Nothing Special   »   [go: up one dir, main page]

JPH0933859A - Optical isolator and manufacture of its optical element - Google Patents

Optical isolator and manufacture of its optical element

Info

Publication number
JPH0933859A
JPH0933859A JP17922495A JP17922495A JPH0933859A JP H0933859 A JPH0933859 A JP H0933859A JP 17922495 A JP17922495 A JP 17922495A JP 17922495 A JP17922495 A JP 17922495A JP H0933859 A JPH0933859 A JP H0933859A
Authority
JP
Japan
Prior art keywords
material plate
faraday rotator
analyzer
polarizer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17922495A
Other languages
Japanese (ja)
Inventor
Ryuji Osawa
隆二 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP17922495A priority Critical patent/JPH0933859A/en
Priority to KR1019960704694A priority patent/KR100286956B1/en
Priority to PCT/JP1995/002740 priority patent/WO1996020423A1/en
Priority to DE69503039T priority patent/DE69503039T2/en
Priority to CN95192601A priority patent/CN1146245A/en
Priority to EP95942297A priority patent/EP0747747B1/en
Priority to CA002184054A priority patent/CA2184054A1/en
Publication of JPH0933859A publication Critical patent/JPH0933859A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the optical isolator which is made compact to a minimum necessary extent and also provide the manufacture of the optical element, used for the isolator, which is inexpensive and superior in mass-productivity. SOLUTION: Metallized films 8 are formed on a plarizer material plate 21, one surface of an analyzer material plate 23, and both the surfaces of a Faraday rotator material plate 22, grooves 12 are formed in a lattice shape on the surfaces where the metallized films are formed, and the Faraday rotator material plate 22 is sandwiched between the surfaces of the polarizer material plate 21 and analyzer material plate 23 where the metallized films 8 are formed. After they are put one over another, the grooves 12 and apertures 11 are arrayed on slanting lines crossing lines perpendicular to the respective material plates at an angle θ and then a solder material 5 is put in the grooves 12. After soldering adhesion, one group of a light transmission area for a polarizer, the light transmission area for the corresponding Faraday rotator, and the light transmission area for the analyzer, and the parts including the respective metallized films surrounding the group of the light transmission areas is cut as an optical element 9 for one isolator, thus obtaining the optical element for the optical isolator which is made compact to minimum necessary extent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信、光計測等
に使用されるファラデー効果を利用した光アイソレータ
において、小型で量産性に優れた光アイソレータおよび
その光学素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator using a Faraday effect used for optical communication, optical measurement and the like, which is small in size and excellent in mass productivity, and a method for manufacturing an optical element thereof.

【0002】[0002]

【従来の技術】近年、半導体レーザを光源とした光通信
システムや、半導体レーザを使用した光応用機器が広範
に利用されて来ており、さらにその用途および規模が拡
大されている。
2. Description of the Related Art In recent years, an optical communication system using a semiconductor laser as a light source and an optical application device using a semiconductor laser have been widely used, and their applications and scales have been expanded.

【0003】これら光通信システムや光応用機器の精度
や安定性を向上させるため、半導体レーザへの戻り光を
除去する目的に、光アイソレータが使用されている。
In order to improve the accuracy and stability of these optical communication systems and optical application equipment, an optical isolator is used for the purpose of removing the returning light to the semiconductor laser.

【0004】この光アイソレータの構成は、偏光子、検
光子、ファラデー回転子からなる光学素子と磁界発生用
の永久磁石およびそれらの固定・保護用のホルダーから
なっている。
The structure of this optical isolator comprises an optical element consisting of a polarizer, an analyzer and a Faraday rotator, a permanent magnet for generating a magnetic field and a holder for fixing and protecting them.

【0005】従来、偏光子とファラデー回転子と検光子
との接着固定および光学素子とホルダーとの接着固定の
方法として、有機接着剤による固定法と金属融着法があ
る。
Conventionally, as a method of adhesively fixing a polarizer, a Faraday rotator and an analyzer and an optical element and a holder, there are a fixing method using an organic adhesive and a metal fusion method.

【0006】前記接着固定の方法の内、有機接着剤によ
る固定法に関しては、長期に渡る接着力の安定性が、特
に温湿度等の環境変化に対して、乏しいことが分かって
いる。
Regarding the fixing method using an organic adhesive among the above-mentioned fixing methods, it has been found that the stability of the adhesive force over a long period of time is poor, especially against environmental changes such as temperature and humidity.

【0007】このため、光通信用中継器等の様に長期間
に渡る高度の信頼性を要求される光アイソレータは、前
記の有機接着剤による固定法に代わり、金属融着法によ
って形成された光アイソレータが使用されている。
Therefore, an optical isolator such as a repeater for optical communication, which requires a high degree of reliability for a long period of time, is formed by a metal fusion method instead of the fixing method using the organic adhesive. Optical isolators are used.

【0008】光アイソレータにおける金属融着法による
接着固定は偏光子1、検光子3、ファラデー回転子2少
なくとも光透過部分を除いた外周部に金属融着用のメタ
ライズ膜8を形成し、偏光子1とファラデー回転子2と
検光子3との接着固定および光学素子とホルダーとの接
着固定を行なうものである。
Adhesive fixing by the metal fusion method in the optical isolator forms the metallization film 8 for metal fusion on the outer periphery of the polarizer 1, the analyzer 3, the Faraday rotator 2 and at least the light transmitting portion, and the polarizer 1 The Faraday rotator 2 and the analyzer 3 are bonded and fixed, and the optical element and the holder are bonded and fixed.

【0009】また従来の光アイソレータの光学素子を構
成する偏光子1、検光子3、ファラデー回転子2の各表
面には、予め無反射コートが形成されており、図3に示
す様に、入射光はほとんど反射せず通過するが、僅かに
反射する光があり、入射側にこの反射光が戻るのは避け
られない。
A non-reflective coating is previously formed on each surface of the polarizer 1, the analyzer 3, and the Faraday rotator 2 which constitute the optical element of the conventional optical isolator. As shown in FIG. Although light passes through with almost no reflection, there is light that is slightly reflected, and it is inevitable that this reflected light returns to the incident side.

【0010】このため、僅かな反射光も容認できない用
途については、光学素子または光アイソレータを入射光
に対して2〜9°程度傾斜させる方法が取られている。
Therefore, for applications in which even a slight amount of reflected light is unacceptable, a method of tilting the optical element or the optical isolator by about 2 to 9 ° with respect to the incident light is adopted.

【0011】すなわち、図4に示すような、磁石4と外
部ホルダー6との間に傾斜ホルダー10を挿入する方
法、または光アイソレータそのものを入射光の光軸に対
して傾斜させて固定し、反射光が入射側に戻らないよう
に光学系に設置される方法がとられている。
That is, as shown in FIG. 4, the tilt holder 10 is inserted between the magnet 4 and the outer holder 6, or the optical isolator itself is tilted with respect to the optical axis of the incident light and fixed, and then reflected. A method is adopted in which the optical system is installed so that the light does not return to the incident side.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、従来の
どのアイソレータにおいても、半田接合された光学素子
を光軸に対し傾けて使用することになる。このため、実
際に光が通過することができる面積に対して、光アイソ
レータの外形は大きくなり、小型化の限界となってい
た。
However, in any conventional isolator, the solder-bonded optical element is used while being inclined with respect to the optical axis. Therefore, the outer shape of the optical isolator becomes larger than the area through which light can actually pass, which is a limit to downsizing.

【0013】また、特に光学素子を光軸に対して傾ける
際に傾斜ホルダーを挿入する場合において、その傾斜ホ
ルダーは加工精度および強度の点からある程度肉厚をも
たせることが必要であるため小型化および低コスト化に
重大な問題があった。
In particular, when the tilt holder is inserted when the optical element is tilted with respect to the optical axis, the tilt holder needs to have a certain degree of thickness in view of processing accuracy and strength. There was a serious problem in cost reduction.

【0014】また、従来のアイソレータの光学素子の製
造方法では、偏光子材料板、検光子材料板、ファラデー
回転子材料板の各光学材料から、光学素子1個を構成す
る偏光子、検光子、ファラデー回転子を切り出し、その
後、偏光子、検光子、ファラデー回転子の所定の各面に
メタライズ膜を形成するため、1個分に切断した後の偏
光子、検光子、ファラデー回転子の洗浄等に非常に多く
の手間がかかり、大量の光学素子をメタライズ処理する
ことが困難であり、量産性および低コスト化に重大な問
題があった。
Further, in the conventional method for manufacturing an optical element of an isolator, a polarizer, an analyzer, and an optical element, which constitute one optical element, are made of optical materials such as a polarizer material plate, an analyzer material plate, and a Faraday rotator material plate. Faraday rotator is cut out, and then a polarizer, analyzer, and a metallized film are formed on each predetermined surface of the Faraday rotator, so that the polarizer, analyzer, and Faraday rotator are washed after cutting into one piece. However, it is difficult to metallize a large number of optical elements, and there are serious problems in mass productivity and cost reduction.

【0015】本発明の解決しようとする課題は、以上に
述べた問題点を解決して、必要最小限に小型化された光
アイソレータを提供しようとするものであり、また、そ
のアイソレータに用いる光学素子の安価で量産性に優れ
た製造方法を提供しようとするものである。
The problem to be solved by the present invention is to solve the above-mentioned problems and to provide an optical isolator which is miniaturized to the minimum necessary, and the optical used for the isolator. It is an object of the present invention to provide a manufacturing method of an element which is inexpensive and excellent in mass productivity.

【0016】[0016]

【課題を解決するための手段】本発明によれば、偏光
子、ファラデー回転子、および検光子からなる光学素子
を有する光アイソレータにおいて、前記光学素子の光軸
を含む所定の平面による一断面が平行四辺形であること
により、該光学素子の光入射面および光出射面が光軸に
対し直角から所定角度傾いていることを特徴とする必要
最小限に小型化された光アイソレータを提供できる。
According to the present invention, in an optical isolator having an optical element consisting of a polarizer, a Faraday rotator, and an analyzer, one cross section by a predetermined plane including the optical axis of the optical element is Due to the parallelogram, it is possible to provide a miniaturized optical isolator characterized in that the light incident surface and the light emitting surface of the optical element are inclined at a predetermined angle from the right angle with respect to the optical axis.

【0017】さらに、本発明によれば、光アイソレータ
の偏光子、ファラデー回転子、および検光子からなる光
学素子の光軸を含む所定の平面による一断面が平行四辺
形であることにより、該光学素子の光入射面および光出
射面が光軸に対し直角から所定の角度傾いている前記光
学素子の製造方法において、複数の偏光子が取り出せる
大きさの平行板状の偏光子材料板、複数のファラデー回
転子が取り出せる大きさの平行板状のファラデー回転子
材料板、および複数の検光子が取り出せる大きさの平行
板状の検光子材料板を用意し、該偏光子材料板の一面上
で所定の間隔をもった各位置に偏光子用の光透過領域を
残してメタライズ膜を前記一面上に形成し、該ファラデ
ー回転子板の両面上で前記所定の間隔をもった各位置に
ファラデー回転子用の光透過領域を残してメタライズ膜
を前記両面上に形成し、該検光子材料板の一面上で前記
所定の間隔をもった各位置に検光子用の光透過領域を残
してメタライズ膜を前記一面上に形成し、該偏光子材料
板と該検光子材料板とにより、該ファラデー回転子材料
板を挟む様にし、且つ、該偏光子材料板のメタライズ膜
が形成された面と該ファラデー回転子材料板のメタライ
ズ膜が形成された一面、および該検光子材料板のメタラ
イズ膜が形成された面と該ファラデー回転子材料板のメ
タライズ膜が形成された他面同士が対向し、偏光子材料
板の前記偏光子用の各光透過領域の中点、対応するファ
ラデー回転子材料板の前記ファラデー回転子用の各光透
過領域の中点、および対応する検光子材料板の前記検光
子用の各光透過領域の中点とが、該偏光子材料板、該フ
ァラデー回転子材料板、および該検光子材料板に直交す
る線に前記所定の角度で交差する傾斜線上に位置する様
に、該偏光子材料板の光透過領域、該ファラデー回転子
材料板の光透過領域、および該検光子材料板の光透過領
域を夫々ずらして、該偏光子材料板、該ファラデー回転
子材料板、該検光子材料板を重ね合せて接合固着して光
学材料積層板を形成し、該光学材料積層板から前記偏光
子用の各光透過領域、対応する前記ファラデー回転子用
の光透過領域、対応する前記検光子用の光透過領域の一
組と、この一組の光透過領域の各々を囲む各メタライズ
膜を含む部分を光学素子として前記傾斜線に対し平行な
切断面で切り出し、複数個の光学素子を得ることを特徴
とする光アイソレータの光学素子の製造方法を提供する
ことができる。
Further, according to the present invention, the optical element comprising the polarizer of the optical isolator, the Faraday rotator, and the analyzer has a parallelogram in one cross section along a predetermined plane including the optical axis. In the method for manufacturing an optical element, wherein the light incident surface and the light emitting surface of the element are inclined at a predetermined angle from the right angle with respect to the optical axis, a parallel plate-shaped polarizer material plate having a size such that a plurality of polarizers can be taken out, Prepare a parallel plate-shaped Faraday rotator material plate of a size that can be taken out by the Faraday rotator and a parallel plate-shaped analyzer material plate of a size that can be taken by a plurality of analyzers, and set it on one surface of the polarizer material plate. A metallized film is formed on the one surface while leaving a light transmission region for the polarizer at each position having a space of Faraday rotator at each position having the predetermined space on both sides of the Faraday rotator plate. Of the metallized film is formed on both sides of the metallized film leaving the light transmissive region, and the metallized film is left on the one surface of the analyzer material plate with the light transmissive region for the analyzer being left. It is formed on one surface so that the Faraday rotator material plate is sandwiched between the polarizer material plate and the analyzer material plate, and the surface of the polarizer material plate on which the metallized film is formed and the Faraday rotation. One surface of the child material plate on which the metallized film is formed, and the surface of the analyzer material plate on which the metallized film is formed and the other surface of the Faraday rotator material plate on which the metallized film is formed face each other. For each of the light transmission regions for the polarizer of the plate, for each Faraday rotator material plate the midpoint of each light transmission region for the Faraday rotator material, and for the analyzer of the corresponding analyzer material plate The midpoint of each light transmission area is The photon material plate, the Faraday rotator material plate, and the light transmission region of the polarizer material plate and the Faraday rotation so as to be located on an inclined line that intersects the line orthogonal to the analyzer material plate at the predetermined angle. The light transmission region of the sub-material plate and the light transmission region of the analyzer material plate are respectively shifted, and the polarizer material plate, the Faraday rotator material plate, and the analyzer material plate are overlapped and bonded and fixed to each other. Forming a material laminate, each light transmission region for the polarizer from the optical material laminate, a corresponding light transmission region for the Faraday rotator, a set of corresponding light transmission regions for the analyzer, An optical element of an optical isolator, characterized in that a portion including each metallized film surrounding each of the pair of light transmitting regions is cut out with a cutting plane parallel to the inclined line as an optical element to obtain a plurality of optical elements. To provide a manufacturing method of be able to.

【0018】また、このとき、偏光子材料板の一面上、
検光子材料板の一面上、ファラデー回転子材料板の両面
上にメタライズ膜を形成した後で該偏光子材料板、該検
光子材料板、該ファラデー回転子材料板を重ね合せ接合
固着する前に、または偏光子材料板の一面上、検光子材
料板の一面上、ファラデー回転子材料板の両面上にメタ
ライズ膜を形成する前に、偏光子材料板、検光子材料
板、ファラデー回転子材料板上の、所定の位置に溝を形
成することにより、安価で量産性に優れた光アイソレー
タの光学素子の製造方法を提供することができる。
At this time, on one surface of the polarizer material plate,
After forming a metallized film on one surface of the analyzer material plate and on both surfaces of the Faraday rotator material plate, before stacking and fixing the polarizer material plate, the analyzer material plate, and the Faraday rotator material plate. Or a polarizer material plate, an analyzer material plate, a Faraday rotator material plate before forming a metallized film on one surface of the polarizer material plate, one surface of the analyzer material plate, or both surfaces of the Faraday rotator material plate. By forming the groove at a predetermined position above, it is possible to provide a method for manufacturing an optical element of an optical isolator that is inexpensive and excellent in mass productivity.

【0019】[0019]

【作用】本発明の実施例として図1に示すように、光学
素子の断面を平行四辺形とした六面体とし、金属メッキ
された磁石4と半田接合することにより、従来の例えば
図5に示す様な光アイソレータを傾けて設置する方式に
比べ、光学素子の光学面に対しメタライズ膜8部分以外
のほとんどの領域を使用することができる。すなわち、
同一のアパーチャー11に対し、本発明品の方が小型化
できる。
As shown in FIG. 1 as an embodiment of the present invention, a hexahedron whose optical element has a parallelogram cross section and is soldered to a metal-plated magnet 4 to form a conventional hexagon, for example, as shown in FIG. Compared to the method of installing the optical isolator at a tilt, almost all the area other than the metallized film 8 portion can be used for the optical surface of the optical element. That is,
The product of the present invention can be made smaller than the same aperture 11.

【0020】さらに、傾けて設置するための傾斜ホルダ
ー10を省略できることにより、従来品に比べ小型化お
よび低コスト化が図れる。
Furthermore, since the tilt holder 10 for tilting and installing can be omitted, the size and cost can be reduced as compared with the conventional product.

【0021】さらに、偏光子材料板21、検光子材料板
23、ファラデー回転子材料板22上に溝を形成するこ
とにより、偏光子材料板21、検光子材料板23、ファ
ラデー回転子材料板22を切断し易くできる。
Further, by forming grooves on the polarizer material plate 21, the analyzer material plate 23, and the Faraday rotator material plate 22, the polarizer material plate 21, the analyzer material plate 23, and the Faraday rotator material plate 22 are formed. Can be easily cut.

【0022】[0022]

【発明の実施の形態】以下に、本発明に係る実施の形態
例を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0023】[実施の形態例1]まず、複数の偏光子1
が取り出せる大きさで縦横の長さが等しく所定の厚みを
もった偏光子材料板21、縦横の長さが前記偏光子材料
板21と等しく所定の厚みをもったファラデー回転子材
料板22、および縦横の長さが前記偏光子材料板21と
等しく所定の厚みをもった検光子材料板23を用意す
る。
[Embodiment 1] First, a plurality of polarizers 1
And a Faraday rotator material plate 22 having the same vertical and horizontal lengths and a predetermined thickness, and the Faraday rotator material plate 22 having a vertical and horizontal length and a predetermined thickness. An analyzer material plate 23 having the same length and width as the polarizer material plate 21 and having a predetermined thickness is prepared.

【0024】次に、偏光子材料板21の片面、ファラデ
ー回転子材料板22の両面、および検光子材料板23の
片面にメタライズ膜8を形成する。その後、偏光子材料
板21、ファラデー回転子材料板22、および検光子材
料板23のメタライズ膜8が形成された面上に格子状に
溝12を形成し、図2に示す様に、偏光子材料板21の
メタライズ膜8が形成された面と検光子材料板23のメ
タライズ膜8が形成された面でファラデー回転子材料板
22を挟む様にし重ね合せる。以下、偏光子材料板、フ
ァラデー回転子材料板、および検光子材料板を総称して
光学材料板という。ここで、各光学材料板とも溝12
は、各光学材料板の端部を揃えて各光学材料板を重ね合
せた時に対向する位置になるように形成する。
Next, the metallized film 8 is formed on one surface of the polarizer material plate 21, both surfaces of the Faraday rotator material plate 22, and one surface of the analyzer material plate 23. After that, the grooves 12 are formed in a lattice pattern on the surface of the polarizer material plate 21, the Faraday rotator material plate 22, and the analyzer material plate 23 on which the metallized film 8 is formed, and as shown in FIG. The Faraday rotator material plate 22 is sandwiched between the surface of the material plate 21 on which the metallized film 8 is formed and the surface of the analyzer material plate 23 on which the metallized film 8 is formed. Hereinafter, the polarizer material plate, the Faraday rotator material plate, and the analyzer material plate are collectively referred to as an optical material plate. Here, each optical material plate has a groove 12
Is formed so that the end portions of the optical material plates are aligned and the optical material plates face each other when they are stacked.

【0025】図5は、本発明の光アイソレータの光学素
子の製造方法の本実施の形態を示す概略断面図である。
FIG. 5 is a schematic sectional view showing the present embodiment of the method for manufacturing an optical element of an optical isolator according to the present invention.

【0026】重ね合せた後、図5(a)に示す様に溝1
2の位置およびアパーチャ11の位置がずれるように、
偏光子材料板21、ファラデー回転子材料板22、検光
子材料板23の端部を各光学材料板に対し直交する線に
角度θで交差する傾斜線上に位置する。その後、溝12
に半田材5を挿入する。
After overlapping, the groove 1 is formed as shown in FIG.
2 so that the position of 2 and the position of aperture 11 are displaced,
The ends of the polarizer material plate 21, the Faraday rotator material plate 22, and the analyzer material plate 23 are located on the inclined line that intersects a line orthogonal to each optical material plate at an angle θ. Then groove 12
Insert the solder material 5 into.

【0027】挿入された半田材5は、熱処理炉におい
て、加熱され液体状になった後、図5(b)に示す様に
メタライズ膜8上を毛管現象により移動し、半田接着に
必要な量だけ入り込み、その後冷却することにより半田
接着が行われる。このとき、余分な半田材5は溝12に
残るため、光透過部分に半田材5が流れ込み入射ロスを
増大させる様なことが起こらない。
The inserted solder material 5 is heated in a heat treatment furnace to become liquid and then moves on the metallized film 8 by a capillary phenomenon as shown in FIG. Solder bonding is performed by only entering and then cooling. At this time, since the excess solder material 5 remains in the groove 12, the solder material 5 does not flow into the light transmitting portion to increase the incident loss.

【0028】次に図5(b)に点線で示される様に偏光
子1用の各光透過領域、それに対応するファラデー回転
子2用の光透過領域、およびそれに対応する検光子3用
の光透過領域の一組と、この一組の光透過領域の各々を
囲む各メタライズ膜8を含む部分を光アイソレータ一組
分の光学素子9として切り出す。
Next, as shown by the dotted lines in FIG. 5B, each light transmission area for the polarizer 1, the corresponding light transmission area for the Faraday rotator 2, and the corresponding light for the analyzer 3 are shown. A portion including one set of transmission regions and each metallized film 8 surrounding each of the one set of light transmission regions is cut out as an optical element 9 for one set of optical isolators.

【0029】この様にして、図5(c)に示す様に、複
数個の光アイソレータ一組分の光学素子9を得ることが
できる。
In this way, as shown in FIG. 5C, the optical element 9 for one set of a plurality of optical isolators can be obtained.

【0030】[実施の形態例2]まず、実施の形態例1
と同様に、複数の偏光子1が取り出せる大きさで縦横の
長さが等しく所定の厚みをもった偏光子材料板21、縦
横の長さが前記偏光子材料板21と等しく所定の厚みを
もったファラデー回転子材料板22、および縦横の長さ
が前記偏光子材料板21と等しく所定の厚みをもった検
光子材料板23を用意する。
[Embodiment 2] First, Embodiment 1
Similarly, a polarizer material plate 21 having a size such that a plurality of polarizers 1 can be taken out and having a same vertical and horizontal length and a predetermined thickness, and a vertical and horizontal length equal to the polarizer material plate 21 and having a predetermined thickness. A Faraday rotator material plate 22 and an analyzer material plate 23 having the same vertical and horizontal lengths as the polarizer material plate 21 and a predetermined thickness are prepared.

【0031】次に、偏光子材料板21の片面、ファラデ
ー回転子材料板22の両面、および検光子材料板23の
片面にメタライズ膜8を形成する。その後、偏光子材料
板21、ファラデー回転子材料板22、および検光子材
料板23のメタライズ膜8が形成された面上に格子状に
溝12を形成し、図2に示す様に、偏光子材料板21の
メタライズ膜8が形成された面と検光子材料板23のメ
タライズ膜8が形成された面でファラデー回転子材料板
22を挟む様にし重ね合せる。ここで各光学材料板の溝
12は図6(a)に示す様に各光学材料板の端部をそろ
えた時に各光学材料板に対し直交する線に角度θで交差
する傾斜線上に並ぶ様に形成する。
Next, the metallized film 8 is formed on one surface of the polarizer material plate 21, both surfaces of the Faraday rotator material plate 22, and one surface of the analyzer material plate 23. After that, the grooves 12 are formed in a lattice pattern on the surface of the polarizer material plate 21, the Faraday rotator material plate 22, and the analyzer material plate 23 on which the metallized film 8 is formed, and as shown in FIG. The Faraday rotator material plate 22 is sandwiched between the surface of the material plate 21 on which the metallized film 8 is formed and the surface of the analyzer material plate 23 on which the metallized film 8 is formed. Here, as shown in FIG. 6A, the grooves 12 of each optical material plate are arranged on an inclined line that intersects a line orthogonal to each optical material plate at an angle θ when the ends of each optical material plate are aligned. To form.

【0032】図6は、本発明の光アイソレータの光学素
子の製造方法の本実施の形態を示す概略断面図である。
FIG. 6 is a schematic sectional view showing the present embodiment of the method for manufacturing an optical element of an optical isolator according to the present invention.

【0033】重ね合せた後、溝12に半田材5を挿入す
る。挿入された半田材5は、熱処理炉において、加熱さ
れ液体状になった後、図6(b)に示す様にメタライズ
膜8上を毛管現象により移動し、半田接着に必要な量だ
け入り込み、その後冷却することにより半田接着が行わ
れる。
After overlapping, the solder material 5 is inserted into the groove 12. The inserted solder material 5 is heated and becomes liquid in a heat treatment furnace, and then moves on the metallized film 8 by a capillary phenomenon as shown in FIG. 6 (b) to enter an amount necessary for solder bonding, Then, by cooling, solder bonding is performed.

【0034】次に図6(b)に点線で示される様に偏光
子1用の各光透過領域、それに対応するファラデー回転
子2用の光透過領域、およびそれに対応する検光子3用
の光透過領域の一組と、この一組の光透過領域の各々を
囲む各メタライズ膜8を含む部分を光アイソレータ一組
分の光学素子9として切り出す。
Next, as shown by the dotted lines in FIG. 6B, each light transmission region for the polarizer 1, the corresponding light transmission region for the Faraday rotator 2, and the corresponding light for the analyzer 3 are shown. A portion including one set of transmission regions and each metallized film 8 surrounding each of the one set of light transmission regions is cut out as an optical element 9 for one set of optical isolators.

【0035】この様にして、図6(c)に示す様に、複
数個の光アイソレータ一組分の光学素子9を得ることが
できる。
In this way, as shown in FIG. 6C, the optical element 9 for one set of a plurality of optical isolators can be obtained.

【0036】[実施の形態例3]図7は、本発明の光ア
イソレータの光学素子の製造方法の本実施の形態を示す
概略断面図である。
[Embodiment 3] FIG. 7 is a schematic sectional view showing the present embodiment of a method for manufacturing an optical element of an optical isolator according to the present invention.

【0037】実施の形態例1において、偏光子材料板2
1の片面、ファラデー回転子材料板22の両面、および
検光子材料板23の片面にメタライズ膜8を形成する前
に、偏光子材料板21の片面、ファラデー回転子材料板
22の両面、および検光子材料板23の片面に溝12を
形成する。ここで、溝12は、各光学材料板の端部を揃
えて各光学材料板を重ね合せた時に対向する位置になる
ように形成する。
In the first embodiment, the polarizer material plate 2 is used.
Before the metallized film 8 is formed on one side of the Faraday rotator material plate 22, both sides of the Faraday rotator material plate 22, and one side of the analyzer material plate 23, one side of the polarizer material plate 21, both sides of the Faraday rotator material plate 22, and the detection side. The groove 12 is formed on one surface of the photon material plate 23. Here, the groove 12 is formed so as to be in a position facing each other when the end portions of the optical material plates are aligned and the optical material plates are stacked.

【0038】その後、実施の形態例1と同様の工程を行
なうことにより、複数個の光アイソレータ一組分の光学
素子9を得ることができる。
After that, the same steps as those in the first embodiment are performed to obtain the optical element 9 for one set of a plurality of optical isolators.

【0039】[実施の形態例4]図8は、本発明の光ア
イソレータの光学素子の製造方法の本実施の形態を示す
概略断面図である。
[Fourth Embodiment] FIG. 8 is a schematic sectional view showing the present embodiment of a method for manufacturing an optical element of an optical isolator according to the present invention.

【0040】実施の形態例2において、偏光子材料板2
1の片面、ファラデー回転子材料板22の両面、および
検光子材料板23の片面にメタライズ膜8を形成する前
に、偏光子材料板21の片面、ファラデー回転子材料板
22の両面、および検光子材料板23の片面に溝12を
形成する。ここで各光学材料板の溝12は図8(a)に
示す様に各光学材料板の端部をそろえた時に各光学材料
板に対し直交する線に角度θで交差する傾斜線上に並ぶ
様に形成する。
In the second embodiment, the polarizer material plate 2 is used.
Before the metallized film 8 is formed on one side of the Faraday rotator material plate 22, both sides of the Faraday rotator material plate 22, and one side of the analyzer material plate 23, one side of the polarizer material plate 21, both sides of the Faraday rotator material plate 22, and the detection side. The groove 12 is formed on one surface of the photon material plate 23. Here, as shown in FIG. 8A, the grooves 12 of each optical material plate are arranged on an inclined line that intersects a line orthogonal to each optical material plate at an angle θ when the ends of each optical material plate are aligned. To form.

【0041】その後、実施の形態例1と同様の工程を行
なうことにより、複数個の光アイソレータ一組分の光学
素子9を得ることができる。
After that, the same steps as those in the first embodiment are performed to obtain the optical element 9 for one set of a plurality of optical isolators.

【0042】なお、本発明の実施の形態例において、半
田材5を溝12に挿入して半田接合した図を示したが、
メタライズ膜上に蒸着法、スパッタリング法またはイオ
ンプレーティング法による半田材からなる薄膜を形成し
て半田接合しても良く、半田材の設置方法について本発
明の実施の形態例に制限されない。
In the embodiment of the present invention, the figure is shown in which the solder material 5 is inserted into the groove 12 and soldered.
A thin film made of a solder material may be formed on the metallized film by a vapor deposition method, a sputtering method or an ion plating method and soldered, and the method of installing the solder material is not limited to the embodiment of the present invention.

【0043】また、本発明の実施の形態例を示す断面図
において、溝12の形状を長方形としたが、半田材5を
挿入でき、半田接着時の余分な半田材5を保持でき、ま
た切断の際に切断による振動を軽減できればよいため、
三角形、台形等の多角形、または半円状、楕円状でもよ
く、溝12の形状について本発明の実施の形態例に制限
されない。
In the cross-sectional view showing the embodiment of the present invention, the shape of the groove 12 is rectangular, but the solder material 5 can be inserted, the excess solder material 5 can be held at the time of solder bonding, and cutting can be performed. Since it is only necessary to reduce the vibration due to cutting at the time of,
It may be a polygon such as a triangle or a trapezoid, or a semicircle or an ellipse, and the shape of the groove 12 is not limited to the embodiment of the present invention.

【0044】また、本発明の実施の形態例において、金
属融着法である半田接合による固定法を示したが、有機
接着剤による固定法で接着固定してもよい。
Further, in the embodiment of the present invention, the fixing method by soldering, which is the metal fusion method, has been described, but the fixing method by an organic adhesive may be used for adhesion and fixing.

【0045】また、本発明の実施の形態例において、溝
12のずれる方向は図2におけるX軸方向のみでも、Y
軸方向のみでも、X軸とY軸とに挟まれた任意の方向で
もよい。
In the embodiment of the present invention, the groove 12 may be displaced only in the X-axis direction in FIG.
It may be only the axial direction or any direction sandwiched between the X axis and the Y axis.

【0046】[0046]

【実施例】本発明の実施の形態例において、偏光子材料
板21および検光子材料板23は、ルチル単結晶からな
る光学材料板を用いた。また、ファラデー回転子材料板
22は、ガーネット単結晶からなる光学材料板を用い
た。これらの偏光子材料板21、ファラデー回転子材料
板22、および検光子材料板23の各々の縦横のサイズ
は11mm×11mmとした。、また偏光子材料板21
および検光子材料板23の厚みは0.4mmとし、ファ
ラデー回転子の厚みは0.485mmとした。また、各
光学材料板に対し直交する線と交差する傾斜線とのなす
角度θは、4度とした。
EXAMPLES In the embodiment of the present invention, the polarizer material plate 21 and the analyzer material plate 23 are optical material plates made of rutile single crystal. As the Faraday rotator material plate 22, an optical material plate made of garnet single crystal was used. Each of the polarizer material plate 21, the Faraday rotator material plate 22, and the analyzer material plate 23 had a vertical and horizontal size of 11 mm × 11 mm. , The polarizer material plate 21
The thickness of the analyzer material plate 23 was 0.4 mm, and the thickness of the Faraday rotator was 0.485 mm. Further, an angle θ formed by a line intersecting with each optical material plate at right angles and an inclined line intersecting with each other was set to 4 degrees.

【0047】[0047]

【発明の効果】以上述べたように、本発明によれば、よ
り小型化され低コストで高信頼性の光アイソレータが大
量に製造できる。
As described above, according to the present invention, it is possible to manufacture a large number of small-sized, low-cost and highly reliable optical isolators.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態の光軸を含む断面を示す
断面図である。
FIG. 1 is a sectional view showing a section including an optical axis according to an embodiment of the present invention.

【図2】本発明の光アイソレータの光学素子の製造方法
を示す概略斜視図である。
FIG. 2 is a schematic perspective view showing a method for manufacturing an optical element of an optical isolator according to the present invention.

【図3】従来の光アイソレータの光軸を含む断面を示す
断面図である。
FIG. 3 is a sectional view showing a section including an optical axis of a conventional optical isolator.

【図4】従来の傾斜ホルダーを用いて傾斜させた光アイ
ソレータの光軸を含む断面を示す断面図である。
FIG. 4 is a cross-sectional view showing a cross section including an optical axis of an optical isolator tilted by using a conventional tilt holder.

【図5】本発明の光アイソレータの光学素子の製造方法
の一実施の形態を示す概略断面図である。
FIG. 5 is a schematic cross-sectional view showing an embodiment of a method for manufacturing an optical element of an optical isolator according to the present invention.

【図6】本発明の光アイソレータの光学素子の製造方法
の一実施の形態を示す概略断面図である。
FIG. 6 is a schematic cross-sectional view showing an embodiment of a method for manufacturing an optical element of an optical isolator according to the present invention.

【図7】本発明の光アイソレータの光学素子の製造方法
の一実施の形態を示す概略断面図である。
FIG. 7 is a schematic cross-sectional view showing an embodiment of a method for manufacturing an optical element of an optical isolator according to the present invention.

【図8】本発明の光アイソレータの光学素子の製造方法
の一実施の形態を示す概略断面図である。
FIG. 8 is a schematic sectional view showing an embodiment of a method for manufacturing an optical element of an optical isolator according to the present invention.

【符号の説明】[Explanation of symbols]

1 偏光子 2 ファラデー回転子 3 検光子 4 磁石 5 半田材 6 外部ホルダー 7 端部ホルダー 8 メタライズ膜 9 光アイソレータ1組分の光学素子 10 傾斜ホルダー 11 アパーチャ 12 溝 21 偏光子材料板 22 ファラデー回転子材料板 23 検光子材料板 1 Polarizer 2 Faraday rotator 3 Analyzer 4 Magnet 5 Solder material 6 External holder 7 End holder 8 Metallized film 9 Optical element for one set of optical isolator 10 Tilt holder 11 Aperture 12 Groove 21 Polarizer material plate 22 Faraday rotator Material plate 23 Analyzer material plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 偏光子、ファラデー回転子、および検光
子からなる光学素子を有する光アイソレータにおいて、
前記光学素子の光軸を含む所定の平面による一断面が平
行四辺形であることにより、該光学素子の光入射面およ
び光出射面が光軸に対し直角から所定角度傾いているこ
とを特徴とする光アイソレータ。
1. An optical isolator having an optical element including a polarizer, a Faraday rotator, and an analyzer,
One cross section of a predetermined plane including the optical axis of the optical element is a parallelogram, so that the light entrance surface and the light exit surface of the optical element are inclined at a predetermined angle from the right angle with respect to the optical axis. Optical isolator.
【請求項2】 光アイソレータの偏光子、ファラデー回
転子、および検光子からなる光学素子の光軸を含む所定
の平面による一断面が平行四辺形であることにより、該
光学素子の光入射面および光出射面が光軸に対し直角か
ら所定の角度傾いている前記光学素子の製造方法におい
て、複数の偏光子が取り出せる大きさの平行板状の偏光
子材料板、複数のファラデー回転子が取り出せる大きさ
の平行板状のファラデー回転子材料板、および複数の検
光子が取り出せる大きさの平行板状の検光子材料板を用
意し、該偏光子材料板の一面上で所定の間隔をもった各
位置に偏光子用の光透過領域を残してメタライズ膜を前
記一面上に形成し、該ファラデー回転子板の両面上で前
記所定の間隔をもった各位置にファラデー回転子用の光
透過領域を残してメタライズ膜を前記両面上に形成し、
該検光子材料板の一面上で前記所定の間隔をもった各位
置に検光子用の光透過領域を残してメタライズ膜を前記
一面上に形成し、該偏光子材料板と該検光子材料板とに
より、該ファラデー回転子材料板を挟む様にし、且つ、
該偏光子材料板のメタライズ膜が形成された面と該ファ
ラデー回転子材料板のメタライズ膜が形成された一面、
および該検光子材料板のメタライズ膜が形成された面と
該ファラデー回転子材料板のメタライズ膜が形成された
他面同士が対向し、偏光子材料板の前記偏光子用の各光
透過領域の中点、対応するファラデー回転子材料板の前
記ファラデー回転子用の各光透過領域の中点、および対
応する検光子材料板の前記検光子用の各光透過領域の中
点とが、該偏光子材料板、該ファラデー回転子材料板、
および該検光子材料板に直交する線に前記所定の角度で
交差する傾斜線上に位置する様に、該偏光子材料板の光
透過領域、該ファラデー回転子材料板の光透過領域、お
よび該検光子材料板の光透過領域を夫々ずらして、該偏
光子材料板、該ファラデー回転子材料板、該検光子材料
板を重ね合せて接合固着して光学材料積層板を形成し、
該光学材料積層板から前記偏光子用の各光透過領域、対
応する前記ファラデー回転子用の光透過領域、対応する
前記検光子用の光透過領域の一組と、この一組の光透過
領域の各々を囲む各メタライズ膜を含む部分を光学素子
として前記傾斜線に対し平行な切断面で切り出し、複数
個の光学素子を得ることを特徴とする光アイソレータの
光学素子の製造方法。
2. A light-incident surface of the optical element and a light-incident surface of the optical element comprising a polarizer, a Faraday rotator, and an analyzer, and a cross section of a predetermined plane including the optical axis of the optical element is a parallelogram. In the method for manufacturing the optical element, wherein the light emitting surface is inclined at a predetermined angle from the right angle with respect to the optical axis, a parallel plate-shaped polarizer material plate having a size capable of taking out a plurality of polarizers, and a size capable of taking out a plurality of Faraday rotators. A parallel plate-shaped Faraday rotator material plate and a parallel plate-shaped analyzer material plate of a size that allows a plurality of analyzers to be taken out, each having a predetermined interval on one surface of the polarizer material plate. A light-transmitting region for the Faraday rotator is formed at each position on the both sides of the Faraday rotator plate, leaving a light-transmitting region for the polarizer at the position on the one surface. Leave me Talize film is formed on both sides,
A metallization film is formed on the one surface of the analyzer material plate, leaving a light transmitting region for the analyzer at each position having the predetermined distance, and the polarizer material plate and the analyzer material plate are formed. By so that the Faraday rotator material plate is sandwiched, and
A surface of the polarizer material plate on which the metallized film is formed and one surface of the Faraday rotator material plate on which the metallized film is formed;
And the surface of the analyzer material plate on which the metallized film is formed and the other surface of the Faraday rotator material plate on which the metallized film is formed are opposed to each other, and each of the light transmission regions for the polarizer of the polarizer material plate is The midpoint, the midpoint of each light transmission region for the Faraday rotator of the corresponding Faraday rotator material plate, and the midpoint of each light transmission region for the analyzer of the corresponding analyzer material plate is the polarized light. Child material plate, the Faraday rotator material plate,
And a light transmitting region of the polarizer material plate, a light transmitting region of the Faraday rotator material plate, and the detector so as to be located on an inclined line that intersects the line orthogonal to the analyzer material plate at the predetermined angle. The light transmission regions of the photon material plates are respectively shifted, the polarizer material plate, the Faraday rotator material plate, and the analyzer material plate are overlapped and bonded and fixed to form an optical material laminated plate,
From the optical material laminated plate, each light transmission region for the polarizer, a corresponding light transmission region for the Faraday rotator, a set of corresponding light transmission regions for the analyzer, and a set of the light transmission regions. A method for manufacturing an optical element of an optical isolator, characterized in that a portion including each metallized film surrounding each of the above is cut out by a cutting plane parallel to the inclined line as an optical element to obtain a plurality of optical elements.
【請求項3】 請求項2において、偏光子材料板の一面
上、ファラデー回転子材料板の両面上、および検光子材
料板の一面上にメタライズ膜を形成した後で、該偏光子
材料板、該ファラデー回転子材料板、および該検光子材
料板を重ね合せる前に、該偏光子材料板のメタライズ膜
が形成された面と該ファラデー回転子材料板のメタライ
ズ膜が形成された一面の少なくとも一方の面上、および
該検光子材料板のメタライズ膜が形成された面と該ファ
ラデー回転子材料板のメタライズ膜が形成された他面の
少なくとも一方の面上の各光透過領域間の所定の位置
に、溝を形成することを特徴とする光アイソレータの光
学素子の製造方法。
3. The polarizer material plate according to claim 2, wherein a metallized film is formed on one surface of the polarizer material plate, both surfaces of the Faraday rotator material plate, and one surface of the analyzer material plate. Before superposing the Faraday rotator material plate and the analyzer material plate, at least one of the surface of the polarizer material plate on which the metallized film is formed and the one surface of the Faraday rotator material plate on which the metallized film is formed. At a predetermined position between the light transmission regions on the surface of the analyzer material plate and on at least one of the surface of the Faraday rotator material plate on which the metallized film is formed and the other surface of the Faraday rotator material plate on which the metallized film is formed. A method for manufacturing an optical element of an optical isolator, which comprises forming a groove in the substrate.
【請求項4】 請求項2において、偏光子材料板の一面
上、ファラデー回転子材料板の両面上、および検光子材
料板の一面上にメタライズ膜を形成する前に、該偏光子
材料板の一面上と該ファラデー回転子材料板の一面上の
少なくとも一方の面上、および該検光子材料板の一面上
と該ファラデー回転子材料板の他一面上の少なくとも一
方の面上の所定の位置に、溝を形成することを特徴とす
る光アイソレータの光学素子の製造方法。
4. The polarizer material plate according to claim 2, wherein a metallized film is formed on one surface of the polarizer material plate, both surfaces of the Faraday rotator material plate, and one surface of the analyzer material plate. At a predetermined position on at least one surface on one surface and one surface of the Faraday rotator material plate, and on at least one surface on one surface of the analyzer material plate and the other one surface of the Faraday rotator material plate. A method for manufacturing an optical element of an optical isolator, which comprises forming a groove.
JP17922495A 1994-12-27 1995-07-14 Optical isolator and manufacture of its optical element Pending JPH0933859A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP17922495A JPH0933859A (en) 1995-07-14 1995-07-14 Optical isolator and manufacture of its optical element
KR1019960704694A KR100286956B1 (en) 1994-12-27 1995-12-27 Optical element assembly for optical isolator and manufacturing method thereof
PCT/JP1995/002740 WO1996020423A1 (en) 1994-12-27 1995-12-27 Optical device assembly for optical isolator and production method thereof
DE69503039T DE69503039T2 (en) 1994-12-27 1995-12-27 METHOD FOR PRODUCING AN OPTICAL ARRANGEMENT FOR OPTICAL ISOLATOR
CN95192601A CN1146245A (en) 1994-12-27 1995-12-27 Optical device assembly for optical isolator and production method thereof
EP95942297A EP0747747B1 (en) 1994-12-27 1995-12-27 Production method of optical device assembly for optical isolator
CA002184054A CA2184054A1 (en) 1994-12-27 1995-12-27 Optical device assembly for optical isolator and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17922495A JPH0933859A (en) 1995-07-14 1995-07-14 Optical isolator and manufacture of its optical element

Publications (1)

Publication Number Publication Date
JPH0933859A true JPH0933859A (en) 1997-02-07

Family

ID=16062112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17922495A Pending JPH0933859A (en) 1994-12-27 1995-07-14 Optical isolator and manufacture of its optical element

Country Status (1)

Country Link
JP (1) JPH0933859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198594A (en) * 2000-12-25 2002-07-12 Kyocera Corp Wide-band ase light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198594A (en) * 2000-12-25 2002-07-12 Kyocera Corp Wide-band ase light source

Similar Documents

Publication Publication Date Title
US5402260A (en) Element for optical isolator and optical isolator employing the same, together with semiconductor laser module employing the optical isolator element
US5040863A (en) Optical isolator
US5305137A (en) Optical isolator and method for fabricating the same
KR100287596B1 (en) Photo Isolator
KR20000015885A (en) Otical isolator
JPH0933859A (en) Optical isolator and manufacture of its optical element
JPH08146351A (en) Element for optical isolator and its production
JP2003255269A (en) Optical isolator
JP3570869B2 (en) Optical isolator element and method of manufacturing the same
JP2020194149A (en) Optical element, manufacturing method thereof, optical isolator, and optical transmission device
JP2000180789A (en) Optical isolator
JP2001091899A (en) Surface mounting type isolator
JP4540155B2 (en) Optical isolator
JPH10142558A (en) Optical isolator and its production
JP2579572B2 (en) 3-terminal optical circulator
JP2005215328A (en) Optical isolator
JP3554140B2 (en) Optical isolator element and method of manufacturing the same
JP4429010B2 (en) Optical isolator
JP3154169B2 (en) Optical circulator
JP4628054B2 (en) Optical isolator
JPH09318912A (en) Optical element chip for optical isolator and its manufacture, and optical isolator
JP4443212B2 (en) Method for manufacturing optical isolator element
JP2003066372A (en) Optical isolator
JPH04191815A (en) Optical isolator
JPH08166561A (en) Optical element for optical isolator and optical isolator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040714

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040913

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20041215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050427

Free format text: JAPANESE INTERMEDIATE CODE: A02