
(2) JP-A-5-222923 and JP-A-6-1088
In No. 25, a device for preliminarily reforming a liquid fuel of an engine with a reforming catalyst and separating or storing the reformed hydrocarbon, and then injecting and adding the reformed hydrocarbon from an injection nozzle via a pressure pump,
(3) Japanese Examined Patent Publication No. 6-61427 discloses that a fuel hydrocarbon is introduced into an exhaust gas from a fuel introducing part to form a mixture of the exhaust gas and the hydrocarbon, and the mixture is composed of a hydrocarbon decomposition catalyst.
There has been disclosed a method of bringing the fuel into contact with the catalyst layer to reform the fuel mainly into C 2 to C 4 unsaturated hydrocarbon, and then bringing it into contact with the second catalyst layer composed of the NOx reduction catalyst.
【0006】[0006]
【発明が解決しようとする課題】前記のように従来の炭
化水素添加によるNOx還元方法はいずれも問題があっ
た。一般に前記の(1)および(2)で用いられるよう
な炭化水素の接触分解反応ではモル膨張をともない、気
体が発生し体積が著しく膨張する。このような気固反応
を非開放系で制御し生成する気体状炭化水素を一旦貯蔵
して噴射することは、システムを複雑化し、実用的では
なかった。また、前記の(3)では第1触媒層において
は燃料炭化水素は大過剰の排気ガスによって希釈されて
しまっているため、炭化水素の改質または分解をおこす
には大容量の改質触媒が必要になるか、または触媒のタ
イプによっては排気ガス中の過剰の酸素によって炭化水
素の相当な割合がCO2とH2Oに完全酸化され、NO
x還元のための炭化水素の供給方法として効率的ではな
かった。本発明は各種の排ガス、特にディーゼルエンジ
ンの排気ガス中のNOx還元方法において、還元剤とし
て高級炭化水素を排気ガスに添加するに際し、複雑なシ
ステムや大容量の改質または分解触媒を必要とせずに、
簡便な方法でNOx除去率の向上に有効な炭化水素成分
を効率的に増加させる方法を用いてNOxを還元する排
気ガスの浄化装置及びその方法を提供することを目的と
するものである。As described above, all of the conventional NOx reduction methods by adding hydrocarbons have problems. Generally, in the catalytic cracking reaction of hydrocarbons used in the above (1) and (2), gas is generated and the volume is significantly expanded with the molar expansion. It was not practical to control the gas-solid reaction in a non-open system and temporarily store and inject the produced gaseous hydrocarbons, which complicates the system. Further, in the above (3), since the fuel hydrocarbons are diluted with a large excess of exhaust gas in the first catalyst layer, a large-capacity reforming catalyst is required to reform or decompose the hydrocarbons. Depending on the type of catalyst required or excess oxygen in the exhaust gas, a considerable proportion of the hydrocarbons is completely oxidized to CO 2 and H 2 O and NO
It was not an efficient method for supplying hydrocarbons for x reduction. INDUSTRIAL APPLICABILITY The present invention does not require a complicated system or a large-capacity reforming or cracking catalyst when adding higher hydrocarbons as a reducing agent to exhaust gas in a NOx reduction method in various exhaust gases, particularly exhaust gas of a diesel engine. To
An object of the present invention is to provide an exhaust gas purifying apparatus and method for reducing NOx by using a method of efficiently increasing a hydrocarbon component effective for improving the NOx removal rate by a simple method.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に鋭意検討を重ねた結果、本発明者は炭化水素をNOx
の還元剤として排気ガスに添加するにあたり、排気ガス
流路内またはその近傍に炭化水素分解触媒を設け、炭化
水素分解触媒層の一方の端面は排気ガス流路に対して閉
じて炭化水素噴射ノズルを対向して配置し、他方の端面
は排気ガス流路に開放して配置し、噴射口から出た炭化
水素を接触分解させモル膨張した炭化水素をエンジン排
気ガスと混合した後、窒素酸化物還元触媒と接触させる
ことによって上記課題が解決できることを見い出し本発
明を完成させるに至った。Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has found that hydrocarbons are converted into NOx.
A hydrocarbon decomposition catalyst is provided in or near the exhaust gas flow channel when added to the exhaust gas as a reducing agent for the hydrocarbon injection nozzle by closing one end face of the hydrocarbon decomposition catalyst layer to the exhaust gas flow channel. Are placed facing each other, and the other end face is opened to the exhaust gas flow path, and hydrocarbons discharged from the injection port are catalytically decomposed to cause molar expansion of hydrocarbons and mixed with engine exhaust gas, and then nitrogen oxides are mixed. They have found that the above problems can be solved by bringing them into contact with a reducing catalyst, and have completed the present invention.
【0008】すなわち、本発明は、炭化水素を還元剤と
して、排ガスを窒素酸化物還元触媒装置により浄化する
排ガス浄化装置において、前記窒素酸化物還元触媒装置
の排ガスの流路の上流側に、炭化水素噴射ノズルと炭化
水素分解触媒層からなる炭化水素を添加する装置を設置
し、前記炭化水素噴射ノズルから供給された炭化水素を
炭化水素分解触媒層により、供給した炭化水素よりも低
級の炭化水素の含有量が増加した炭化水素流とし、当該
炭化水素流を前記排ガス流に合流させることを特徴とす
る排ガス浄化装置、及び、当該装置を用いた排ガスの浄
化方法に関する。より詳細には、本発明は、ディーゼル
エンジンの排ガスの流路に窒素酸化物還元触媒装置を設
け、その排ガスの流路の上流側に炭化水素を添加する装
置を有する排ガス浄化装置であって、当該炭化水素を添
加する装置が炭化水素噴射ノズルと炭化水素分解触媒層
からなり、当該炭化水素分解触媒層の一方の端面は炭化
水素噴射ノズルに対向して配置され、他方の端面が排ガ
ス流路に開放して配置されていることを特徴とするディ
ーゼルエンジン排ガスの浄化装置、及び、当該装置を用
いた排ガスの浄化方法に関する。さらに詳細には、本発
明は、ディーゼルエンジンの排気ガス中に窒素酸化物還
元触媒を設け、その上流側で該エンジン排気ガス中のC
Oおよび炭化水素が窒素酸化物の還元に不足な場合、エ
ンジン排気ガスに噴射ノズルから炭化水素を添加するに
あたり、噴射ノズルから出た炭化水素がエンジン排気ガ
スと混合する以前に炭化水素分解触媒と接触させ、接触
分解されモル膨張した炭化水素をエンジン排気ガスと混
合した後、窒素酸化物還元触媒と接触させる排ガス浄化
装置、及び、当該装置を用いた排ガスの浄化方法に関す
る。また、本発明は、上記窒素酸化物還元触媒層を出た
排ガスをその下流側でさらに酸化触媒と接触させること
を特徴とする排ガス浄化装置、及び、当該装置を用いた
排ガスの浄化方法に関する。That is, according to the present invention, in an exhaust gas purifying apparatus for purifying exhaust gas by a nitrogen oxide reduction catalyst device using hydrocarbon as a reducing agent, carbonization is performed on the upstream side of the exhaust gas passage of the nitrogen oxide reduction catalyst device. A device for adding hydrocarbons consisting of a hydrogen injection nozzle and a hydrocarbon decomposition catalyst layer is installed, and hydrocarbons supplied from the hydrocarbon injection nozzle are converted into hydrocarbons lower than the supplied hydrocarbons by the hydrocarbon decomposition catalyst layer. The present invention relates to an exhaust gas purifying apparatus, characterized in that a hydrocarbon stream having an increased content of is added to the exhaust gas stream, and an exhaust gas purifying method using the apparatus. More specifically, the present invention provides an exhaust gas purifying apparatus having a device for adding a hydrocarbon to the upstream side of the exhaust gas flow passage, provided with a nitrogen oxide reduction catalyst device in the exhaust gas flow passage of a diesel engine, The apparatus for adding the hydrocarbon comprises a hydrocarbon injection nozzle and a hydrocarbon decomposition catalyst layer, one end surface of the hydrocarbon decomposition catalyst layer is arranged facing the hydrocarbon injection nozzle, and the other end surface is an exhaust gas passage. The present invention relates to a diesel engine exhaust gas purifying apparatus, which is open to the public, and an exhaust gas purifying method using the apparatus. More specifically, the present invention provides a nitrogen oxide reduction catalyst in the exhaust gas of a diesel engine, and the C oxide in the engine exhaust gas is provided upstream of the catalyst.
When O and hydrocarbons are insufficient for the reduction of nitrogen oxides, when adding hydrocarbons to the engine exhaust gas from the injection nozzle, the hydrocarbons discharged from the injection nozzle may be mixed with the hydrocarbon decomposition catalyst before mixing with the engine exhaust gas. TECHNICAL FIELD The present invention relates to an exhaust gas purifying apparatus for bringing a hydrocarbon that has been brought into contact with and catalytically cracked and has been subjected to molar expansion to be mixed with an engine exhaust gas, and then brought into contact with a nitrogen oxide reduction catalyst, and an exhaust gas purifying method using the apparatus. Further, the present invention relates to an exhaust gas purifying apparatus, characterized in that the exhaust gas discharged from the nitrogen oxide reduction catalyst layer is further contacted with an oxidation catalyst on the downstream side thereof, and an exhaust gas purifying method using the apparatus.
【0009】本発明においては、従来技術のように高級
炭化水素を予め排ガス流路とは別の場所で接触分解およ
び/または接触改質した後排気流路に噴射ノズルから噴
射するのではない。本発明の方法は、(1)炭化水素分
解触媒層に排気ガスの実質的な流れが無い状態で、
(2)高級炭化水素を噴射ノズルから炭化水素分解触媒
へ向けて噴射し(3)分解された低級炭化水素の含有量
が増加した炭化水素をモル膨張に伴って直接排気ガスと
混合させる点において従来技術と明らかに異なってい
る。本発明の浄化装置及び浄化方法は、従来技術に比べ
て構成が単純であり操作の信頼性も高い。特にエンジン
排気ガス中のTHC/NOxモル比、あるいはNOx濃
度に依存して炭化水素添加量を制御する場合、例えば、
ディーゼルエンジン運転中の排気ガス中のTHC/NO
xモル比が1以上あるいはNOx濃度が100ppm未
満では炭化水素添加をせず、THC/NOxモル比が1
未満あるいはNOx濃度が100ppm以上となったと
きに炭化水素を添加するというような制御を行う場合、
炭化水素添加量の変化の応答が早く、その結果として後
段のNOx還元触媒によって高い脱硝率が得られる。In the present invention, unlike the prior art, higher hydrocarbons are not previously catalytically cracked and / or catalytically reformed at a place different from the exhaust gas passage and then injected from the injection nozzle into the exhaust passage. According to the method of the present invention, (1) in a state where there is substantially no flow of exhaust gas in the hydrocarbon decomposition catalyst layer,
(2) Injecting higher hydrocarbons from the injection nozzle toward the hydrocarbon decomposition catalyst, and (3) mixing the hydrocarbons having an increased content of decomposed lower hydrocarbons directly with the exhaust gas along with the molar expansion. Clearly different from the prior art. The purification apparatus and the purification method of the present invention have a simpler structure and higher operation reliability than those of the prior art. In particular, when the amount of added hydrocarbon is controlled depending on the THC / NOx molar ratio in the engine exhaust gas or the NOx concentration, for example,
THC / NO in exhaust gas during diesel engine operation
If the x molar ratio is 1 or more or the NOx concentration is less than 100 ppm, no hydrocarbon is added and the THC / NOx molar ratio is 1
When performing control such as adding hydrocarbons when the concentration is less than or when the NOx concentration is 100 ppm or more,
The response of the change in the amount of hydrocarbon added is quick, and as a result, a high NOx removal rate can be obtained by the NOx reduction catalyst in the latter stage.
【0010】さて、一般に石油の溜分のうち、沸点がお
よそ30℃〜216℃の溜分はガソリン、160℃〜3
00℃の溜分は灯油、220℃〜350℃の溜分は軽
油、317℃以上の溜分は重油と称される。今日、ディ
ーゼルエンジンの燃料としては灯油、軽油、およびA重
油(重油の内でも比較的低沸点で引火点、流動点の低い
油種、JISの1種重油に対応)が使用されている。デ
ィーゼルエンジンの排ガス中には、通常、NOxが30
0〜1000ppm、COが100〜400ppm、炭
化水素(THCとして)が50〜300ppm、O2が
6〜14%、H2Oが6〜12%、その他CO2、パテ
ィキュレートおよび窒素が含まれる。これらの成分の組
成は使用される燃料やエンジンの運転状態(回転数や負
荷)によって変化する。一般にエンジンの始動時や軽負
荷の時を除いて、NOxの還元剤となるべき排ガス中の
COおよび炭化水素のNOxに対するモル比は1以下と
低く、このような排ガス中の炭化水素のみを用いて高い
NOx除去率を得ることはできなかった。そこで炭化水
素などの還元剤の濃度がNOx濃度に比べ不十分と判断
される時には、ディーゼル燃料などの炭化水素を排気ガ
スの流路に噴射添加し、NOx還元触媒に接触する排ガ
スのTHC/NOxモル比を高める必要があった。ただ
し、いたずらに多量の炭化水素を添加することはシステ
ム全体の燃料経済性の悪化を招き、またNOx還元触媒
の出口でのパティキュレートを増加させる傾向があり好
ましくなく、排気ガスの状態に応じた還元剤の供給がも
とめられていた。本発明においては、好ましくはTHC
/NOxモル比1〜6相当の炭化水素を必要に応じて、
排ガス流に供給することができる。Generally, among petroleum fractions, the fraction having a boiling point of about 30 ° C to 216 ° C is gasoline and 160 ° C to 3 ° C.
The fraction at 00 ° C is called kerosene, the fraction at 220 ° C to 350 ° C is called light oil, and the fraction at 317 ° C or higher is called heavy oil. Today, kerosene, light oil, and heavy fuel oil A (corresponding to heavy oil having a relatively low boiling point, low flash point, low pour point, and JIS class 1 heavy oil) are used as fuels for diesel engines. NOx is usually 30 in the exhaust gas of diesel engines.
0 to 1000 ppm, CO 100 to 400 ppm, hydrocarbons (as THC) 50 to 300 ppm, O 2 6 to 14%, H 2 O 6 to 12%, and other CO 2 , particulates and nitrogen are included. The composition of these components changes depending on the fuel used and the operating condition (rotation speed and load) of the engine. Generally, except when the engine is started or when the engine is lightly loaded, the molar ratio of CO and hydrocarbons in the exhaust gas, which should be NOx reducing agents, to NOx is as low as 1 or less, and only such hydrocarbons in the exhaust gas are used. It was not possible to obtain a high NOx removal rate. Therefore, when it is determined that the concentration of the reducing agent such as hydrocarbon is insufficient as compared with the NOx concentration, the hydrocarbon such as diesel fuel is injected and added to the flow path of the exhaust gas, and THC / NOx of the exhaust gas contacting the NOx reduction catalyst is added. It was necessary to increase the molar ratio. However, adding a large amount of hydrocarbons unnecessarily leads to a deterioration in the fuel economy of the entire system and also tends to increase the particulates at the outlet of the NOx reduction catalyst, which is not preferable, and depends on the state of the exhaust gas. The supply of reducing agent was required. In the present invention, preferably THC
/ NOx molar ratio of 1 to 6 equivalent hydrocarbon, if necessary,
It can be fed to the exhaust gas stream.
【0011】高級炭化水素を炭化水素分解触媒層に供給
するための装置はディーゼルエンジン用の燃料噴射ノズ
ルとして公知のものを使用できる。本発明に用いる炭化
水素接触分解触媒は、軽油や灯油等のディーゼルエンジ
ンの燃料などの高級炭化水素を炭素鎖の短い低級炭化水
素に接触分解させ得る触媒であれば限定されない。すな
わち、炭化水素接触分解触媒は、燃料油を構成する炭化
水素を分解し、炭素数のより小さいパラフィン成分、ナ
フテン成分、アロマティックス成分又はオレフィン成分
を増加させるものであるものであればよい。しかし、デ
ィーゼルエンシンの排ガスのような酸素過剰の雰囲気で
NOxを炭化水素で選択的に還元し高いNOx転化率を
得るには、一般に炭化水素種としてC2からC9程度の
低級炭化水素、特にオレフィン類が良いことが知られて
いる。従って、ディーゼル燃料油中の主として沸点21
6℃(ドデカンC12H24の沸点)以上の留分を分解
し、C2以上のガス成分と沸点216℃未満のガソリン
留分の合計分率を、接触分解前の炭化水素のそれより増
加させるような炭化水素分解触媒、とくにC2からC5
のオレフィン成分を多く与える炭化水素分解触媒が好ま
しい。As a device for supplying higher hydrocarbons to the hydrocarbon cracking catalyst layer, a device known as a fuel injection nozzle for diesel engines can be used. The hydrocarbon catalytic cracking catalyst used in the present invention is not limited as long as it is a catalyst capable of catalytically cracking a higher hydrocarbon such as a diesel engine fuel such as light oil or kerosene into a lower hydrocarbon having a short carbon chain. That is, the hydrocarbon catalytic cracking catalyst may be any one that decomposes hydrocarbons constituting fuel oil and increases paraffin components, naphthene components, aromatics components or olefin components having a smaller number of carbon atoms. However, in order to obtain a high NOx conversion rate by selectively reducing NOx with hydrocarbons in an oxygen-excess atmosphere such as exhaust gas of diesel engine, in general, lower hydrocarbons having about C 2 to C 9 as hydrocarbon species, especially It is known that olefins are good. Therefore, the boiling point of diesel fuel oil is mainly 21
Fractions above 6 ° C (boiling point of dodecane C 12 H 24 ) are decomposed and the total fraction of gas components above C 2 and gasoline fractions below boiling point 216 ° C is increased from that of hydrocarbons before catalytic cracking. Hydrocarbon cracking catalysts, especially C 2 to C 5
The hydrocarbon cracking catalyst that gives a large amount of the olefin component of is preferable.
【0012】このような触媒として従来から流動接触分
解(FCC)触媒の主成分として用いられてきたシリ
カ、シリカアルミナ、アルミノシリケートゼオライトや
アルミノフォスフェートおよびシリコアルミノフォスフ
ェート等の多孔質金属酸化物が用いられる。なかでも好
ましいのはY−ゼオライト、超安定化Y−ゼオライトお
よびZSM−5やゼオライトベータ等のハイシリカゼオ
ライトであり、特に好ましいのはC2〜C5の低沸点オ
レフィン留分を多く生成させる超安定化H型Y−ゼオラ
イトである。超安定化Y−ゼオライトは水熱合成で得ら
れたY−ゼオライトを公知の方法で脱アルミニウム処
理、例えば500℃〜800℃の水熱条件下で脱アルミ
処理するか4塩化シラン処理(R.A.Corbet
t,oil Gas J.,84(41),55(19
86))して製造される。炭化水素分解触媒は、粉末で
用いても良いし、予め球、リング、ペレット、顆粒等適
当な形状に成型して用いてもよい。また、一定形状の耐
火性支持基質の表面に被覆して用いてもよい。耐火性支
持基質としては噴射される炭化水素の流れの方向に垂直
な断面が300〜600セル/平方インチ(cpsi)
のセル密度を有するコージェライト製やステンレス製の
モノリス支持基質が特に好適である。触媒の被覆量は支
持基質1L当たり50〜250gが好ましい。As such catalysts, silica, silica-alumina, aluminosilicate zeolite, and porous metal oxides such as aluminophosphate and silicoaluminophosphate, which have been conventionally used as a main component of a fluid catalytic cracking (FCC) catalyst, are used. Used. Among them, Y-zeolite, ultra-stabilized Y-zeolite and high silica zeolite such as ZSM-5 and zeolite beta are particularly preferable, and particularly preferable are those which produce a large amount of a low boiling point olefin fraction of C 2 to C 5. It is a stabilized H-type Y-zeolite. As the ultra-stabilized Y-zeolite, the Y-zeolite obtained by hydrothermal synthesis is dealuminated by a known method, for example, dealumination under hydrothermal conditions of 500 ° C. to 800 ° C. or tetrachlorosilane treatment (R. A. Corbet
t, oil Gas J .; , 84 (41), 55 (19
86)) is manufactured. The hydrocarbon decomposition catalyst may be used in the form of powder, or may be preliminarily molded into an appropriate shape such as spheres, rings, pellets or granules. Alternatively, the surface of a refractory support substrate having a certain shape may be coated and used. The refractory support substrate has a cross section perpendicular to the flow direction of the injected hydrocarbon of 300 to 600 cells / square inch (cpsi).
Particularly preferred are cordierite or stainless monolith support substrates having a cell density of. The coating amount of the catalyst is preferably 50 to 250 g per 1 L of the supporting substrate.
【0013】本発明においては、炭化水素を添加する装
置をエンジンの排気マニホールドからNOx還元触媒に
至る排ガス流路の途上またはその近傍に設け、炭化水素
分解触媒層の一方の端面を排気ガス流路に対して閉じた
状態で炭化水素噴射ノズルに対向して配置し、他方の端
面を排気ガス流路に開放して配置して、噴射ノズルから
噴射された炭化水素は接触分解されその際のモル膨張に
よってエンジン排気ガスと混合される。逆に言えば、噴
射された炭化水素の少なくとも大部分がこの炭化水素分
解触媒層を通過しないままではエンジン排ガスと実質上
混合しないような位置およびやり方で炭化水素分解触媒
層が設けられていればよい。炭化水素を添加する装置か
ら出た炭化水素流と排ガスとの合流方法は、図1に示さ
れる方法のほかに、排ガス流の還元剤としての炭化水素
流が供給されるものであればどのようなものであっても
よく、特に制限されるものではない。In the present invention, a device for adding hydrocarbons is provided on or near the exhaust gas passage extending from the exhaust manifold of the engine to the NOx reduction catalyst, and one end face of the hydrocarbon decomposition catalyst layer is provided with the exhaust gas passage. It is arranged so as to face the hydrocarbon injection nozzle in a closed state, and the other end surface is opened to the exhaust gas flow path, and the hydrocarbon injected from the injection nozzle is catalytically decomposed and the It is mixed with engine exhaust gas by expansion. Conversely, if the hydrocarbon cracking catalyst layer is provided in such a position and manner that at least most of the injected hydrocarbons do not substantially mix with the engine exhaust gas without passing through this hydrocarbon cracking catalyst layer. Good. As for the method of combining the hydrocarbon stream emitted from the device for adding hydrocarbons with the exhaust gas, in addition to the method shown in FIG. 1, any method may be used as long as a hydrocarbon stream as a reducing agent of the exhaust gas stream is supplied. It may be of any type and is not particularly limited.
【0014】本発明の炭化水素接触分解触媒層は排気ガ
ス流路路内かもしくは排気ガス流路の近傍に設けられ排
気流路を流れる排気ガスからの伝熱によりエンジン運転
中は200℃〜700℃に加熱される。炭化水素分解触
媒層の温度は、運転中のエンジンの排気管の温度そのま
まで良く特に限定されないが、300℃〜600℃の範
囲が好ましい。このような温度にある接触分解触媒層に
軽油や灯油の如きディーゼルエンジンの燃料が噴射され
ると、燃料中のC12〜C30といったC数の多い炭化
水素分子は接触分解を受け水素およびC1〜C11程度
の炭化水素に分解される。炭化水素分解生成物中、後段
のNOx還元触媒のNOx除去率を高めることができる
C2〜C5のオレフィン類の収率を高める上で最適な炭
化水素分解触媒層温度は、400℃〜600℃であり、
特に好ましくは、450℃〜550℃である。The hydrocarbon catalytic cracking catalyst layer of the present invention is provided in the exhaust gas flow passage or in the vicinity of the exhaust gas flow passage, and heat is transferred from the exhaust gas flowing through the exhaust flow passage to 200 ° C. to 700 ° C. during engine operation. Heated to ℃. The temperature of the hydrocarbon decomposition catalyst layer may be the same as the temperature of the exhaust pipe of the engine during operation, and is not particularly limited, but is preferably in the range of 300 ° C to 600 ° C. When a diesel engine fuel such as light oil or kerosene is injected into the catalytic cracking catalyst layer at such a temperature, hydrocarbon molecules having a large C number such as C 12 to C 30 in the fuel undergo catalytic cracking and undergo hydrogen and C. It is decomposed into hydrocarbons of about 1 to C 11 . In the hydrocarbon decomposition product, the optimum hydrocarbon decomposition catalyst layer temperature is 400 ° C. to 600 ° C. for increasing the yield of C 2 to C 5 olefins that can increase the NOx removal rate of the NOx reduction catalyst in the subsequent stage. ℃,
Particularly preferably, it is 450 ° C to 550 ° C.
【0015】炭化水素の接触分解に伴って発生するガス
状炭化水素は直ちに排ガスと混合するため、既存技術の
方法のように閉鎖系で接触分解反応を制御する困難さが
ない。また炭化水素の接触分解に必要な反応熱は排気流
路の排気ガスの熱をそのまま利用でき、必ずしも特別な
加熱ヒーターを設ける必要がない。ただし炭化水素の接
触分解反応の転化率やオレフィンへの選択性を制御する
ために炭化水素分解触媒層の周囲に、必要に応じて加熱
ヒーターを設けることもできる。炭化水素分解触媒の体
積は噴射される炭化水素の触媒に対する接触時間が5〜
500g触媒・秒/g炭化水素となるようにすることが
好ましい。ただし一体構造体被覆触媒の場合、接触時間
は一体構造体に被覆された正味の触媒重量で表すものと
する。本発明の方法の前記従来方法(3)との違いは炭
化水素の接触分解(改質)反応を炭化水素が排ガスと混
合する以前に行わせる点にある。Since the gaseous hydrocarbons generated by the catalytic cracking of hydrocarbons are immediately mixed with the exhaust gas, there is no difficulty in controlling the catalytic cracking reaction in a closed system as in the conventional method. Further, the heat of the exhaust gas in the exhaust passage can be used as it is as the reaction heat necessary for the catalytic cracking of hydrocarbons, and it is not always necessary to provide a special heater. However, in order to control the conversion rate of the catalytic cracking reaction of hydrocarbons and the selectivity to olefins, a heater may be provided around the hydrocarbon cracking catalyst layer, if necessary. The volume of the hydrocarbon cracking catalyst is such that the contact time of the injected hydrocarbon with the catalyst is 5 to 5.
It is preferable that the amount of catalyst is 500 g · sec / g hydrocarbon. However, in the case of a monolithic coated catalyst, the contact time shall be expressed as the net weight of the catalyst coated on the monolithic structure. The difference of the method of the present invention from the conventional method (3) is that the catalytic cracking (reforming) reaction of hydrocarbons is carried out before the hydrocarbons are mixed with the exhaust gas.
【0016】接触分解触媒層は一方の端面が排気ガス流
路に対し閉じられた状態で炭化水素噴射ノズルに面し、
他方の端面は排気流路に開口された状態で設置される。
炭化水素が排気ガスに添加されない時は炭化水素噴射ノ
ズルは閉じられており接触分解触媒層には排気ガスの実
質的な流れはない。エンジン排気ガス中のNOx濃度が
排気ガス炭化水素濃度に対して相対的に高くなりNOx
還元のために炭化水素の添加が必要と判断された時点で
炭化水素噴射ノズルが開き炭化水素は排気流路に噴射さ
れる。このように炭化水素を添加する装置には、必要に
応じて炭化水素を供給することができ、例えば、排ガス
中の窒素酸化物濃度を計測し、その計測値に応じて炭化
水素を供給するようにすることもできる。一般に灯油、
軽油やA重油中の炭化水素種は芳香族成分が20〜40
%、ナフテン成分が20〜40%、パラフィン成分20
〜40%、オレフィン成分が10%以下であり、NOx
の選択還元に有効なC11以下のオレフィン成分やパラ
フィン成分は著しく少ない。この灯油や軽油を接触分解
させるとC11以下のオレフィンやパラフィンの分率を
少なくとも30%以上に、好ましくは50%以上、さら
に好ましくは60%以上に増大させることが可能であ
る。C11以下の留分中、NOx還元に比較的不活性な
のはC1メタンやC6ベンゼン、C10ナフタレンであ
るので、これらの成分の生成を抑制することが好まし
い。メタンおよびベンゼン、ナフタレンを生成しやすい
過度の分解や水素移行反応を抑制するような反応条件や
分解触媒を工夫することで、NOx還元に有効な炭化水
素の割合を70%〜80%にも高めることができる。さ
らにオレフィン選択性の高い分解触媒を用いることで分
解炭化水素中のC2〜C5オレフィンの割合を30%か
ら50%程度まで高めることができる。The catalytic cracking catalyst layer faces the hydrocarbon injection nozzle with one end face closed to the exhaust gas passage,
The other end face is installed in a state of being opened to the exhaust flow path.
When no hydrocarbon is added to the exhaust gas, the hydrocarbon injection nozzle is closed and there is no substantial flow of exhaust gas in the catalytic cracking catalyst layer. The NOx concentration in the engine exhaust gas becomes relatively higher than the exhaust gas hydrocarbon concentration, and NOx
When it is determined that the addition of hydrocarbons is necessary for the reduction, the hydrocarbon injection nozzle opens and the hydrocarbons are injected into the exhaust passage. Thus, the device for adding hydrocarbons can be supplied with hydrocarbons as necessary. For example, the concentration of nitrogen oxides in the exhaust gas is measured, and the hydrocarbons are supplied according to the measured values. You can also Generally kerosene,
Aromatic components of hydrocarbons in light oil and heavy oil A are 20-40
%, Naphthene component 20 to 40%, paraffin component 20
~ 40%, olefin component is 10% or less, NOx
The olefin component and paraffin component having C 11 or less effective for the selective reduction of is extremely small. By catalytically cracking this kerosene or light oil, the fraction of C 11 or less olefin or paraffin can be increased to at least 30% or more, preferably 50% or more, and more preferably 60% or more. Among the fractions having C 11 or less, C 1 methane, C 6 benzene, and C 10 naphthalene are relatively inactive in NOx reduction, so that it is preferable to suppress the production of these components. The ratio of hydrocarbons effective for NOx reduction can be increased to 70% to 80% by devising reaction conditions and decomposition catalysts that suppress excessive decomposition and hydrogen transfer reaction that easily generate methane, benzene, and naphthalene. be able to. Further, by using a cracking catalyst having high olefin selectivity, the proportion of C 2 to C 5 olefins in cracked hydrocarbon can be increased from about 30% to about 50%.
【0017】本発明に用いられるNOx還元触媒として
は、過剰酸素の存在下で、COおよび炭化水素によって
NOxを選択的に還元しN2とH2Oに分解することの
できるいわゆるリーンNOx還元触媒ならば特に限定さ
れない。しかしNOxの還元に有効な炭化水素種はNO
x還元触媒の種類にも依存する。Cu/ZSM−5触媒
(米国特許4297328号)やAg/Al2O3触媒
(特開平4−281844号)の如くパラフィン性炭化
水素に対しても有効なNOx還元触媒の場合はパラフィ
ンを多く生成する分解反応条件と分解触媒の組み合わせ
を使用してよい。Ir/SiC触媒(特開平6−311
73号)の如くオレフィン性炭化水素に対して著しく高
い活性を示すNOx還元触媒の場合はオレフィン性炭化
水素種を多く生成する分解反応条件と分解触媒の組み合
わせを選択するのが好ましい。これらのNOx還元触媒
はそれぞれ上記文献に記載された方法で調製される。N
Ox還元触媒の体積は特に限定されないが炭化水素を添
加された排ガスに対して空間速度SV7,000〜15
0,000/hr好ましくは10,000〜100,0
00/hrとなるようにする。但し一体構造体被覆触媒
のSVの場合、一体構造体の体積を用いる(以下同
様)。NOx還元触媒の入り口ガス温度は特に限定され
ないが、好ましくはNOx還元触媒の脱硝率が最も高い
温度域に設定される。一般に、排気ガス流路のエンジン
マニホールドからの距離によって最頻の排気ガス温度が
変化するので、NOx還元触媒を充填したコンバーター
の取付位置を最適化することで好ましい温度域に設定で
きる。好ましい温度域とは、Pt/ゼオライト系触媒に
対しては200℃〜300℃、Cu/ゼオライト系では
350℃〜450℃ 、Ir/Si系触媒に対しては4
00℃〜500℃である。The NOx reduction catalyst used in the present invention is a so-called lean NOx reduction catalyst capable of selectively reducing NOx by CO and hydrocarbons in the presence of excess oxygen to decompose it into N 2 and H 2 O. Then, it is not particularly limited. However, the effective hydrocarbon species for NOx reduction is NO
It also depends on the type of x reduction catalyst. A large amount of paraffin is produced in the case of a NOx reduction catalyst which is effective for paraffin hydrocarbons such as Cu / ZSM-5 catalyst (US Pat. No. 4,297,328) and Ag / Al 2 O 3 catalyst (JP-A-4-281844). A combination of cracking reaction conditions and cracking catalysts may be used. Ir / SiC catalyst (JP-A-6-311)
No. 73), a NOx reduction catalyst showing a remarkably high activity for olefinic hydrocarbons is preferably selected as a combination of a cracking reaction condition and a cracking catalyst that produce a large amount of olefinic hydrocarbon species. Each of these NOx reduction catalysts is prepared by the method described in the above literature. N
The volume of the Ox reduction catalyst is not particularly limited, but the space velocity SV is 7,000 to 15 with respect to the exhaust gas to which hydrocarbon is added.
50,000 / hr, preferably 10,000 to 100,0
00 / hr. However, in the case of the SV of the monolithic structure coated catalyst, the volume of the monolithic structure is used (the same applies hereinafter). The inlet gas temperature of the NOx reduction catalyst is not particularly limited, but is preferably set to a temperature range where the NOx reduction catalyst has the highest denitration rate. In general, the most frequent exhaust gas temperature changes depending on the distance of the exhaust gas flow path from the engine manifold, so that it is possible to set a preferable temperature range by optimizing the mounting position of the converter filled with the NOx reduction catalyst. The preferable temperature range is 200 ° C. to 300 ° C. for Pt / zeolite type catalyst, 350 ° C. to 450 ° C. for Cu / zeolite type catalyst, and 4 ° C. for Ir / Si type catalyst.
The temperature is 00 ° C to 500 ° C.
【0018】本発明においては炭化水素のNOx還元へ
の選択性が高まることから、一定のNOx除去率を得る
ために必要な炭化水素の添加量は従来方法の1/2〜1
/3と大幅に少なくて済む。添加炭化水素が少ないこと
はさらにNOx還元触媒の出口ガス中の残存炭化水素や
CO濃度およびパティキュレート中の可溶性有機化合物
(SOF)を低減させる効果もある。本発明は更に、N
Ox還元触媒の後方に炭化水素を酸化させるための酸化
触媒を設置してなる排気ガス浄化装置、及び、当該装置
を用いた排ガスの浄化方法を提供する。酸化触媒として
は、ディーゼル排気ガス用酸化触媒として従来から知ら
れている各種の触媒が使用できる。中でも、気相の炭化
水素およびCOとパティキュレート中のSOFを酸化除
去できる物で、且つサルフェートを生成しない触媒が好
ましい。例えば、Pt,Pd,Rhの少なくとも1種を
アルミナ、シリカ、ジルコニア、チタニア、アルミノシ
リケートゼオライト等の多孔質担体に担持した触媒(S
AE.、932720(1993))や、Cu,Fe,
Ni,Ce,Mg,Caの少なくとも1種をアルミナ、
チタニア等に担持してなる触媒(特開平6−6888
6)等の触媒が使用できる。酸化触媒はそれぞれイオン
交換や含浸法等の上記文献記載の方法で調製される。こ
れらはNOx還元触媒同様コージェライトやメタルから
なる一体構造の支持基質に被覆して用いるのが好まし
い。In the present invention, since the selectivity of hydrocarbons for NOx reduction is enhanced, the amount of hydrocarbons required to obtain a constant NOx removal rate is 1/2 to 1 of that of the conventional method.
Significantly less than / 3. The small amount of added hydrocarbons also has the effect of reducing the residual hydrocarbons and CO concentrations in the outlet gas of the NOx reduction catalyst and the soluble organic compounds (SOF) in the particulates. The present invention further provides N
Provided are an exhaust gas purifying device in which an oxidation catalyst for oxidizing hydrocarbons is installed behind an Ox reduction catalyst, and an exhaust gas purifying method using the device. As the oxidation catalyst, various kinds of catalysts that have been conventionally known as oxidation catalysts for diesel exhaust gas can be used. Among them, a catalyst that can oxidize and remove gas-phase hydrocarbons and CO and SOF in particulates and does not generate sulfate is preferable. For example, a catalyst in which at least one of Pt, Pd, and Rh is supported on a porous carrier such as alumina, silica, zirconia, titania, aluminosilicate zeolite (S
AE. , 932720 (1993)), Cu, Fe,
At least one of Ni, Ce, Mg, and Ca is alumina,
A catalyst supported on titania or the like (JP-A-6-6888).
A catalyst such as 6) can be used. The oxidation catalysts are prepared by the methods described in the above literature, such as ion exchange and impregnation. Like the NOx reduction catalyst, these are preferably used by coating them on a support substrate having an integral structure made of cordierite or metal.
【0019】単に燃料の炭化水素を排気系に添加しただ
けでは高沸点の炭化水素はNOx還元触媒で一部しか酸
化分解されない。NOx還元触媒の後方に酸化触媒を設
置しても高沸点の炭化水素は酸化分解を受けにくい。添
加炭化水素を炭化水素分解触媒と接触させて排ガスに添
加すると炭化水素の分子量が小さくなりNOx還元触媒
だけでもかなり炭化水素の除去率は向上するが、NOx
還元触媒の後方に酸化触媒を設置すると炭化水素の除去
率は一層向上する。酸化触媒の体積は限定されないがN
Ox還元触媒を出た排ガスに対してSV10,000〜
1500000/hrとすることが好ましい。酸化触媒
の入り口ガス温度は特に限定されないが、200℃〜4
00℃が好ましい。By simply adding the hydrocarbon of the fuel to the exhaust system, the hydrocarbon having a high boiling point is partially oxidized and decomposed by the NOx reduction catalyst. Even if an oxidation catalyst is installed behind the NOx reduction catalyst, high boiling point hydrocarbons are less likely to undergo oxidative decomposition. When the added hydrocarbon is brought into contact with the hydrocarbon decomposition catalyst and added to the exhaust gas, the molecular weight of the hydrocarbon becomes small and the NOx reduction catalyst alone improves the removal rate of hydrocarbons considerably.
When the oxidation catalyst is installed behind the reduction catalyst, the removal rate of hydrocarbons is further improved. The volume of the oxidation catalyst is not limited, but N
SV 10,000 to exhaust gas emitted from the Ox reduction catalyst
It is preferably set to 1500000 / hr. The temperature of the gas at the entrance of the oxidation catalyst is not particularly limited, but is 200 ° C to 4 ° C.
00 ° C is preferred.
【0020】[0020]
【実施例】次に本発明の実施例を述べるが、本発明はこ
れらの実施例に限定されるものではない。EXAMPLES Next, examples of the present invention will be described, but the present invention is not limited to these examples.
【0021】実施例1 (軽油添加/炭化水素分解触
媒)→(NOx還元触媒) (1) 触媒の調製 体積500mLと3Lの400cpsiコージェライト
製ハニカム(それぞれハニカムA、ハニカムBとする)
を用意した。H−型USY−ゼオライト(格子定数2.
430nm)100重量部にシリカゾル(固形分20
%)20重量部と脱イオン水100重量部をボールミル
で湿式粉砕して得られたスラリーにハニカムAを浸漬し
余分のスラリーをエアーブローで除去、乾燥後、500
℃で30分焼成してUSY−ゼオライト被覆ハニカムA
(触媒ハニカムA)からなる炭化水素分解触媒を得た。
また、SiCスラリーに塩化イリジウム酸水溶液を加
え、加熱ドライアップ後焼成し、(特開平6−3117
3号、実施例1)その後700℃で水素還元して調製さ
れたIr担持SiC粉末触媒100重量部にアルミナゾ
ル(固形分20%)20重量部と脱イオン水100重量
部との混合物をボールミルで湿式粉砕し得られたスラリ
ーにハニカムBを浸漬し余分のスラリーをエアーブロー
で除去、乾燥後、500℃で30分焼成してIr/Si
C被覆ハニカムB(触媒ハニカムB)からなるNOx還
元触媒を得た。 (2) 装置の調製 エンジン排気量8Lの自然吸気式ディーゼルエンジンの
排気管のマニホールドの下流1mの位置に図1のように
排気管に一方の端部を開口した側管をつけ、他方の端部
に燃料タンクからの燃料をこの排気管側管に噴射できる
燃料噴射ノズルを取付けた。側管中央部に炭化水素分解
触媒(触媒ハニカムA)をそのハニカムのチャンネルが
噴射される炭化水素流に平行になるようにかつ炭化水素
流の吹き抜けが起こらないように充填した。さらに、エ
ンジン排気ガス流路において、前記側管の位置から50
cm後方にNOx還元触媒(触媒ハニカムB)を充填し
た触媒コンバーターを取付け、図1に示す浄化装置を調
製した。 (3) 排気ガスの測定 NOx還元触媒の前後の排気ガス中のNOx,炭化水
素,COを自動車排気ガス分析装置で分析した。燃料に
低硫黄軽油(S=0.05%)を使用して、エンジンを
負荷90%で定状運転したとき、炭化水素噴射ノズルか
ら軽油を噴射添加しない場合(ケース1)、NOx還元
触媒の入り口のNOx濃度は512ppm,出口のNO
x濃度は475ppmでNOxの転化率は7%であっ
た。炭化水素噴射ノズルからC1換算1500ppm相
当の、燃料と同じ軽油を噴射したところ(ケース2)、
NOx還元触媒の出口のNOx濃度は177ppmで、
脱硝率は65%まで向上した。またこの際NOx還元触
媒の入り口と出口の炭化水素濃度はそれぞれ1610p
pm、352ppmで炭化水素浄化率は78%であっ
た。この際の炭化水素分解触媒床温度は490℃で、N
Ox還元触媒の入り口のガス温度は450℃であった。Example 1 (gas oil addition / hydrocarbon decomposition catalyst) → (NOx reduction catalyst) (1) Preparation of catalyst 400 cpsi cordierite honeycomb with a volume of 500 mL and 3 L (respectively referred to as honeycomb A and honeycomb B)
Prepared. H-type USY-zeolite (lattice constant 2.
430 nm) 100 parts by weight of silica sol (solid content 20
%) 20 parts by weight and 100 parts by weight of deionized water are wet pulverized by a ball mill to immerse the honeycomb A in a slurry, and excess slurry is removed by air blow, and after drying, 500
USY-zeolite coated honeycomb A after firing at 30 ° C for 30 minutes
A hydrocarbon decomposition catalyst composed of (catalyst honeycomb A) was obtained.
Further, an aqueous solution of chloroiridate is added to the SiC slurry, heated and dried up, and then baked (see JP-A-6-3117).
No. 3, Example 1) Then, 100 parts by weight of an Ir-supported SiC powder catalyst prepared by hydrogen reduction at 700 ° C. was mixed with a mixture of 20 parts by weight of alumina sol (solid content 20%) and 100 parts by weight of deionized water in a ball mill. Honeycomb B is immersed in the slurry obtained by wet pulverization, the excess slurry is removed by air blow, dried and then baked at 500 ° C. for 30 minutes to make Ir / Si.
A NOx reduction catalyst composed of C-coated honeycomb B (catalyst honeycomb B) was obtained. (2) Preparation of device As shown in FIG. 1, a side pipe having one end opened is attached to the exhaust pipe at a position 1 m downstream of the manifold of the exhaust pipe of a naturally aspirated diesel engine with an engine displacement of 8 L, and the other end is attached. A fuel injection nozzle capable of injecting fuel from the fuel tank to the exhaust pipe side pipe was attached to the section. A hydrocarbon decomposition catalyst (catalyst honeycomb A) was filled in the central portion of the side tube so that the channels of the honeycomb were parallel to the injected hydrocarbon flow and no blow-through of the hydrocarbon flow occurred. Furthermore, in the engine exhaust gas flow path, 50 from the position of the side pipe.
A catalytic converter filled with a NOx reduction catalyst (catalyst honeycomb B) was attached to the rear of the cm to prepare the purification device shown in FIG. (3) Measurement of Exhaust Gas NOx, hydrocarbons, and CO in exhaust gas before and after the NOx reduction catalyst were analyzed by an automobile exhaust gas analyzer. When low-sulfur gas oil (S = 0.05%) is used as fuel and the engine is operated in a steady state at a load of 90%, when light oil is not added from the hydrocarbon injection nozzle (case 1), the NOx reduction catalyst NOx concentration at the inlet is 512ppm, NO at the outlet
The x concentration was 475 ppm, and the NOx conversion rate was 7%. When the same diesel fuel as the fuel, which is equivalent to 1500 ppm of C 1 is injected from the hydrocarbon injection nozzle (case 2),
The NOx concentration at the outlet of the NOx reduction catalyst is 177 ppm,
The denitration rate improved to 65%. At this time, the hydrocarbon concentration at the inlet and the outlet of the NOx reduction catalyst was 1610 p each.
The hydrocarbon purification rate was 78% at 352 ppm of pm. At this time, the hydrocarbon decomposition catalyst bed temperature was 490 ° C.
The gas temperature at the entrance of the Ox reduction catalyst was 450 ° C.
【0022】実施例2 (軽油添加/炭化水素分解触
媒)→(NOx還元触媒)→(酸化触媒) (1) 酸化触媒の調製 SiO2/Al2O3=60のH型ZSM−5をテトラ
アンミン白金(II)イオンでイオン交換し洗浄、乾燥
後、500℃で焼成し、0.5%Pt/ZSM−5触媒
を得て、これを400cpsiの3Lコージェライトハ
ニカムに120g/L被覆した。 (2)装置の調製 前記(1)で調製した触媒を充填したコンバーターを実
施例1のNOx還元触媒のコンバーターの下流側に取り
付け、図2に示す浄化装置を調製した。 (3) 排気ガスの測定 実施例1のケース2と同様90%負荷でエンジンを運転
し炭化水素噴射ノズルから1500ppmの軽油を噴射
し炭化水素分解触媒を経て排気ガスに添加し(ケース
3)、NOx分解触媒の入り口とそれに続く酸化触媒の
出口の排ガス組成を実施例1と同様に分析したところ脱
硝率は67%で、炭化水素の浄化率は90%であった。Example 2 (gas oil addition / hydrocarbon decomposition catalyst) → (NOx reduction catalyst) → (oxidation catalyst) (1) Preparation of oxidation catalyst H-type ZSM-5 of SiO 2 / Al 2 O 3 = 60 was added to tetraammine. After ion exchange with platinum (II) ions, washing, drying, and calcination at 500 ° C., 0.5% Pt / ZSM-5 catalyst was obtained, and this was coated on a 400 cpsi 3L cordierite honeycomb at 120 g / L. (2) Preparation of device The converter filled with the catalyst prepared in (1) was attached to the downstream side of the converter of the NOx reduction catalyst of Example 1 to prepare the purification device shown in FIG. (3) Measurement of Exhaust Gas As in Case 2 of Example 1, the engine was operated at 90% load, 1500 ppm of light oil was injected from the hydrocarbon injection nozzle, and added to the exhaust gas via the hydrocarbon decomposition catalyst (Case 3). When the exhaust gas composition at the inlet of the NOx decomposition catalyst and the outlet of the subsequent oxidation catalyst were analyzed in the same manner as in Example 1, the denitration rate was 67% and the hydrocarbon purification rate was 90%.
【0023】比較例1 (軽油添加)→(NOx還元触
媒) 実施例1において側管に炭化水素分解触媒を充填しない
ことを除いては、実施例1と同様にして、エンジン定状
運転時のNOx還元触媒前後のNOx転化率を測定し
た。まず軽油を噴射しないと実施例1のケース1と同様
NOx転化率は7%であったが軽油をC1換算で150
0ppm噴射しても(ケース4)、NOx還元触媒出口
のNOx濃度は353ppm、同炭化水素濃度は515
ppmで、脱硝率は31%で、炭化水素浄化率は68%
であった。実施例1および比較例1のケース1、2およ
び4の比較から以下の点が明らかとなった。 (1)排気ガス中の炭化水素濃度がNOx濃度に比較し
て低く、THC/NOx比が0.3以下の場合、排気ガ
スをNOx還元触媒に接触させるのみではNOx転化率
は低い。 (2)NOx還元触媒の前で排気ガスに炭化水素を添加
しTHC/NOx比を1以上に高めるとNOx還元触媒
前後のNOxの転化率は炭化水素を添加しない場合に比
べて向上するがまだ十分ではない。 (3)炭化水素を噴射ノズルから炭化水素分解触媒に向
けて噴射し、炭化水素分解触媒と接触させモル膨張と共
に排ガスと混合した後、NOx還元触媒と接触させる
と、炭化水素分解触媒と接触させないで炭化水素を添加
した場合に比べ格段にNOxの転化率が向上する。また
実施例1及び2のケース2、3と比較例のケース4の炭
化水素浄化率を比較すると、炭化水素分解触媒なしでの
(NOx還元触媒による)炭化水素浄化率68%は炭化
水素分解触媒を付けると78%に向上し、さらに酸化触
媒を付けると90%へと大幅に向上していることが判っ
た。Comparative Example 1 (Addition of light oil) → (NOx reduction catalyst) In the same manner as in Example 1 except that the side tube is not filled with the hydrocarbon decomposition catalyst, the engine is operated in a normal operation. The NOx conversion rate before and after the NOx reduction catalyst was measured. First, when light oil was not injected, the NOx conversion was 7% as in Case 1 of Example 1, but the light oil was converted to C 1 and the NOx conversion rate was 150%.
Even with 0 ppm injection (case 4), the NOx concentration at the NOx reduction catalyst outlet is 353 ppm and the hydrocarbon concentration is 515.
In ppm, denitration rate is 31%, hydrocarbon purification rate is 68%
Met. The following points were clarified by comparing Cases 1, 2 and 4 of Example 1 and Comparative Example 1. (1) When the hydrocarbon concentration in the exhaust gas is lower than the NOx concentration and the THC / NOx ratio is 0.3 or less, the NOx conversion rate is low only by bringing the exhaust gas into contact with the NOx reduction catalyst. (2) When hydrocarbons are added to the exhaust gas before the NOx reduction catalyst to increase the THC / NOx ratio to 1 or more, the conversion rate of NOx before and after the NOx reduction catalyst is improved as compared with the case where no hydrocarbon is added, but Not enough. (3) When the hydrocarbon is injected from the injection nozzle toward the hydrocarbon decomposition catalyst, brought into contact with the hydrocarbon decomposition catalyst and mixed with the exhaust gas together with the molar expansion, and then brought into contact with the NOx reduction catalyst, it does not come into contact with the hydrocarbon decomposition catalyst. In comparison with the case where hydrocarbon is added, the NOx conversion rate is significantly improved. Further, comparing the hydrocarbon purification rates of Cases 2 and 3 of Examples 1 and 2 and Case 4 of the comparative example, the hydrocarbon purification rate of 68% (by NOx reduction catalyst) without the hydrocarbon decomposition catalyst was found to be the hydrocarbon decomposition catalyst. It was found that the value was improved to 78% with the addition of oxidization, and to 90% with the addition of the oxidation catalyst.
【0024】比較例2 (軽油添加)→(炭化水素分解
触媒)→(NOx還元触媒) 3Lの400cpsiコージェライト製ハニカムを2個
用意し、一個目にはH−型USYゼオライトを被覆(触
媒ハニカムC)し、2個目には実施例1と同様にIr/
SiC触媒を被覆(触媒ハニカムD)した。実施例1の
ディーゼルエンジン排気系の側管の炭化水素分解触媒を
撤去し、この側管の位置から後方にまず触媒ハニカムC
をさらにその下流に触媒ハニカムDを充填した触媒コン
バーターを取り付けた。まず、実施例1のケース1と同
様ディーゼルエンジンを負荷90%で運転し炭化水素の
添加なし(ケース5)で触媒ハニカムDの前後の排ガス
組成を分析したところ、入り口のNOx濃度は490p
pm、出口のNOx濃度は455ppm、NOxの転化
率は7%であった。ついで軽油を側管の噴射ノズルから
THC/NOx比3の1500ppm相当添加(ケース
6)しながら測定したところ触媒ハニカムDの入り口の
NOx濃度は484ppm、出口のNOx濃度は330
ppmで、脱硝率32%であった。実施例1のケース2
と比較例2のケース6とを比較すると、いずれも軽油を
添加し炭化水素分解触媒を使用しながら、ケース6の様
に軽油が排気ガス本体と混合した後で炭化水素分解触媒
と接触する場合は、脱硝率はほとんど向上しないが、ケ
ース2の様に排気ガス本体と混合する以前に軽油が炭化
水素分解触媒と接触する場合は、炭化水素分解反応が高
効率で進み、高いNOx除去率が得られることが明らか
となった。Comparative Example 2 (Addition of light oil) → (Hydrocarbon decomposition catalyst) → (NOx reduction catalyst) Two 3 L 400 cpsi cordierite honeycombs were prepared, and the first one was coated with H-type USY zeolite (catalyst honeycomb). C), and the second is Ir /
A SiC catalyst was coated (catalyst honeycomb D). The hydrocarbon decomposition catalyst of the side pipe of the diesel engine exhaust system of Example 1 was removed, and the catalyst honeycomb C was first moved backward from the position of this side pipe.
Further, a catalytic converter filled with the catalyst honeycomb D was attached further downstream. First, as in Case 1 of Example 1, the diesel engine was operated at a load of 90% and the exhaust gas composition before and after the catalyst honeycomb D was analyzed without addition of hydrocarbons (Case 5). The NOx concentration at the inlet was 490 p.
pm, the NOx concentration at the outlet was 455 ppm, and the NOx conversion rate was 7%. Then, light oil was measured from the injection nozzle of the side pipe while adding THC / NOx ratio of 1500 ppm equivalent (case 6). As a result, the NOx concentration at the inlet of the catalyst honeycomb D was 484 ppm, and the NOx concentration at the outlet was 330.
The denitrification rate was 32% in ppm. Case 2 of Example 1
In comparison with Case 6 of Comparative Example 2, when light oil is added and a hydrocarbon cracking catalyst is used, as in Case 6, the light oil is mixed with the exhaust gas body and then comes into contact with the hydrocarbon cracking catalyst. The denitrification rate hardly improves, but when light oil comes into contact with the hydrocarbon cracking catalyst before mixing with the exhaust gas main body as in Case 2, the hydrocarbon cracking reaction proceeds with high efficiency and the high NOx removal rate is high. It became clear that it was obtained.
【0025】比較例3 (軽油添加)→(“炭化水素分
解触媒”)→(NOx還元触媒) 400cpsiハニカムを2個用意し、一個目には特公
平6−61427号の実施例(触媒の調製)[触媒
(A)]に準じて調整されたFe/Al2O3粉末を被
覆して‘炭化水素改質触媒’とし、2個目には同上公報
の実施例(触媒の調製)[触媒(B)]に準じて調整さ
れたCu/ZSM−5を被覆してNOx還元触媒とし
た。ディーゼルエンジンの排気系マニホールド下流1.
5mの位置に炭化水素改質触媒を装着し、さらにその下
流にNOx還元触媒を装着した。実施例1の評価例同様
エンジン負荷90%で運転し側管よりTHC/NOx1
500ppm相当の軽油を噴射添加したところ、炭化水
素分解触媒の入り口のNOx濃度490ppm、炭化水
素濃度1650ppmに対し、NOx還元触媒の出口の
NOx濃度は353ppm、炭化水素濃度は429pp
mで、脱硝率は28%、炭化水素浄化率は74%であっ
た。すなわち、炭化水素を排気ガスに添加した後Fe/
Al2O3触媒に接触させると炭化水素の改質よりも炭
化水素の酸化が進みNOxの転化率の向上には寄与しな
いことがわかった。Comparative Example 3 (Addition of light oil) → (“hydrocarbon cracking catalyst”) → (NOx reduction catalyst) Two 400 cpsi honeycombs were prepared, and the first one was an example of Japanese Patent Publication No. 6-61427 (preparation of catalyst). ) Fe / Al 2 O 3 powder prepared according to [Catalyst (A)] is coated to form a “hydrocarbon reforming catalyst”. Cu / ZSM-5 prepared according to (B)] was coated to obtain a NOx reduction catalyst. Downstream of exhaust system manifold of diesel engine 1.
A hydrocarbon reforming catalyst was installed at a position of 5 m, and a NOx reduction catalyst was installed further downstream thereof. Similar to the evaluation example of Example 1, the engine load was 90% and the THC / NOx1 was measured from the side pipe.
When light oil equivalent to 500 ppm was added by injection, the NOx concentration at the inlet of the hydrocarbon decomposition catalyst was 490 ppm and the hydrocarbon concentration was 1650 ppm, whereas the NOx concentration at the outlet of the NOx reduction catalyst was 353 ppm and the hydrocarbon concentration was 429 pp.
In m, the denitration rate was 28% and the hydrocarbon purification rate was 74%. That is, after adding hydrocarbons to the exhaust gas, Fe /
It has been found that when the catalyst is brought into contact with the Al 2 O 3 catalyst, the hydrocarbon is oxidized more than the hydrocarbon is reformed and does not contribute to the improvement of the NOx conversion rate.
【0026】参考例1 炭化水素分解反応 実施例1の炭化水素分解触媒ハニカム500mLから直
径3/4インチ(19mm)のコアをコア抜きし、長さ
30mmに切断した。流動接触分解反応触媒の微少反応
試験装置に関するASTM−標準D−3907に準じて
製作された装置の内径20mmのステンレス反応管に上
記触媒コアを充填しヒータで触媒床温度を480℃に保
持した。前記の炭化水素分解触媒に低硫黄軽油1.5g
を60秒間にわたって一定速度で供給し、この間生成し
たガス成分を捕集瓶に集めてガスアナライザイーガスク
ロマトグラフィーで、溜出油はガスマスで、それぞれ構
成成分毎に同定定量し、組成を求めた。結果を表1及び
2に示す。Reference Example 1 Hydrocarbon Decomposition Reaction From 500 mL of the hydrocarbon decomposition catalyst honeycomb of Example 1, a core having a diameter of 3/4 inch (19 mm) was cored and cut into a length of 30 mm. The catalyst core was filled in a stainless steel reaction tube having an inner diameter of 20 mm, which was manufactured according to ASTM-Standard D-3907 for a micro reaction test device for fluid catalytic cracking reaction catalyst, and the catalyst bed temperature was maintained at 480 ° C. by a heater. 1.5g of low sulfur gas oil to the above hydrocarbon cracking catalyst
Was supplied at a constant rate for 60 seconds, and the gas components produced during this period were collected in a collection bottle and analyzed by gas analyzer E-gas chromatography, and the distillate oil was gas mass, and each component was identified and quantified to determine the composition. . The results are shown in Tables 1 and 2.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】この結果から、炭化水素分解触媒によって
軽油は主としてC2〜C4のガス状炭化水素溜分とガソ
リン溜分とに分解され、しかも、軽油中のパラフィンお
よびナフテン含有量が減り、オレフィン分が増えている
ことが判った。このようなオレフィン分に富む炭化水素
が後段のNOx還元触媒にとって好ましい炭化水素種で
あり、このために実施例1のケース2では高い脱硝率が
得られたのであろう。From these results, the hydrocarbon cracking catalyst decomposes the light oil mainly into the C 2 to C 4 gaseous hydrocarbon fraction and the gasoline fraction, and further, the paraffin and naphthene contents in the light oil are reduced and the olefin is reduced. It turns out that the minutes are increasing. Such a hydrocarbon rich in olefin is a preferable hydrocarbon species for the NOx reduction catalyst in the latter stage, and it is presumed that a high denitration rate was obtained in Case 2 of Example 1 for this reason.
【0030】[0030]
【発明の効果】本発明の排気ガスの浄化装置によれば、
排気ガスの流路とは隔離されたリアクターで炭化水素を
分解/改質し、一旦貯蔵した上で排気ガスの流路に噴射
する従来技術に比べて、単純な操作で信頼性の高いかつ
応答性の良い排気ガスの浄化装置及びそれを用いた浄化
方法が提供される。また、ディーゼルエンジン排ガス中
のNOxをできる限り少ない還元剤炭化水素の添加で効
率的に除去できるために、必要以上の炭化水素を添加し
ないで済み、システム全体の燃料経済性を向上でき、し
かも余分の炭化水素を添加しないためにNOx還元触媒
の後段の酸化触媒よって未燃の燃料や不完全燃焼生成
物、すなわち浮遊粒子物質、COおよび炭化水素を高効
率で酸化除去することが可能となる。According to the exhaust gas purifying apparatus of the present invention,
Compared to the conventional technology that decomposes / reforms hydrocarbons in a reactor that is separate from the exhaust gas flow path, stores it once, and injects it into the exhaust gas flow path, the operation is simple and highly reliable and responsive. An exhaust gas purifying device having good properties and a purifying method using the same are provided. Also, since NOx in diesel engine exhaust gas can be efficiently removed by adding as little reducing agent hydrocarbon as possible, it is possible to improve the fuel economy of the entire system without adding more hydrocarbon than necessary, and Since the above hydrocarbons are not added, the unburned fuel and incomplete combustion products, that is, suspended particulate matter, CO and hydrocarbons can be oxidized and removed with high efficiency by the oxidation catalyst in the latter stage of the NOx reduction catalyst.
図1は本発明の実施例1の炭化水素分解触媒とNOx還
元触媒との排ガス糸への適用方法を示す図である。図1
中の1はエンジン、2は排気マニホルド、3は炭化水素
インジェクター、4は炭化水素分解触媒、5はNOx還
元触媒、6は排気管を示している。図2は本発明の実施
例2の炭化水素分解触媒、NOx還元触媒および炭化水
素酸化触媒の排ガス系への適用方法を示す図である。図
2中の1はエンジン、2は排気マニホルド、3は炭化水
素インジェクター、4は炭化水素分解触媒、5はNOx
還元触媒、6は排気管、7は炭化水素酸化触媒を示して
いる。FIG. 1 is a diagram showing a method of applying a hydrocarbon decomposition catalyst and a NOx reduction catalyst of Example 1 of the present invention to exhaust gas threads. FIG.
In the figure, 1 is an engine, 2 is an exhaust manifold, 3 is a hydrocarbon injector, 4 is a hydrocarbon decomposition catalyst, 5 is a NOx reduction catalyst, and 6 is an exhaust pipe. FIG. 2 is a diagram showing a method of applying the hydrocarbon decomposition catalyst, NOx reduction catalyst and hydrocarbon oxidation catalyst of Example 2 of the present invention to an exhaust gas system. In FIG. 2, 1 is an engine, 2 is an exhaust manifold, 3 is a hydrocarbon injector, 4 is a hydrocarbon decomposition catalyst, and 5 is NOx.
A reduction catalyst, 6 is an exhaust pipe, and 7 is a hydrocarbon oxidation catalyst.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 102A 102D Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B01D 53/36 102A 102D
Claims (9)
酸化物還元触媒装置により浄化する排ガス浄化装置にお
いて、前記窒素酸化物還元触媒装置の排ガスの流路の上
流側に、炭化水素噴射ノズルと炭化水素分解触媒層から
なる炭化水素を添加する装置を設置し、前記炭化水素噴
射ノズルから供給された炭化水素を炭化水素分解触媒層
により、供給した炭化水素よりも低級の炭化水素の含有
量が増加した炭化水素流とし、当該炭化水素流を前記排
ガス流に合流させることを特徴とする排ガス浄化装置。1. In an exhaust gas purifying apparatus for purifying exhaust gas with a nitrogen oxide reduction catalyst device using hydrocarbon as a reducing agent, a hydrocarbon injection nozzle is provided upstream of a flow path of the exhaust gas of the nitrogen oxide reduction catalyst device. A device for adding hydrocarbons consisting of a hydrocarbon decomposition catalyst layer is installed, and the hydrocarbons supplied from the hydrocarbon injection nozzles have a hydrocarbon content lower than that of the supplied hydrocarbons due to the hydrocarbon decomposition catalyst layer. An exhaust gas purifying apparatus, characterized in that an increased hydrocarbon flow is provided, and the hydrocarbon flow is merged with the exhaust gas flow.
素酸化物還元触媒装置を設け、その排ガスの流路の上流
側に炭化水素を添加する装置を有する排ガス浄化装置で
あって、当該炭化水素を添加する装置が炭化水素噴射ノ
ズルと炭化水素分解触媒層からなり、当該炭化水素分解
触媒層の一方の端面は炭化水素噴射ノズルに対向して配
置され、他方の端面が排ガス流路に開放して配置されて
いることを特徴とするディーゼルエンジン排ガスの浄化
装置。2. An exhaust gas purifying apparatus having a device for adding a nitrogen oxide reduction catalyst in a flow path of exhaust gas of a diesel engine and adding hydrocarbons upstream of the flow path of the exhaust gas. The adding device is composed of a hydrocarbon injection nozzle and a hydrocarbon decomposition catalyst layer, one end surface of the hydrocarbon decomposition catalyst layer is arranged facing the hydrocarbon injection nozzle, and the other end surface is open to the exhaust gas passage. A diesel engine exhaust gas purification device characterized by being arranged.
らに炭化水素酸化触媒装置を設けることを特徴とする請
求項1又は2に記載の排ガス浄化装置。3. The exhaust gas purifying apparatus according to claim 1, further comprising a hydrocarbon oxidation catalyst device provided downstream of the nitrogen oxide reduction catalyst device.
化水素が、燃料油である請求項1、2又は3に記載の排
ガス浄化装置。4. The exhaust gas purifying apparatus according to claim 1, 2 or 3, wherein the hydrocarbon supplied to the apparatus for adding hydrocarbon is fuel oil.
分解触媒層が燃料油を構成する炭化水素を分解し、炭素
数のより小さいパラフィン成分、ナフテン成分、アロマ
ティックス成分又はオレフィン成分を増加させるもので
ある請求項1、2、3又は4に記載の排ガス浄化装置。5. A hydrocarbon catalytic cracking catalyst layer of a device for adding hydrocarbons decomposes hydrocarbons constituting fuel oil to increase paraffin components, naphthene components, aromatics components or olefin components having a smaller carbon number. The exhaust gas purifying apparatus according to claim 1, 2, 3, or 4, wherein the exhaust gas purifying apparatus is provided.
分解触媒層の触媒が、超安定化Y−ゼオライトを主成分
とするものである請求項1、2、3、4又は5に記載の
排ガス浄化装置。6. The catalyst according to claim 1, wherein the catalyst of the hydrocarbon catalytic cracking catalyst layer of the apparatus for adding hydrocarbons contains ultra-stabilized Y-zeolite as a main component. Exhaust gas purification device.
ジウム担持金属炭化物を主成分とするものである請求項
1〜6のいずれか1項に記載の排ガス浄化装置。7. The exhaust gas purifying apparatus according to claim 1, wherein the catalyst of the nitrogen oxide reduction catalyst device has an iridium-supporting metal carbide as a main component.
に記載の装置により浄化することを特徴とする排ガスの
浄化方法。8. A method for purifying exhaust gas, which comprises purifying the exhaust gas by the apparatus according to claim 1.
である、請求項8に記載の排ガスの浄化方法。9. The method for purifying exhaust gas according to claim 8, wherein the exhaust gas is exhaust gas of diesel engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22444195A JP3706177B2 (en) | 1995-07-31 | 1995-07-31 | Exhaust gas purification device and exhaust gas purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22444195A JP3706177B2 (en) | 1995-07-31 | 1995-07-31 | Exhaust gas purification device and exhaust gas purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0938467A true JPH0938467A (en) | 1997-02-10 |
JP3706177B2 JP3706177B2 (en) | 2005-10-12 |
Family
ID=16813826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22444195A Expired - Fee Related JP3706177B2 (en) | 1995-07-31 | 1995-07-31 | Exhaust gas purification device and exhaust gas purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3706177B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006523797A (en) * | 2003-04-17 | 2006-10-19 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | Decomposition method of nitrogen dioxide |
KR100882371B1 (en) * | 2000-10-31 | 2009-02-05 | 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 | Small volume nitrogen oxides adsorber |
JP2010059833A (en) * | 2008-09-02 | 2010-03-18 | Mitsubishi Motors Corp | Exhaust emission control device |
JP2010116907A (en) * | 2008-11-14 | 2010-05-27 | Mitsubishi Motors Corp | Exhaust emission control device |
JP2011522987A (en) * | 2008-05-15 | 2011-08-04 | ジョンソン、マッセイ、インコーポレイテッド | Emission reduction device used with heat recovery steam generator |
WO2012045423A3 (en) * | 2010-10-04 | 2012-08-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Exhaust-gas purification device, method for exhaust-gas purification, catalytic converter and pyrolysis reactor |
KR20150136035A (en) * | 2015-09-23 | 2015-12-04 | 장희현 | Treatment system for harmful waste gases |
-
1995
- 1995-07-31 JP JP22444195A patent/JP3706177B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100882371B1 (en) * | 2000-10-31 | 2009-02-05 | 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 | Small volume nitrogen oxides adsorber |
JP2006523797A (en) * | 2003-04-17 | 2006-10-19 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | Decomposition method of nitrogen dioxide |
JP4874093B2 (en) * | 2003-04-17 | 2012-02-08 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | Decomposition method of nitrogen dioxide |
JP2011522987A (en) * | 2008-05-15 | 2011-08-04 | ジョンソン、マッセイ、インコーポレイテッド | Emission reduction device used with heat recovery steam generator |
JP2010059833A (en) * | 2008-09-02 | 2010-03-18 | Mitsubishi Motors Corp | Exhaust emission control device |
JP2010116907A (en) * | 2008-11-14 | 2010-05-27 | Mitsubishi Motors Corp | Exhaust emission control device |
WO2012045423A3 (en) * | 2010-10-04 | 2012-08-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Exhaust-gas purification device, method for exhaust-gas purification, catalytic converter and pyrolysis reactor |
DE102010049957B4 (en) * | 2010-10-04 | 2013-11-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Exhaust gas purification device, process for exhaust gas purification and pyrolysis reactor |
KR20150136035A (en) * | 2015-09-23 | 2015-12-04 | 장희현 | Treatment system for harmful waste gases |
Also Published As
Publication number | Publication date |
---|---|
JP3706177B2 (en) | 2005-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6936232B2 (en) | Process and apparatus for removing NOx from engine exhaust gases | |
Burch | Knowledge and know‐how in emission control for mobile applications | |
Farrauto et al. | Catalytic converters: state of the art and perspectives | |
EP0830201B1 (en) | Diesel engine exhaust gas purification system | |
CN101511450B (en) | Low temperature hydrocarbon scr | |
DK2993322T3 (en) | Process for on-site regeneration of a denitration catalyst in exhaust gas purification systems | |
KR20080042868A (en) | Reduction of nox emissions using a staged silver/alumina catalyst system | |
JP6501115B2 (en) | Dual fuel oxidation catalyst, dual fuel SCR exhaust gas treatment mechanism, dual fuel diesel internal combustion engine, and control method therefor | |
RU2592791C2 (en) | METHOD OF PROCESSING NOx OF EXHAUST GASES USING THREE CONSECUTIVE ZONES OF SCR CATALYSTS | |
US9079162B2 (en) | Fe-BEA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOX in gas streams | |
JP3706177B2 (en) | Exhaust gas purification device and exhaust gas purification method | |
MX2012011540A (en) | Fe-bea/fe-mfi mixed zeolite catalyst and process for treating nox in gas streams using the same. | |
JPH0549864A (en) | Method for purification of exhaust gas | |
US6217838B1 (en) | Process for reducing emissions of oxides of nitrogen in a medium which is super-stoichiometric in oxidizing agents | |
JP4294097B2 (en) | Exhaust control mechanism for lean-burn internal combustion engines | |
Heimrich | Diesel NOx catalytic converter development: A review | |
JP3408905B2 (en) | Diesel engine exhaust gas purification catalyst and diesel engine exhaust gas purification method | |
KR100569482B1 (en) | Device for purifying exhaust gas of diesel vehicle | |
JPH05212248A (en) | Method for purifying nox in waste combustion gas of natural gas | |
Guo et al. | Selective catalytic reduction of nitric oxide with propene and diesel fuel as reducing agents over anodic alumina catalyst | |
JPH06319953A (en) | Purification of nitrogen oxide | |
KR20080101451A (en) | Purifying device for exhaust gas of internal combusition engine | |
JP3842338B2 (en) | Method for reducing and removing nitrogen oxides | |
JPH06210165A (en) | Adsorbent for hydrocarbon in exhaust gas | |
Guo et al. | Selective catalytic reduction of nitric oxide by propene over a Cu-Mn-CeOx/Al2O3/Al alumite catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041019 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050728 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080805 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090805 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090805 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100805 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |