Nothing Special   »   [go: up one dir, main page]

JPH09327616A - Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization - Google Patents

Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization

Info

Publication number
JPH09327616A
JPH09327616A JP8149214A JP14921496A JPH09327616A JP H09327616 A JPH09327616 A JP H09327616A JP 8149214 A JP8149214 A JP 8149214A JP 14921496 A JP14921496 A JP 14921496A JP H09327616 A JPH09327616 A JP H09327616A
Authority
JP
Japan
Prior art keywords
flow rate
concentration
exhaust gas
amount
absorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8149214A
Other languages
Japanese (ja)
Inventor
Toshihiro Abe
利浩 阿部
Yoshihisa Fujino
善久 藤野
Hiroo Inoue
博雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP8149214A priority Critical patent/JPH09327616A/en
Publication of JPH09327616A publication Critical patent/JPH09327616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep the concentration of an oxidative substance at a prescribed value or lower, prevent deterioration of the function of a wastewater treatment apparatus, and suppress the deterioration of adsorptive resin of the wastewater treatment apparatus by adjusting the flow rate of oxidative air to be supplied to an absorption tower as to control the concentration of the air prescribed times as high as absorbed SO2 amount. SOLUTION: The flow rate of oxidative air to be supplied to an absorption tower 5 is so controlled as to be a prescribed times as high as the absorbed SO2 amount. That is, a computing apparatus 33 which computes the necessary oxidative air amount 37 to control the concentration of the air to be a prescribed times as high as the absorbed S02 amount and gives an output is installed, a flow rate adjusting damper 43 to adjust the flow rate of the oxidative air to be supplied to the absorption tower 5 is installed in the suction side of an oxidative air blower 6, and a flow rate instructing and adjusting meter 41 which detects the flow rate of the oxidative air to be supplied to the absorption tower 5 and sends out an output of a valve opening instruction signal 42 to the flow rate adjusting damper 43 as to equalize the flow rate of the oxidative air with the necessary oxidative air amount 37 computed by the computing apparatus 33 is installed in the discharge side of the oxidative air blower 6. It is effective that the ratio of the flow rate of the oxidative air to the absorbed SO2 amount is set to be 2.5-3.5 times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排煙脱硫装置の酸
化性物質濃度制御方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for controlling the concentration of oxidizing substances in a flue gas desulfurization device.

【0002】[0002]

【従来の技術】従来、吸収剤として石灰(石灰石、消石
灰又は生石灰)を用いた排煙脱硫装置は、一般に図5に
示されるように、下部に形成された液溜り部1の吸収液
2を、循環ポンプ3の作動により、上部に配設されたス
プレーノズル4から噴霧して循環させると共に、外部か
ら供給される排ガスを前記スプレーノズル4から噴霧さ
れた吸収液2と接触せしめた後排出させる吸収塔5の前
記液溜り部1に、酸化用の空気を供給する酸化空気ブロ
ワ6を接続すると共に、液溜り部1内の吸収液2を撹拌
する撹拌機7を設け、後述する母液タンク25から供給
される吸収液23とサイロ8から供給される石灰9を混
練して吸収剤スラリー10を生成し且つ該吸収剤スラリ
ー10を前記吸収塔5の液溜り部1に供給するための吸
収剤スラリーピット11を設け、前記吸収塔5の底部か
ら吸収液2の一部が供給され且つ前記吸収塔5の液溜り
部1へ供給されるカセイソーダ等の中和剤12の一部が
供給され前記吸収液2と中和剤12を混合撹拌する中和
タンク13を設け、該中和タンク13から抽出された吸
収液14を濃縮せしめるシックナ15を設け、該シック
ナ15で濃縮された吸収液16が供給され該吸収液16
を撹拌する石膏分離機供給タンク17を設け、該石膏分
離機供給タンク17から抽出される吸収液16を脱水し
石膏19を生成するための石膏分離機20を設け、該石
膏分離機20で脱水された水21が供給され該水21の
一部を前記シックナ15へ供給するための濾液ピット2
2を設け、更に、前記シックナ15から上澄みの吸収液
23が供給され該吸収液23の一部を排水処理装置24
と吸収剤スラリーピット11へ供給し且つ残りを前記吸
収塔5の液溜り部1へ送るための母液タンク25を設け
てなる構成を有している。
2. Description of the Related Art Conventionally, a flue gas desulfurization apparatus using lime (limestone, slaked lime or quick lime) as an absorbent, generally absorbs the absorbent 2 in a liquid reservoir 1 formed at the bottom as shown in FIG. By operating the circulation pump 3, the spray nozzle 4 disposed at the upper portion sprays and circulates the exhaust gas, and the exhaust gas supplied from the outside is discharged after being brought into contact with the absorbing liquid 2 sprayed from the spray nozzle 4. An oxidizing air blower 6 for supplying air for oxidation is connected to the liquid reservoir 1 of the absorption tower 5, and a stirrer 7 for stirring the absorbing liquid 2 in the liquid reservoir 1 is provided, and a mother liquor tank 25 described later is provided. Absorbent for kneading the absorbing liquid 23 supplied from the above and the lime 9 supplied from the silo 8 to generate the absorbing slurry 10 and supplying the absorbing slurry 10 to the liquid reservoir 1 of the absorption tower 5. Slurry pick 11, a part of the absorbent 2 is supplied from the bottom of the absorption tower 5 and a part of the neutralizer 12 such as caustic soda supplied to the liquid reservoir 1 of the absorption tower 5 is supplied. A neutralization tank 13 for mixing and stirring 2 and the neutralizing agent 12 is provided, a thickener 15 for concentrating the absorption liquid 14 extracted from the neutralization tank 13 is provided, and the absorption liquid 16 concentrated by the thickener 15 is supplied. The absorption liquid 16
Is provided with a gypsum separator supply tank 17 for stirring, and a gypsum separator 20 for dehydrating the absorption liquid 16 extracted from the gypsum separator supply tank 17 to produce gypsum 19 is provided. The filtrate pit 2 for supplying the purified water 21 and supplying a part of the water 21 to the thickener 15
2 is further provided, and the supernatant absorbing liquid 23 is supplied from the thickener 15 and a part of the absorbing liquid 23 is treated as a waste water treatment device 24.
And a mother liquor tank 25 for supplying the absorbent slurry pit 11 and feeding the rest to the liquid reservoir 1 of the absorption tower 5.

【0003】尚、図5中、18は吸収塔5へ適宜補給さ
れる補給水である。
In FIG. 5, reference numeral 18 is make-up water that is appropriately replenished to the absorption tower 5.

【0004】前述の如き排煙脱硫装置の場合、吸収液2
が循環ポンプ3の作動により循環しており、吸収塔5に
送り込まれた排ガスは、スプレーノズル4から噴霧され
る吸収液2と接触することにより、SO2(硫黄酸化
物)が吸収除去された後、外部へ排出される。
In the case of a flue gas desulfurization apparatus as described above, the absorption liquid 2
Is circulated by the operation of the circulation pump 3, and the exhaust gas sent to the absorption tower 5 comes into contact with the absorption liquid 2 sprayed from the spray nozzle 4, whereby SO 2 (sulfur oxide) is absorbed and removed. Later, it is discharged outside.

【0005】一方、前記排ガスからSO2を吸収した吸
収液2の一部は、吸収塔5の液溜り部1の底部から中和
タンク13へ供給され、該中和タンク13において中和
剤12と混合撹拌され、該混合撹拌された吸収液14が
シックナ15へ送られ、該シックナ15において濃縮さ
れ、該濃縮された吸収液16が石膏分離機供給タンク1
7を経て石膏分離機20へ送られ、該石膏分離機20に
おいて水分が除去され石膏19が生成される。
On the other hand, a part of the absorbing liquid 2 which has absorbed SO 2 from the exhaust gas is supplied from the bottom of the liquid reservoir 1 of the absorption tower 5 to a neutralization tank 13 where the neutralizing agent 12 Is mixed and stirred, the mixed and stirred absorption liquid 14 is sent to the thickener 15, concentrated in the thickener 15, and the concentrated absorption liquid 16 is supplied to the gypsum separator supply tank 1.
7 and sent to a gypsum separator 20 where the moisture is removed to produce gypsum 19.

【0006】前記石膏分離機20で脱水された水21
は、濾液ピット22を経て前記シックナ15へ戻され、
又、該シックナ15における前記吸収液14の濃縮時に
出る上澄みの吸収液23は、母液タンク25を経て排水
処理装置24と吸収剤スラリーピット11へ供給される
と共に、前記吸収塔5の液溜り部1へ送られる。
The water 21 dehydrated by the gypsum separator 20
Is returned to the thickener 15 through the filtrate pit 22,
The supernatant absorbent 23 which is discharged when the absorbent 14 is concentrated in the thickener 15 is supplied to a wastewater treatment device 24 and an absorbent slurry pit 11 through a mother liquor tank 25, and is also supplied to a liquid reservoir of the absorption tower 5. Sent to 1.

【0007】前記吸収剤スラリーピット11へ供給され
た吸収液23は、該吸収剤スラリーピット11において
サイロ8から供給される石灰9と混練され、吸収剤スラ
リー10として前記吸収塔5の液溜り部1に供給され
る。
The absorbent 23 supplied to the absorbent slurry pit 11 is kneaded with the lime 9 supplied from the silo 8 in the absorbent slurry pit 11 to form an absorbent slurry 10 in the liquid reservoir of the absorption tower 5. 1 is supplied.

【0008】前記排水処理装置24へ送られた吸収液2
3は、排水処理装置24の硝化菌の作用により有害な窒
素化合物が分解され、且つCOD(化学的酸素要求量)
で表わされる還元性物質が前記排水処理装置24の高分
子材料からなる吸着樹脂により吸着された後、外部へ排
出される。
The absorbing solution 2 sent to the wastewater treatment device 24
No. 3, harmful nitrogen compounds are decomposed by the action of nitrifying bacteria of the wastewater treatment device 24, and COD (chemical oxygen demand)
Is adsorbed by the polymer resin of the wastewater treatment device 24 and then discharged to the outside.

【0009】[0009]

【発明が解決しようとする課題】前述の如き従来の排煙
脱硫装置においては、脱硫の主反応に必要となる量以上
の酸化空気が供給されると、副反応としてS28(過硫
酸)やIO3(ヨウ素酸)等の酸化性物質が生成されて
該酸化性物質の濃度が高まり、排水処理装置24の硝化
菌の活性低下が引き起こされたり、或いは硝化菌が死滅
してしまい、排水処理装置24の機能が低下すると共
に、該排水処理装置24の吸着樹脂の劣化が速まるとい
う問題を有していた。
In the conventional flue gas desulfurization apparatus as described above, when an amount of oxidizing air exceeding the amount required for the main reaction of desulfurization is supplied, S 2 O 8 (persulfuric acid) is generated as a side reaction. ) Or IO 3 (iodic acid) or the like is generated to increase the concentration of the oxidizing substance, which causes a decrease in the activity of nitrifying bacteria in the wastewater treatment device 24, or kills the nitrifying bacteria. There is a problem that the function of the wastewater treatment device 24 is deteriorated and the adsorbent resin of the wastewater treatment device 24 is rapidly deteriorated.

【0010】このため、従来においては、酸化空気ブロ
ワ6によって吸収塔5へ供給される酸化空気量[Nm3
/h]は、吸収液2の酸化還元電位(ORP値)を検出
する酸化還元電位計(図示せず)の指示値を指標として
制御するようにしていた。
Therefore, conventionally, the oxidizing air amount [Nm 3 is supplied to the absorption tower 5 by the oxidizing air blower 6].
/ H] was controlled by using an indicator value of an oxidation-reduction potentiometer (not shown) for detecting the oxidation-reduction potential (ORP value) of the absorbent 2 as an index.

【0011】尚、前記酸化性物質の濃度と酸化還元電位
との関係は、酸化還元電位を小さくするほど、酸化性物
質の濃度は減少するため、酸化還元電位が所定の値とな
るよう、前記酸化空気量を制御してやれば、酸化性物質
の濃度を所定の値以下に抑えることが可能となる。
The relationship between the concentration of the oxidizing substance and the oxidation-reduction potential is such that the concentration of the oxidizing substance decreases as the oxidation-reduction potential decreases, so that the oxidation-reduction potential reaches a predetermined value. By controlling the amount of oxidizing air, it becomes possible to keep the concentration of the oxidizing substance below a predetermined value.

【0012】しかしながら、前記酸化性物質の濃度と酸
化還元電位との関係は、石炭焚ボイラからの排ガスを脱
硫する場合、炭種によるばらつきが大きく、前記酸化還
元電位を指標とすることは、必ずしも適正であるとは言
えなかった。
However, the relationship between the concentration of the oxidizing substance and the redox potential varies greatly depending on the type of coal when desulfurizing exhaust gas from a coal-fired boiler, and it is not always necessary to use the redox potential as an index. It wasn't right.

【0013】又、前記酸化還元電位は、吸収液2中に酸
化空気が供給された結果として既に存在しているもので
あり、このような吸収液2中に既に存在している酸化還
元電位に基づいて新たに供給すべき酸化空気量を制御す
るのでは、その分だけ遅れが生じていることとなり、制
御のやり方としては改善の余地があった。
The redox potential is already present as a result of the supply of oxidizing air into the absorbing liquid 2, and the redox potential already existing in the absorbing liquid 2 is used. If the amount of oxidizing air to be newly supplied is controlled based on this, there is a delay by that amount, and there is room for improvement in the control method.

【0014】本発明は、斯かる実情に鑑み、石炭焚ボイ
ラからの排ガスを脱硫する場合でも炭種による影響を受
けることなく、酸化性物質の濃度を所定値以下に保持し
て排水処理装置の機能低下を防止し得、且つ排水処理装
置の吸着樹脂の劣化を抑制し得、更に、制御系としての
遅れをなくして応答性を良好とし得る排煙脱硫装置の酸
化性物質濃度制御方法及び装置を提供しようとするもの
である。
[0014] In view of the above situation, the present invention maintains the concentration of the oxidizing substance at a predetermined value or less without affecting the coal type even when desulfurizing the exhaust gas from the coal-fired boiler, and Oxidizing substance concentration control method and device for flue gas desulfurization device, which can prevent deterioration of function, can suppress deterioration of adsorbent resin of waste water treatment device, and can improve responsiveness by eliminating delay as a control system Is to provide.

【0015】[0015]

【課題を解決するための手段】本発明は、吸収剤として
石灰を用いた吸収液と排ガスを接触せしめて排ガス中の
SO2を吸収除去し該排ガスと接触せしめた吸収液に酸
化空気を吹き込む吸収塔を備えた排煙脱硫装置の酸化性
物質濃度制御方法であって、吸収SO2量に対して所要
の倍率となるよう、吸収塔へ供給する酸化空気の流量を
調整することを特徴とする排煙脱硫装置の酸化性物質濃
度制御方法にかかるものである。
According to the present invention, an absorbing liquid containing lime as an absorbent is brought into contact with exhaust gas to absorb and remove SO 2 in the exhaust gas, and oxidizing air is blown into the absorbing liquid brought into contact with the exhaust gas. A method for controlling the concentration of oxidizing substances in a flue gas desulfurization apparatus equipped with an absorption tower, characterized in that the flow rate of oxidizing air supplied to the absorption tower is adjusted so that the required ratio to the amount of absorbed SO 2 is obtained. The present invention relates to a method for controlling the concentration of oxidizing substances in a flue gas desulfurization device.

【0016】前記排煙脱硫装置の酸化性物質濃度制御方
法においては、吸収SO2量に対する酸化空気の流量の
倍率を2.5〜3.5とすることが有効である。
In the oxidant concentration control method for the flue gas desulfurization apparatus, it is effective to set the ratio of the flow rate of oxidizing air to the absorbed SO 2 amount to 2.5 to 3.5.

【0017】又、本発明は、吸収剤として石灰を用いた
吸収液と排ガスを接触せしめて排ガス中のSO2を吸収
除去し該排ガスと接触せしめた吸収液に酸化空気を吹き
込む吸収塔を備えた排煙脱硫装置の酸化性物質濃度制御
装置であって、吸収塔の出口側の排ガス流量を検出する
排ガス流量検出器と、吸収塔の入口側における排ガス中
のSO2濃度を検出する入口側SO2濃度検出器と、吸収
塔の出口側における排ガス中のSO2濃度を検出する出
口側SO2濃度検出器と、前記入口側SO2濃度検出器で
検出されたSO2濃度と出口側SO2濃度検出器で検出さ
れたSO2濃度との差を求めて吸収SO2濃度を求め、該
吸収SO2濃度と前記排ガス流量検出器で検出された排
ガス流量との積を求めて吸収SO2量を求め、該吸収S
2量に対して所要の倍率となるよう必要酸化空気量を
求めて出力する演算器と、吸収塔へ供給される酸化空気
の流量を調整する流量調整ダンパと、吸収塔へ供給され
る酸化空気の流量を検出し且つ該酸化空気の流量が前記
演算器で求められた必要酸化空気量と合致するよう流量
調整ダンパへ開度指令信号を出力する流量指示調節計と
を備えたことを特徴とする排煙脱硫装置の酸化性物質濃
度制御装置にかかるものである。
Further, the present invention comprises an absorption tower in which the absorbing solution using lime as the absorbent is brought into contact with the exhaust gas to absorb and remove SO 2 in the exhaust gas and blow the oxidizing air into the absorbing solution brought into contact with the exhaust gas. An exhaust gas flow rate detector for detecting the exhaust gas flow rate at the outlet side of the absorption tower, and an inlet side for detecting the SO 2 concentration in the exhaust gas at the inlet side of the absorption tower. and SO 2 concentration detector, and the outlet side SO 2 concentration detector for detecting the SO 2 concentration in the exhaust gas at the outlet side of the absorption tower, is detected by the inlet-side SO 2 concentration detector SO 2 concentration and the outlet SO and obtains the difference between the detected SO 2 concentration 2 concentration detector obtains the absorption SO 2 concentration, absorption SO 2 seeking the product of the exhaust gas flow rate detected by the exhaust gas flow rate detector and said absorbing SO 2 concentration The amount is calculated and the absorption S
An arithmetic unit that obtains and outputs the required amount of oxidizing air so that the required ratio is obtained with respect to the O 2 amount, a flow rate adjustment damper that adjusts the flow rate of the oxidizing air that is supplied to the absorption tower, and the oxidation supplied to the absorption tower. A flow rate indicating controller for detecting a flow rate of air and outputting an opening degree instruction signal to a flow rate adjusting damper so that the flow rate of the oxidizing air matches the required oxidizing air amount obtained by the arithmetic unit. The present invention relates to the oxidant concentration control device of the flue gas desulfurization device.

【0018】前記排煙脱硫装置の酸化性物質濃度制御装
置においては、吸収SO2量に対する必要酸化空気量の
倍率を2.5〜3.5とすることが有効である。
In the oxidant concentration control device of the flue gas desulfurization device, it is effective to set the ratio of the required oxidizing air amount to the absorbed SO 2 amount to 2.5 to 3.5.

【0019】上記手段によれば、以下のような作用が得
られる。
According to the above means, the following effects can be obtained.

【0020】本発明の排煙脱硫装置の酸化性物質濃度制
御方法の場合、吸収SO2量に対して所要の倍率となる
よう、吸収塔へ供給する酸化空気の流量が調整される。
In the case of the method for controlling the concentration of oxidizing substances in the flue gas desulfurization apparatus of the present invention, the flow rate of the oxidizing air supplied to the absorption tower is adjusted so that the required SO 2 amount can be obtained.

【0021】又、本発明の排煙脱硫装置の酸化性物質濃
度制御装置の場合、排煙脱硫装置の運転時には、入口側
SO2濃度検出器により吸収塔の入口側における排ガス
中のSO2濃度が検出されると共に、出口側SO2濃度検
出器により吸収塔の出口側における排ガス中のSO2
度が検出され、更に、排ガス流量検出器により吸収塔の
出口側の排ガス流量が検出され、演算器へ入力され、該
演算器においては、前記入口側SO2濃度検出器で検出
されたSO2濃度と出口側SO2濃度検出器で検出された
SO2濃度との差が求められて吸収SO2濃度が求めら
れ、該吸収SO2濃度と前記排ガス流量検出器で検出さ
れた排ガス流量との積が求められて、吸収SO2量が求
められ、該吸収SO2量に基づき必要酸化空気量が求め
られて流量指示調節計へ出力され、吸収塔へ供給される
酸化空気の流量が前記演算器で求められた必要酸化空気
量と合致するよう流量指示調節計から流量調整ダンパへ
開度指令信号が出力され、吸収SO2量に対して所要の
倍率となるよう、吸収塔へ供給される酸化空気の流量が
調整される。
Further, in the case of the oxidant concentration control device of the flue gas desulfurization apparatus of the present invention, when the flue gas desulfurization apparatus is operating, the SO 2 concentration in the exhaust gas at the inlet side of the absorption tower is detected by the SO 2 concentration detector on the inlet side. Is detected, the SO 2 concentration detector at the outlet side detects the SO 2 concentration in the exhaust gas at the outlet side of the absorption tower, and the exhaust gas flow rate detector detects the exhaust gas flow rate at the outlet side of the absorption tower. is input to the vessel, in the arithmetic unit, the inlet-side SO 2 concentration detector difference between the detected SO 2 concentration and the detected SO 2 concentration at the outlet SO 2 concentration detector and is required absorption SO 2 concentration is determined, it is demanded product of exhaust gas flow rate detected by the said absorbing SO 2 concentration the exhaust gas flow rate detector, the absorption SO 2 amount is determined, required oxidation air quantity on the basis of the absorption SO 2 amount Flow control controller required Is output, the opening command signal from the flow indicating controller to the flow control damper so that the flow rate of the oxidizing air to meet the required oxidation air amount determined by the arithmetic unit is supplied is outputted to the absorption column, the absorption SO 2 amount The flow rate of the oxidizing air supplied to the absorption tower is adjusted so that the required magnification is obtained.

【0022】この結果、本発明の排煙脱硫装置の酸化性
物質濃度制御方法及び装置においては、脱硫の主反応に
対する副反応が起こりにくくなってS28やIO3等の
酸化性物質が生成されにくくなり、該酸化性物質の濃度
が高まることが抑制され、排水処理装置の硝化菌の活性
低下が引き起こされたり、或いは硝化菌が死滅してしま
うことがなくなり、排水処理装置の機能が低下せず、該
排水処理装置の吸着樹脂の劣化も抑えられる。
As a result, in the method and apparatus for controlling the concentration of oxidative substances in the flue gas desulfurization apparatus of the present invention, side reactions to the main reaction of desulfurization do not easily occur, and oxidative substances such as S 2 O 8 and IO 3 are removed. It is less likely to be generated, the concentration of the oxidizing substance is suppressed from increasing, the activity of nitrifying bacteria in the wastewater treatment device is lowered, or the nitrifying bacteria are not killed, and the function of the wastewater treatment device is reduced. It does not decrease, and deterioration of the adsorbent resin of the wastewater treatment equipment can be suppressed.

【0023】しかも、吸収SO2量に対して所要の倍率
となるよう、吸収塔へ供給される酸化空気の流量を調整
すると、石炭焚ボイラからの排ガスを脱硫する場合に
も、炭種によるばらつきはほとんどなく、酸化性物質の
濃度が所定の値以下に抑えられ、又、従来のように、吸
収液中に既に存在している酸化還元電位に基づいて新た
に供給すべき酸化空気量を制御するのではなく、吸収S
2量に応じてフィードフォワード制御的に酸化空気の
流量を調整するため、制御系としての遅れもなくなり、
応答性もよくなる。
Moreover, if the flow rate of the oxidizing air supplied to the absorption tower is adjusted so that the required ratio to the absorbed SO 2 amount is obtained, even if the exhaust gas from the coal-fired boiler is desulfurized, it varies depending on the coal type. The concentration of oxidizing substances is kept below a certain level, and the amount of oxidizing air to be newly supplied is controlled based on the redox potential already existing in the absorbing liquid as in the past. Absorption S instead of doing
Since the flow rate of the oxidizing air is adjusted in a feed-forward control according to the amount of O 2 , there is no delay as a control system.
Responsiveness is also improved.

【0024】特に、本発明の排煙脱硫装置の酸化性物質
濃度制御方法及び装置において、吸収SO2量に対する
酸化空気の流量の倍率、即ち吸収SO2量に対する必要
酸化空気量の倍率を2.5〜3.5とすると、要求され
る脱硫性能を確保し且つ酸化性物質濃度を要求される値
以下に減少させることができ、より有効となる。
[0024] Particularly, in an oxidizing substance concentration control method and apparatus for flue desulfurization apparatus of the present invention, the magnification of the flow rate of the oxidizing air to absorb SO 2 amount, i.e. the required oxidation air amount ratio to absorb SO 2 of 2. When it is from 5 to 3.5, the required desulfurization performance can be secured and the concentration of the oxidizing substance can be reduced to the required value or less, which is more effective.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0026】図1〜図4は本発明を実施する形態の一例
であって、図中、図5と同一の符号を付した部分は同一
物を表わしており、基本的な構成は図5に示す従来のも
のと同様であるが、本図示例の特徴とするところは、図
1〜図4に示す如く、吸収SO2量35に対して所要の
倍率となるよう、吸収塔5へ供給する酸化空気の流量を
調整するA/S制御、即ち吸収SO2量35を指標とし
た酸化空気吹込倍率制御とするよう構成した点にある。
FIGS. 1 to 4 show an example of an embodiment for carrying out the present invention. In the drawings, the parts denoted by the same reference numerals as those in FIG. 5 represent the same things, and the basic structure is shown in FIG. is similar to the conventional one shown, where the feature of the present illustrated embodiment, as shown in FIGS. 1 to 4, so that a required magnification to the absorption sO 2 amount 35, supplied to the absorption tower 5 The point is that the A / S control for adjusting the flow rate of the oxidizing air, that is, the oxidizing air blowing ratio control using the absorbed SO 2 amount 35 as an index is configured.

【0027】尚、前記A/S制御における“A”は“A
ir”の略であって必要酸化空気量37を表わし、
“S”は“Sulfur”の略であって吸収SO2量3
5を表わしている。
Incidentally, "A" in the A / S control is "A".
abbreviated “ir” and represents the required amount of oxidizing air 37,
“S” is an abbreviation for “Sulfur”, and the absorbed SO 2 amount is 3
5 is represented.

【0028】図中、26は吸収塔5の出口側の排ガス流
量27を検出する排ガス流量検出器、28は前記吸収塔
5の入口側における排ガス中のSO2濃度29を検出す
る入口側SO2濃度検出器、30は前記吸収塔5の出口
側における排ガス中のSO2濃度31を検出する出口側
SO2濃度検出器、33は入口側SO2濃度検出器28で
検出されたSO2濃度29と出口側SO2濃度検出器30
で検出されたSO2濃度31との差を求めて吸収SO2
度32aを求め、該吸収SO2濃度32aと前記排ガス
流量検出器26で検出された排ガス流量27との積を求
めて吸収SO2量35を求め、該吸収SO2量35に対し
て所要の倍率となるよう必要酸化空気量37を求めて出
力する演算器であり、酸化空気ブロワ6の吸込側に、吸
収塔5へ供給される酸化空気の流量を調整する流量調整
ダンパ43を設け、酸化空気ブロワ6の吐出側に、吸収
塔5へ供給される酸化空気の流量を検出し且つ該酸化空
気の流量が前記演算器33で求められた必要酸化空気量
37と合致するよう流量調整ダンパ43へ開度指令信号
42を出力する流量指示調節計41を設けてある。
In the figure, 26 is an exhaust gas flow rate detector for detecting the exhaust gas flow rate 27 at the outlet side of the absorption tower 5, 28 is an inlet side SO 2 for detecting the SO 2 concentration 29 in the exhaust gas at the inlet side of the absorption tower 5. A concentration detector, 30 is an outlet side SO 2 concentration detector that detects the SO 2 concentration 31 in the exhaust gas at the outlet side of the absorption tower 5, and 33 is an SO 2 concentration 29 detected by the inlet side SO 2 concentration detector 28. And SO 2 concentration detector 30 on the outlet side
The absorbed SO 2 concentration 32a is obtained by calculating the difference from the SO 2 concentration 31 detected in step S1, and the product of the absorbed SO 2 concentration 32a and the exhaust gas flow rate 27 detected by the exhaust gas flow rate detector 26 is calculated. 2 is an arithmetic unit that obtains the amount 35, and obtains and outputs the required amount of oxidizing air 37 so that the required SO 2 amount 35 becomes a required multiplication factor, and supplies it to the suction side of the oxidizing air blower 6 to the absorption tower 5. A flow rate adjusting damper 43 for adjusting the flow rate of the oxidizing air is provided, the flow rate of the oxidizing air supplied to the absorption tower 5 is detected on the discharge side of the oxidizing air blower 6, and the flow rate of the oxidizing air is calculated by the calculator 33. A flow rate indicating controller 41 that outputs an opening degree instruction signal 42 to the flow rate adjusting damper 43 is provided so as to match the required oxidizing air amount 37 obtained in step 1.

【0029】前記演算器33は、図2に示す如く、入口
側SO2濃度検出器28で検出されたSO2濃度29と出
口側SO2濃度検出器30で検出されたSO2濃度31と
の差を求めて吸収SO2濃度32aを求める減算器32
と、該減算器32で求められた吸収SO2濃度32aと
前記排ガス流量検出器26で検出された排ガス流量27
との積を求めて、吸収SO2量35を求める乗算器34
と、該乗算器34で求められた吸収SO2量35に基づ
き必要酸化空気量37を出力する関数発生器36とを備
えてなる構成を有している。
As shown in FIG. 2, the computing unit 33 has a SO 2 concentration 29 detected by the SO 2 concentration detector 28 on the inlet side and a SO 2 concentration 31 detected by the SO 2 concentration detector 30 on the outlet side. Subtractor 32 that obtains the absorbed SO 2 concentration 32a by obtaining the difference
And the absorbed SO 2 concentration 32a obtained by the subtractor 32 and the exhaust gas flow rate 27 detected by the exhaust gas flow rate detector 26.
Seeking product of, obtaining the absorption SO 2 amount 35 multiplier 34
And a function generator 36 that outputs a required oxidizing air amount 37 based on the absorbed SO 2 amount 35 obtained by the multiplier 34.

【0030】尚、前記関数発生器36には、図3に示す
ような関数が入力されており、該関数は、吸収SO2
35の増減に対し略比例させて必要酸化空気量37を増
減させることを表わしており、この関数の設定を適宜変
更することにより、酸化性物質とCODの値を所望の値
とすることができる。
A function as shown in FIG. 3 is input to the function generator 36, and the function increases / decreases the required oxidizing air amount 37 substantially in proportion to the increase / decrease in the absorbed SO 2 amount 35. This means that the values of the oxidizing substance and COD can be set to desired values by appropriately changing the settings of this function.

【0031】次に、上記図示例の作動を説明する。Next, the operation of the illustrated example will be described.

【0032】排煙脱硫装置の運転時には、入口側SO2
濃度検出器28により吸収塔5の入口側における排ガス
中のSO2濃度29が検出されると共に、出口側SO2
度検出器30により吸収塔5の出口側における排ガス中
のSO2濃度31が検出され、更に、排ガス流量検出器
26により吸収塔5の出口側の排ガス流量27が検出さ
れ、演算器33へ入力される。
During operation of the flue gas desulfurizer, SO 2 on the inlet side
The concentration detector 28 detects the SO 2 concentration 29 in the exhaust gas at the inlet side of the absorption tower 5, and the outlet side SO 2 concentration detector 30 detects the SO 2 concentration 31 in the exhaust gas at the outlet side of the absorption tower 5. Further, the exhaust gas flow rate detector 26 detects the exhaust gas flow rate 27 on the outlet side of the absorption tower 5 and inputs it to the calculator 33.

【0033】該演算器33においては、前記入口側SO
2濃度検出器28で検出されたSO2濃度29と出口側S
2濃度検出器30で検出されたSO2濃度31との差が
減算器32で求められて吸収SO2濃度32aが求めら
れ、該吸収SO2濃度32aと前記排ガス流量検出器2
6で検出された排ガス流量27との積が乗算器34で求
められて、吸収SO2量35が求められ、前記乗算器3
4で求められた吸収SO2量35に基づき必要酸化空気
量37が関数発生器36から流量指示調節計41へ出力
され、吸収塔5へ供給される酸化空気の流量が前記演算
器33で求められた必要酸化空気量37と合致するよう
流量指示調節計41から流量調整ダンパ43へ開度指令
信号42が出力され、吸収SO2量35に対して所要の
倍率となるよう、吸収塔5へ供給される酸化空気の流量
が調整される。
In the calculator 33, the inlet side SO
2 SO 2 concentration 29 detected by the concentration detector 28 and S on the outlet side
The difference from the SO 2 concentration 31 detected by the O 2 concentration detector 30 is obtained by the subtractor 32 to obtain the absorbed SO 2 concentration 32a. The absorbed SO 2 concentration 32a and the exhaust gas flow rate detector 2
The product of the exhaust gas flow rate 27 detected in 6 is obtained by the multiplier 34, and the absorbed SO 2 amount 35 is obtained.
The required oxidizing air amount 37 is output from the function generator 36 to the flow rate indicator controller 41 based on the absorbed SO 2 amount 35 obtained in step 4, and the flow rate of the oxidizing air supplied to the absorption tower 5 is obtained by the calculator 33. The opening instruction signal 42 is output from the flow rate indicating controller 41 to the flow rate adjusting damper 43 so as to match the required oxidizing air amount 37, and the absorption tower 5 is moved to the absorption SO 2 amount 35 so that the required magnification is obtained. The flow rate of the oxidizing air supplied is adjusted.

【0034】この結果、脱硫の主反応に対する副反応が
起こりにくくなってS28やIO3等の酸化性物質が生
成されにくくなり、該酸化性物質の濃度が高まることが
抑制され、排水処理装置24の硝化菌の活性低下が引き
起こされたり、或いは硝化菌が死滅してしまうことがな
くなり、排水処理装置24の機能が低下せず、該排水処
理装置24の吸着樹脂の劣化も抑えられる。
As a result, a side reaction with respect to the main reaction of desulfurization is less likely to occur, an oxidizing substance such as S 2 O 8 or IO 3 is less likely to be generated, and the concentration of the oxidizing substance is prevented from increasing, and the wastewater is discharged. The activity of the nitrifying bacteria in the treatment device 24 will not be reduced or the nitrifying bacteria will not be killed, the function of the wastewater treatment device 24 will not be reduced, and the deterioration of the adsorption resin of the wastewater treatment device 24 can be suppressed. .

【0035】しかも、吸収SO2量35に対して所要の
倍率となるよう、吸収塔5へ供給される酸化空気の流量
を調整すると、石炭焚ボイラからの排ガスを脱硫する場
合にも、炭種によるばらつきはほとんどなく、酸化性物
質の濃度が所定の値以下に抑えられ、又、従来のよう
に、吸収液2中に既に存在している酸化還元電位に基づ
いて新たに供給すべき酸化空気量を制御するのではな
く、吸収SO2量35に応じてフィードフォワード制御
的に酸化空気の流量を調整するため、制御系としての遅
れもなくなり、応答性もよくなる。
Moreover, when the flow rate of the oxidizing air supplied to the absorption tower 5 is adjusted so that the required SO 2 amount is 35, the coal type can be used even when the exhaust gas from the coal-fired boiler is desulfurized. The concentration of the oxidizing substance is suppressed to a predetermined value or less, and the oxidizing air to be newly supplied based on the redox potential already existing in the absorbing liquid 2 as in the conventional case. Since the flow rate of the oxidizing air is adjusted in a feedforward control according to the absorbed SO 2 amount 35 instead of controlling the amount, the delay as a control system is eliminated and the response is improved.

【0036】ここで、A/S(酸化空気吹込倍率)と酸
化性物質濃度との関係は、図4に示す如く、A/Sを小
さくするほど、酸化性物質濃度は減少するため、この関
係より、酸化性物質濃度を5[mg/l]以下にする場
合には、A/Sを3.2以下とすればよいが、A/Sを
小さくしすぎると、酸化空気不足によるSO3が発生し
た場合、脱硫性能が低下するため、該脱硫性能を確保し
且つ酸化性物質濃度を減少させるためには、A/Sの値
を2.8〜3.2程度とすることが好ましい。但し、前
記酸化性物質濃度は、およそ10[mg/l]以下に抑
えればよく、又、要求される脱硫性能は、その設備によ
って異なり、ある程度の幅があるため、こうした点を考
慮した場合、A/Sの値は、およそ2.5〜3.5程度
とすればよい。
Here, as shown in FIG. 4, the relationship between A / S (oxidizing air blowing ratio) and the concentration of oxidizing substances is that the smaller the A / S is, the more the concentration of oxidizing substances decreases. Therefore, when the oxidizing substance concentration is 5 [mg / l] or less, A / S should be 3.2 or less. However, if A / S is too small, SO 3 due to insufficient oxidizing air will be generated. When it occurs, the desulfurization performance is deteriorated. Therefore, in order to secure the desulfurization performance and reduce the concentration of the oxidizing substance, it is preferable to set the A / S value to about 2.8 to 3.2. However, the concentration of the oxidizing substance may be suppressed to about 10 [mg / l] or less, and the desulfurization performance required varies depending on the equipment and has a certain range. , A / S may be about 2.5 to 3.5.

【0037】こうして、石炭焚ボイラからの排ガスを脱
硫する場合でも炭種による影響を受けることなく、酸化
性物質の濃度を所定値以下に保持して排水処理装置24
の機能低下を防止し得、且つ排水処理装置24の吸着樹
脂の劣化を抑制し得、更に、制御系としての遅れをなく
して応答性を良好とし得る。
Thus, even when desulfurizing the exhaust gas from the coal-fired boiler, the concentration of the oxidizing substance is maintained at a predetermined value or less without being affected by the coal type, and the wastewater treatment equipment 24
Function deterioration can be prevented, deterioration of the adsorbent resin of the waste water treatment device 24 can be suppressed, and further, responsiveness can be improved by eliminating delay as a control system.

【0038】尚、本発明の排煙脱硫装置の酸化性物質濃
度制御方法及び装置は、上述の図示例にのみ限定される
ものではなく、本発明の要旨を逸脱しない範囲内におい
て種々変更を加え得ることは勿論である。
The method and apparatus for controlling the concentration of oxidizing substances in the flue gas desulfurization apparatus according to the present invention are not limited to the above illustrated examples, and various modifications may be made without departing from the gist of the present invention. Of course you can get it.

【0039】[0039]

【発明の効果】以上、説明したように本発明の請求項1
〜4記載の排煙脱硫装置の酸化性物質濃度制御方法及び
装置によれば、石炭焚ボイラからの排ガスを脱硫する場
合でも炭種による影響を受けることなく、酸化性物質の
濃度を所定値以下に保持して排水処理装置の機能低下を
防止し得、且つ排水処理装置の吸着樹脂の劣化を抑制し
得、更に、制御系としての遅れをなくして応答性を良好
とし得るという優れた効果を奏し得る。
As described above, the first aspect of the present invention is as described above.
According to the oxidant concentration control method and device of the flue gas desulfurization apparatus described in 1 to 4, even when desulfurizing the exhaust gas from the coal-fired boiler, the concentration of the oxidant is not more than a predetermined value without being affected by the coal species. It is possible to prevent the deterioration of the function of the wastewater treatment equipment by suppressing the deterioration of the adsorbent resin of the wastewater treatment equipment, and further to improve the response by eliminating the delay as a control system. Can play.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する形態の一例の全体概要構成図
である。
FIG. 1 is an overall schematic configuration diagram of an example of an embodiment of the present invention.

【図2】図1に示す演算器の詳細を表わすブロック図で
ある。
FIG. 2 is a block diagram showing details of a computing unit shown in FIG.

【図3】図2に示す関数発生器に設定されている関数を
表わす線図である。
FIG. 3 is a diagram showing a function set in a function generator shown in FIG.

【図4】本発明を実施する形態の一例において、A/S
(酸化空気吹込倍率)と酸化性物質濃度との関係を表わ
す線図である。
FIG. 4 shows an example of A / S according to an embodiment of the present invention.
It is a diagram showing the relationship between (oxidizing air blowing ratio) and the concentration of oxidizing substances.

【図5】従来例の全体概要構成図である。FIG. 5 is an overall schematic configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

2 吸収液 5 吸収塔 6 酸化空気ブロワ 9 石灰 24 排水処理装置 26 排ガス流量検出器 27 排ガス流量 28 入口側SO2濃度検出器 29 SO2濃度 30 出口側SO2濃度検出器 31 SO2濃度 32a 吸収SO2濃度 33 演算器 35 吸収SO2量 37 必要酸化空気量 41 流量指示調節計 42 開度指令信号 43 流量調整ダンパ2 Absorbing liquid 5 Absorption tower 6 Oxidized air blower 9 Lime 24 Wastewater treatment device 26 Exhaust gas flow rate detector 27 Exhaust gas flow rate 28 Inlet side SO 2 concentration detector 29 SO 2 concentration 30 Outlet side SO 2 concentration detector 31 SO 2 concentration 32a Absorption SO 2 concentration 33 Operator 35 Absorbed SO 2 amount 37 Required oxidizing air amount 41 Flow rate indicator controller 42 Opening command signal 43 Flow rate adjustment damper

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 吸収剤として石灰を用いた吸収液と排ガ
スを接触せしめて排ガス中のSO2を吸収除去し該排ガ
スと接触せしめた吸収液に酸化空気を吹き込む吸収塔を
備えた排煙脱硫装置の酸化性物質濃度制御方法であっ
て、 吸収SO2量に対して所要の倍率となるよう、吸収塔へ
供給する酸化空気の流量を調整することを特徴とする排
煙脱硫装置の酸化性物質濃度制御方法。
1. Flue gas desulfurization provided with an absorption tower in which an absorbing solution using lime as an absorbent is brought into contact with exhaust gas to absorb and remove SO 2 in the exhaust gas, and oxidizing air is blown into the absorbing solution brought into contact with the exhaust gas. A method for controlling the concentration of oxidizing substances in a device, wherein the flow rate of oxidizing air supplied to the absorption tower is adjusted so that the required SO 2 amount is multiplied, and the oxidizing property of the flue gas desulfurization device is adjusted. Substance concentration control method.
【請求項2】 吸収SO2量に対する酸化空気の流量の
倍率を2.5〜3.5とした請求項1記載の排煙脱硫装
置の酸化性物質濃度制御方法。
2. The method for controlling the concentration of oxidizing substances in a flue gas desulfurization device according to claim 1, wherein the ratio of the flow rate of oxidizing air to the absorbed SO 2 amount is 2.5 to 3.5.
【請求項3】 吸収剤として石灰を用いた吸収液と排ガ
スを接触せしめて排ガス中のSO2を吸収除去し該排ガ
スと接触せしめた吸収液に酸化空気を吹き込む吸収塔を
備えた排煙脱硫装置の酸化性物質濃度制御装置であっ
て、 吸収塔の出口側の排ガス流量を検出する排ガス流量検出
器と、 吸収塔の入口側における排ガス中のSO2濃度を検出す
る入口側SO2濃度検出器と、 吸収塔の出口側における排ガス中のSO2濃度を検出す
る出口側SO2濃度検出器と、 前記入口側SO2濃度検出器で検出されたSO2濃度と出
口側SO2濃度検出器で検出されたSO2濃度との差を求
めて吸収SO2濃度を求め、該吸収SO2濃度と前記排ガ
ス流量検出器で検出された排ガス流量との積を求めて吸
収SO2量を求め、該吸収SO2量に対して所要の倍率と
なるよう必要酸化空気量を求めて出力する演算器と、 吸収塔へ供給される酸化空気の流量を調整する流量調整
ダンパと、 吸収塔へ供給される酸化空気の流量を検出し且つ該酸化
空気の流量が前記演算器で求められた必要酸化空気量と
合致するよう流量調整ダンパへ開度指令信号を出力する
流量指示調節計とを備えたことを特徴とする排煙脱硫装
置の酸化性物質濃度制御装置。
3. Flue gas desulfurization provided with an absorption tower in which an absorbent containing lime as an absorbent is brought into contact with the exhaust gas to absorb and remove SO 2 in the exhaust gas, and an oxidizing air is blown into the absorbent brought into contact with the exhaust gas. a oxidizer concentration control device of the apparatus, and the exhaust gas flow rate detector for detecting the exhaust gas flow rate at the outlet side of the absorption tower, the inlet-side SO 2 concentration detection for detecting the SO 2 concentration in the exhaust gas at the inlet side of the absorption tower vessels and, outlet SO 2 concentration detector and, SO 2 concentration and the outlet SO 2 concentration sensor is detected by the inlet-side SO 2 concentration detector for detecting the SO 2 concentration in the exhaust gas at the outlet side of the absorption tower in seeking the difference between the detected SO 2 concentration calculated absorption SO 2 concentration, determine the absorption SO 2 amount seeking the product of the detected exhaust gas flow rate in the said absorbing SO 2 concentration the exhaust gas flow rate detector, The required magnification for the absorbed SO 2 amount So as to obtain and output the required amount of oxidizing air, a flow rate adjustment damper that adjusts the flow rate of oxidizing air supplied to the absorption tower, the flow rate of oxidizing air supplied to the absorption tower, and Of the flue gas desulfurization apparatus, and a flow rate indicating controller that outputs an opening degree instruction signal to a flow rate adjusting damper so that the flow rate of the flow rate matches the required oxidizing air amount obtained by the arithmetic unit. Concentration control device.
【請求項4】 吸収SO2量に対する必要酸化空気量の
倍率を2.5〜3.5とした請求項3記載の排煙脱硫装
置の酸化性物質濃度制御装置。
4. The oxidant concentration control device for a flue gas desulfurization device according to claim 3, wherein the ratio of the required amount of oxidizing air to the amount of absorbed SO 2 is 2.5 to 3.5.
JP8149214A 1996-06-11 1996-06-11 Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization Pending JPH09327616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8149214A JPH09327616A (en) 1996-06-11 1996-06-11 Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8149214A JPH09327616A (en) 1996-06-11 1996-06-11 Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization

Publications (1)

Publication Number Publication Date
JPH09327616A true JPH09327616A (en) 1997-12-22

Family

ID=15470347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8149214A Pending JPH09327616A (en) 1996-06-11 1996-06-11 Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization

Country Status (1)

Country Link
JP (1) JPH09327616A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980942B2 (en) 2000-03-24 2005-12-27 Kabushiki Kaisha Toshiba Method of simulation of production process of semiconductor device and simulator thereof
JP2010240624A (en) * 2009-04-09 2010-10-28 Mitsubishi Heavy Ind Ltd Flue gas desulfurization apparatus and exhaust gas treatment method
EP3326708A4 (en) * 2015-07-23 2018-07-04 Mitsubishi Hitachi Power Systems, Ltd. Wet type flue gas desulfurization device and method for operating wet type flue gas desulfurization device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980942B2 (en) 2000-03-24 2005-12-27 Kabushiki Kaisha Toshiba Method of simulation of production process of semiconductor device and simulator thereof
JP2010240624A (en) * 2009-04-09 2010-10-28 Mitsubishi Heavy Ind Ltd Flue gas desulfurization apparatus and exhaust gas treatment method
EP3326708A4 (en) * 2015-07-23 2018-07-04 Mitsubishi Hitachi Power Systems, Ltd. Wet type flue gas desulfurization device and method for operating wet type flue gas desulfurization device
US10646820B2 (en) 2015-07-23 2020-05-12 Mitsubishi Hitachi Power Systems, Ltd. Wet flue gas desulfurization apparatus and operation method for wet flue gas desulfurization apparatus

Similar Documents

Publication Publication Date Title
RU2435628C2 (en) Off-gas treatment
KR100235853B1 (en) Method of controlling oxidation in flue gas desulfurization
KR100188552B1 (en) Method for controlling the oxidation of sulfites in a flue gas desulfurization process
US20180229179A1 (en) Oxidation control for improved flue gas desulfurization performance
JP3968457B2 (en) Wet flue gas desulfurization method
JPH0824566A (en) Method for controlling oxidation of sulfite
JP3836048B2 (en) Wet flue gas desulfurization method and apparatus
JPH09327616A (en) Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization
JP3337382B2 (en) Exhaust gas treatment method
JP3414127B2 (en) Oxidizing air supply control method and apparatus for flue gas desulfurization equipment
JP3997340B2 (en) Method of controlling the number of absorption tower circulation pumps in flue gas desulfurization equipment
JP3254139B2 (en) Redox potential measurement method in flue gas desulfurization method
JPH11169658A (en) Method and device for oxidizing air supply control in flue gas desulfurizer
JP2004351262A (en) Method and apparatus for wet type flue gas desulfurization
JP3068452B2 (en) Wet flue gas desulfurization equipment
JPH10249145A (en) Method of controlling number of absorber circulating pumps of flue gas desurfurizer
JP3991132B2 (en) Sludge acceptance control method and apparatus for flue gas desulfurization equipment absorption tower
JP2599149Y2 (en) Flue gas desulfurization equipment
JP3241197B2 (en) Method for controlling the oxidation of calcium sulfite in absorption solution
JPH10202050A (en) Suppressing method of oxidation of selenium in flue gas desulfurization apparatus and device therefor
JP3575502B2 (en) Absorbent flow control device for flue gas desulfurization unit
JP2001120947A (en) Method and device for controlling stack gas desulfurizing device
JPH10235142A (en) Method for control of the number of absorption column circulating pumps of flue gas desulfurization equipment
JPH0243473Y2 (en)
JPH0938454A (en) Method for supplying oxidizing air of flue gas desulfurizer and device therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004