Nothing Special   »   [go: up one dir, main page]

JPH09312176A - Connecting member, and structure and method for connecting electrodes using this connecting member - Google Patents

Connecting member, and structure and method for connecting electrodes using this connecting member

Info

Publication number
JPH09312176A
JPH09312176A JP8127981A JP12798196A JPH09312176A JP H09312176 A JPH09312176 A JP H09312176A JP 8127981 A JP8127981 A JP 8127981A JP 12798196 A JP12798196 A JP 12798196A JP H09312176 A JPH09312176 A JP H09312176A
Authority
JP
Japan
Prior art keywords
adhesive layer
electrode
insulating adhesive
connection
connecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8127981A
Other languages
Japanese (ja)
Other versions
JP4032439B2 (en
Inventor
Isao Tsukagoshi
功 塚越
Yukihisa Hirozawa
幸寿 廣澤
Koji Kobayashi
宏治 小林
Tomohisa Ota
共久 太田
Hiroshi Matsuoka
寛 松岡
Itsuo Watanabe
伊津夫 渡辺
Kenzo Takemura
賢三 竹村
Naoyuki Shiozawa
直行 塩沢
Osamu Watanabe
治 渡辺
Kazuyoshi Kojima
和良 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP12798196A priority Critical patent/JP4032439B2/en
Priority to TW85108849A priority patent/TW311328B/en
Publication of JPH09312176A publication Critical patent/JPH09312176A/en
Application granted granted Critical
Publication of JP4032439B2 publication Critical patent/JP4032439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Multi-Conductor Connections (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connecting member, which can reduce the flow-out of the electrolyte from an electrode and which has excellent high resolution and excellent connecting reliability, by relatively setting the melt viscosity of a binder component at the time of adhesion equal to that of an insulating adhesive layer or less. SOLUTION: This connecting member is a multi-layer connecting member obtained by forming an insulating adhesive layer 2 in at least one surface of a conductive adhesive layer 1, which is formed of a conductive material and a binder and which has conductivity in the pressurizing direction. The insulating adhesive layer 2 can be formed in both surfaces of the conductive adhesive layer 1. Furthermore, the insulating adhesive layer 2 can be formed into the multi-layer structure so as to add an adhering function. The surface of these layer is provided with a separator 5, which can be peeled, at need so as to eliminate the unnecessary adhesiveness and so as to prevent the adhesion of dust. A binder component having melt viscosity at the time of connection at 500 poise or less is desirable. A bonder component having melt viscosity at the time of connection lower than that of the insulating adhesive layer 2 by 0.1-1000 poise is desirable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体チップ等の
電子部品と回路板を接着固定すると共に、両者の電極同
士を電気的に接続する接続部材、およびこれを用いた電
極の接続構造並びに接続方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connecting member for bonding and fixing an electronic component such as a semiconductor chip and a circuit board, and electrically connecting the electrodes of the both, and a connecting structure and connection of electrodes using the connecting member. Regarding the method.

【0002】[0002]

【従来の技術】近年、電子部品の小型薄型化に伴い、こ
れらに用いる回路は高密度、高精細化している。このよ
うな電子部品と微細電極の接続は、従来のはんだやゴム
コネクタ等では対応が困難であることから、最近では分
解能に優れた異方導電性の接着剤や膜状物(以下接続部
材)が多用されている。この接続部材は、導電粒子等の
導電材料を所定量含有した接着剤からなるもので、この
接続部材を電子部品と電極や回路との間に設け、加圧ま
たは加熱加圧手段を構じることによって、両者の電極同
士が電気的に接続されると共に、電極に隣接して形成さ
れている電極同士には絶縁性を付与して、電子部品と回
路とが接着固定されるものである。上記接続部材を高分
解能化するための基本的な考えは、導電粒子の粒径を隣
接電極間の絶縁部分よりも小さくすることで隣接電極間
における絶縁性を確保し、併せて導電粒子の含有量をこ
の粒子同士が接触しない程度とし、かつ電極上に確実に
存在させることにより、接続部分における導電性を得る
ことである。
2. Description of the Related Art In recent years, with the miniaturization and thinning of electronic parts, circuits used therein have become higher in density and higher in definition. Since it is difficult to connect such electronic parts and fine electrodes with conventional solder and rubber connectors, recently, anisotropic conductive adhesives and film materials (hereinafter referred to as connecting members) with excellent resolution Is often used. The connecting member is made of an adhesive containing a conductive material such as conductive particles in a predetermined amount, and the connecting member is provided between the electronic component and the electrode or circuit to constitute a pressurizing or heating / pressurizing means. As a result, both electrodes are electrically connected to each other, and the electrodes formed adjacent to the electrodes are provided with an insulating property, so that the electronic component and the circuit are bonded and fixed. The basic idea for increasing the resolution of the connecting member is to secure the insulating property between the adjacent electrodes by making the particle diameter of the conductive particles smaller than the insulating portion between the adjacent electrodes, and also to include the conductive particles. The amount is such that the particles do not come into contact with each other, and the particles are surely present on the electrode to obtain conductivity in the connecting portion.

【0003】[0003]

【発明が解決しようとする課題】上記従来の方法は、導
電粒子の粒径を小さくすると、粒子表面積の著しい増加
により粒子が2次凝集を起こして連結し、隣接電極間の
絶縁性が保持できなくなる。また、導電粒子の含有量を
減少すると接続すべき電極上の導電粒子の数も減少する
ことから、接触点数が不足し接続電極間での導通が得ら
れなくなるため、長期接続信頼性を保ちながら接続部材
を高分解能化することは極めて困難であった。すなわ
ち、近年の著しい高分解能化すなわち電極面積や隣接電
極間(スペース)の微細化により、電極上の導電粒子が
接続時の加圧または加熱加圧により、接着剤と共に隣接
電極間に流出し、接続部材の高分解能化の妨げとなって
いた。このとき、接着剤の流出を抑制するために、接着
剤を高粘度とすると電極と導電粒子の接触が不十分とな
り、相対峙する電極の接続が不可能となる。一方、接着
剤を低粘度とすると、導電粒子の流出に加えてスペース
部に気泡を含みやすく接続信頼性、特に耐湿性が低下し
てしまう欠点がある。
In the above-mentioned conventional method, when the particle size of the conductive particles is reduced, the particles are secondary-aggregated and connected due to the remarkable increase in the particle surface area, and the insulating property between the adjacent electrodes can be maintained. Disappear. In addition, when the content of the conductive particles is reduced, the number of conductive particles on the electrodes to be connected also decreases, so that the number of contact points is insufficient and conduction between the connecting electrodes cannot be obtained, so that long-term connection reliability is maintained. It was extremely difficult to increase the resolution of the connecting member. That is, due to the recent remarkable increase in resolution, that is, the miniaturization of the electrode area and the space between adjacent electrodes (space), the conductive particles on the electrodes flow out between the adjacent electrodes together with the adhesive due to the pressure at the time of connection or the heat and pressure. This has been an obstacle to increasing the resolution of the connecting member. At this time, if the viscosity of the adhesive is high in order to suppress the outflow of the adhesive, the contact between the electrodes and the conductive particles becomes insufficient, making it impossible to connect the electrodes facing each other. On the other hand, if the adhesive has a low viscosity, in addition to the outflow of the conductive particles, air bubbles are likely to be contained in the space portion, and the connection reliability, particularly the moisture resistance is deteriorated.

【0004】このようなことから、導電粒子含有層と絶
縁性接着層を分離した多層構成の接続部材とし、導電粒
子含有層の接続時における粘度を絶縁性接着層よりも相
対的に高粘度もしくは高凝集力することで、導電粒子を
流動し難くして電極上に導電粒子を保持する試みも、例
えば特開昭61−195179号公報、特開平4−36
6630号公報等にみられる。しかしながらこれらは接
続時に導電粒子含有層が絶縁性接着層に比べ高粘度であ
るため、電極と導電粒子の接触が不十分となるために、
接続抵抗値が高いことから接続信頼性が不満足である。
また、接続抵抗値を低下するために導電粒子含有層から
導電粒子をあらかじめ露出させ、電極との接触を得やす
い構成とした場合、導電粒子の粒子径を大きくする必要
があり高分解能化に対応できない。なお、このような微
細電極や回路の接続を可能とし、かつ接続信頼性に優れ
た接続部材として、両方向の必要部に導電粒子の密集領
域を有する接続部材の提案もある。これによれば、半導
体チップのようなドット状の微細電極の接続が可能とな
るものの、導電粒子の密集領域とドット状電極との正確
な位置合わせが必要で、作業性に劣る欠点がある。
From the above, a connecting member having a multi-layered structure in which the conductive particle-containing layer and the insulating adhesive layer are separated is used, and the viscosity at the time of connecting the conductive particle-containing layer is relatively higher than that of the insulating adhesive layer. An attempt to hold the conductive particles on the electrode by making it difficult for the conductive particles to flow by the high cohesive force is also disclosed, for example, in JP-A-61-195179 and JP-A-4-36.
See, for example, Japanese Patent No. 6630. However, since the conductive particle-containing layer has a higher viscosity than the insulating adhesive layer at the time of connection, contact between the electrode and the conductive particles becomes insufficient,
Since the connection resistance value is high, the connection reliability is unsatisfactory.
Further, in order to reduce the connection resistance value, when the conductive particles are exposed in advance from the conductive particle-containing layer to facilitate contact with the electrode, it is necessary to increase the particle size of the conductive particles, which corresponds to high resolution. Can not. As a connection member that enables connection of such fine electrodes and circuits and is excellent in connection reliability, there is also a proposal of a connection member having a dense region of conductive particles in necessary portions in both directions. According to this, although it is possible to connect a dot-shaped fine electrode such as a semiconductor chip, there is a drawback that workability is inferior because accurate alignment of the dense region of conductive particles and the dot-shaped electrode is required.

【0005】本発明は、上記欠点に鑑みなされたもの
で、導電粒子が接続時に電極上から流出し難いので電極
上に保持可能であり、かつ電極と導電粒子の接触が得や
すく、また接続部に気泡を含み難いことから、長時間接
続信頼性に優れ、導電粒子と電極との正確な位置合わせ
が不要なことから作業性に優れた、半導体チップ類の接
続に有用な高分解能の接続部材に関する。すなわち、我
々の検討(後述実施例の項に詳述)によれば、接続後の
電極上の導電粒子の保持性について、多層の接続部材の
構成と、電極接続面の長径と短径の比(L/D)とに極
めて特徴的な事実の存在することが分かり本発明に至っ
た。
The present invention has been made in view of the above-mentioned drawbacks. Since the conductive particles are less likely to flow out from the electrode at the time of connection, the conductive particles can be held on the electrode, and the contact between the electrode and the conductive particles can be easily obtained. Since it is difficult for air bubbles to be included in it, it has excellent long-term connection reliability, and because it does not require accurate alignment of conductive particles and electrodes, it has excellent workability and is a high-resolution connection member useful for connecting semiconductor chips. Regarding That is, according to our study (detailed in the section of Examples below), regarding the retention of the conductive particles on the electrodes after connection, the structure of the multilayer connection member and the ratio of the major axis to the minor axis of the electrode connecting surface are It was found that there is a very characteristic fact in (L / D), which led to the present invention.

【0006】[0006]

【課題を解決するための手段】本発明の第1は、導電材
料とバインダとよりなる加圧方向に導電性を有する接着
層の少なくとも片面に絶縁性の接着層が形成されてなる
多層接続部材であって、バインダ成分の接続時の溶融粘
度が、絶縁性接着層に比べ同等以下であることを特徴と
する半導体チップ類の接続部材に関する。また本発明の
第2は相対峙する電極列間の少なくとも一方が突出した
電極列間の接続構造であって、前記導電材料が相対峙す
る電極間に存在し、かつ絶縁性接着層が突出電極の少な
くとも基板側の周囲を覆ってなることを特徴とする電極
の構造に関する。また本発明の第3は、少なくとも一方
が突出した電極を有する相対峙する電極列間に、前記接
続部材の絶縁性接着層が突出した電極側となるように配
置し、バインダ成分と絶縁性の接着層との接続時の溶融
粘度が絶縁性の接着層に比べて、相対的にバインダ成分
が低い条件で加熱加圧することを特徴とする電極の接続
方法に関する。さらに本発明の第4は、絶縁性接着層が
突出した電極側となるように配置し加熱加圧してなる接
続方法において、加熱加圧工程を2段階以上に分割し、
その間に接続電極の通電検査工程および/またはリペア
工程とを必要に応じて行うことを特徴とするの電極の接
続方法に関する。
The first aspect of the present invention is to provide a multi-layer connection member in which an insulating adhesive layer is formed on at least one side of an adhesive layer made of a conductive material and a binder and having conductivity in the pressing direction. Further, the present invention relates to a connecting member for semiconductor chips, characterized in that the melt viscosity of the binder component at the time of connection is equal to or less than that of the insulating adhesive layer. A second aspect of the present invention is a connection structure between electrode rows in which at least one of the electrode rows facing each other protrudes, wherein the conductive material exists between the electrodes facing each other, and an insulating adhesive layer has a protruding electrode. Of at least the substrate side, and a structure of the electrode. According to a third aspect of the present invention, the insulating adhesive layer of the connecting member is arranged between the electrode rows having at least one protruding electrode so that the insulating adhesive layer of the connecting member is on the protruding electrode side, and the insulating component having a binder component and an insulating property is provided. The present invention relates to a method for connecting electrodes, wherein heating and pressurization are performed under the condition that the binder component has a relatively low melt viscosity at the time of connection with an adhesive layer as compared with an insulating adhesive layer. Furthermore, a fourth aspect of the present invention is a connection method in which the insulating adhesive layer is arranged so as to be on the protruding electrode side and heated and pressed, and the heating and pressing step is divided into two or more steps,
In the meantime, the present invention relates to a method of connecting electrodes, characterized in that an energization inspection step and / or a repair step of the connecting electrodes are performed as necessary.

【0007】[0007]

【発明の実施の形態】本発明を図面を参照しながら説明
する。図1は、本発明の一実施例を説明する接続部材の
断面模式図である。本発明の接続部材は、導電材料とバ
インダとよりなる加圧方向に導電性を有する導電性接着
層1の少なくとも片面に絶縁性接着層2が形成されてな
る多層接続部材である。図2のように絶縁性接着層2
は、導電性接着層1の両面に形成しても良い。図1〜2
において、図示していないが絶縁性接着層2を、さらに
多層構成として接着性等の機能を付加しても良い。これ
らの表面には不要な粘着性やごみ等の付着防止のため
に、図1のように剥離可能なセパレータ5が必要に応じ
て存在出来る。セパレータ5は、図示していないが表裏
にも形成可能である。図1の場合、セパレータ5が絶縁
性接着層2に接してなるので、例えば片側の基板が平面
電極の場合の仮貼り付けに際して、凹凸の少ない平面電
極側にセパレータ5の存在しない導電性接着層1を形成
出来るので、接続が行いやすので作業性が良く好都合で
ある。これらの場合、連続テープ状であると接続作業工
程の連続自動化が図れるので好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of a connecting member for explaining an embodiment of the present invention. The connecting member of the present invention is a multi-layer connecting member in which an insulating adhesive layer 2 is formed on at least one surface of a conductive adhesive layer 1 made of a conductive material and a binder and having conductivity in the pressing direction. Insulating adhesive layer 2 as shown in FIG.
May be formed on both sides of the conductive adhesive layer 1. 1-2
In (1), although not shown, the insulating adhesive layer 2 may further have a multilayer structure to add a function such as adhesiveness. If necessary, a peelable separator 5 may be present on these surfaces as shown in FIG. 1 in order to prevent unnecessary adhesion and adhesion of dust and the like. Although not shown, the separator 5 can also be formed on the front and back sides. In the case of FIG. 1, since the separator 5 is in contact with the insulating adhesive layer 2, for example, when the substrate on one side is a planar electrode, the conductive adhesive layer in which the separator 5 does not exist on the planar electrode side with few irregularities is temporarily attached. Since 1 can be formed, connection is easy and workability is good, which is convenient. In these cases, a continuous tape shape is preferable because continuous automation of the connecting work step can be achieved.

【0008】図3は、加圧方向に導電性を有する導電性
接着層1を説明する断面模式図である。導電性接着層1
は、導電材料3を含有したバインダ4よりなる。ここに
導電材料4としては、図3(a)〜(g)のようなもの
が適用可能である。これらのうち導電材料3は、図3
(c)〜(e)のようにバインダ5の厚み方向に単層で
存在できる粒径、すなわちバインダ5の厚みとほぼ同等
の粒径とすることが、接続時に導電材料3が流動しにく
いために電極上に導電材料3が保持しやすく好ましい。
導電材料3がバインダ4の厚みとほぼ同等の場合、簡単
な接触により電極と導電可能となり導電性が得やすい。
バインダ4に対する導電材料3の割合は、0.1〜20
体積%程度、より好ましくは1〜15体積%が、異方導
電性が得やすく好ましい。また厚み方向の導電性を得や
すくして高分解能とするために、バインダ5の厚さは膜
形成の可能な範囲で薄い方が好ましく、20μm以下よ
り好ましくは10μm以下である。導電材料3として
は、例えば図3の(a)〜(e)の例示のように導電粒
子で形成することが、製造が比較的容易に入手しやすい
ことから好ましい。また、導電材料3は、図3(f)の
ようにバインダ5に貫通口を設けてめっき等で導電体を
形成したり、図3(g)のようにワイヤ等の導電繊維状
としても良い。
FIG. 3 is a schematic sectional view for explaining the conductive adhesive layer 1 having conductivity in the pressing direction. Conductive adhesive layer 1
Is composed of a binder 4 containing a conductive material 3. Here, as the conductive material 4, the materials shown in FIGS. 3A to 3G can be applied. Among these, the conductive material 3 is shown in FIG.
As in (c) to (e), it is difficult for the conductive material 3 to flow at the time of connection to have a particle size that can exist in a single layer in the thickness direction of the binder 5, that is, a particle size approximately equal to the thickness of the binder 5. Moreover, the conductive material 3 is preferable because it can be easily held on the electrodes.
When the thickness of the conductive material 3 is almost equal to the thickness of the binder 4, the conductive material 3 can be electrically conductive with the electrode by a simple contact, and conductivity can be easily obtained.
The ratio of the conductive material 3 to the binder 4 is 0.1 to 20.
It is preferably about vol%, more preferably 1 to 15 vol% because anisotropic conductivity is easily obtained. Further, in order to easily obtain conductivity in the thickness direction and achieve high resolution, the thickness of the binder 5 is preferably as thin as possible in a film-forming range, and is preferably 20 μm or less, more preferably 10 μm or less. It is preferable that the conductive material 3 is formed of conductive particles as illustrated in FIGS. 3A to 3E, because the manufacturing thereof is relatively easy and easily available. Further, the conductive material 3 may be provided with a through hole in the binder 5 as shown in FIG. 3F to form a conductor by plating or the like, or may be a conductive fiber such as a wire as shown in FIG. 3G. .

【0009】導電粒子としては、Au、Ag、Pt、N
i、Cu、W、Sb、Sn、はんだ等の金属粒子やカー
ボン等があり、またこれら導電粒子を核材とするか、あ
るいは非導電性のガラス、セラミックス、プラスチック
等の高分子等からなる核材に前記したような材質からな
る導電層を被覆形成したもので良い。さらに導電材料6
を絶縁層で被覆してなる絶縁被覆粒子や、導電粒子とガ
ラス、セラミックス、プラスチック等の絶縁粒子の併用
等も分解能が向上するので適用可能である。微小な電極
上に1個以上好ましくはなるべく多くの粒子数を確保す
るには、15μm以下の小粒径粒子が好適であり、より
好ましくは7μm以下1μm以上である。1μm以下で
は絶縁性接着層を突き破って電極と接触し難い。また、
導電材料3は、均一粒子径であると電極間からの流出が
少ないので好ましい。これら導電粒子の中では、プラス
チック等の高分子核材に導電層を形成したものや、はん
だ等の熱溶融金属が、加熱加圧もしくは加圧により変形
性を有し、接続時に回路との接触面積が増加し、信頼性
が向上するので好ましい。特に高分子類を核とした場
合、はんだのように融点を示さないので軟化の状態を接
続温度で広く制御でき、電極の厚みや平坦性のばらつき
に対応し易いので特に好ましい。また、例えばNiやW
等の硬質金属粒子や、表面に多数の突起を有する粒子の
場合、導電粒子が電極や配線パターンに突き刺さるの
で、酸化膜や汚染層の存在する場合にも低い接続抵抗が
得られ、信頼性が向上するので好ましい。
As the conductive particles, Au, Ag, Pt, N
There are metal particles such as i, Cu, W, Sb, Sn, and solder, carbon, etc., and these conductive particles are used as a core material, or a core made of non-conductive polymer such as glass, ceramics, plastics, etc. The material may be coated with a conductive layer made of the above-mentioned material. Further conductive material 6
Insulating coated particles obtained by coating with an insulating layer, and combined use of conductive particles and insulating particles such as glass, ceramics, and plastics are also applicable because the resolution is improved. In order to secure one or more particles, preferably as many particles as possible, on a minute electrode, a small particle diameter of 15 μm or less is suitable, and more preferably 7 μm or less and 1 μm or more. If the thickness is 1 μm or less, it is difficult to break through the insulating adhesive layer and make contact with the electrode. Also,
It is preferable that the conductive material 3 has a uniform particle size because the amount of outflow between the electrodes is small. Among these conductive particles, those in which a conductive layer is formed on a polymer core material such as plastic, or hot-melting metal such as solder have heat pressurization or deformability due to pressurization, and contact with the circuit at the time of connection. It is preferable because the area is increased and the reliability is improved. In particular, when a polymer is used as a nucleus, a melting point is not exhibited unlike solder, so that a softened state can be widely controlled by a connection temperature, and it is easy to cope with variations in electrode thickness and flatness. Also, for example, Ni or W
In the case of hard metal particles such as, or particles having a large number of protrusions on the surface, conductive particles pierce the electrode or wiring pattern, so low connection resistance is obtained even in the presence of an oxide film or a contaminated layer, and reliability is high. It is preferable because it improves.

【0010】バインダ4と絶縁性接着層2は、熱可塑性
材料や、熱や光により硬化性を示す材料が広く適用でき
る。これらは接着性の大きいことが好ましい。これらの
なかでは、接続後の耐熱性や耐湿性に優れることから、
硬化性材料の適用が好ましい。なかでもエポキシ系接着
剤は、短時間硬化が可能で接続作業性が良く、分子構造
上接着性に優れるので特に好ましい。エポキシ系接着剤
は、例えば高分子量のエポキシ、固形エポキシと液状エ
ポキシ、ウレタンやポリエステル、アクリルゴム、NB
R、シリコーン、ナイロン等で変性したエポキシを主成
分とし、硬化剤や触媒、カップリング剤、充填剤等を添
加してなるものが一般的である。本発明のバインダ成分
4と絶縁性接着層2とは、各成分中に共通材料を1%以
上好ましくは5%以上含有すると、両層の界面接着力が
向上するので好適である。共通材料としては、主材料や
硬化剤等がより効果的である。
For the binder 4 and the insulating adhesive layer 2, a thermoplastic material or a material curable by heat or light can be widely applied. It is preferable that these have high adhesiveness. Among these, since it is excellent in heat resistance and moisture resistance after connection,
The application of curable materials is preferred. Of these, epoxy adhesives are particularly preferable because they can be cured for a short time, have good workability in connection, and have excellent adhesiveness due to their molecular structure. Epoxy adhesives include, for example, high molecular weight epoxies, solid epoxies and liquid epoxies, urethanes and polyesters, acrylic rubbers, NBs.
Generally, an epoxy resin modified with R, silicone, nylon or the like is used as a main component, and a curing agent, a catalyst, a coupling agent, a filler and the like are added. It is preferable that the binder component 4 and the insulating adhesive layer 2 of the present invention contain 1% or more, preferably 5% or more of a common material in each component because the interfacial adhesion between both layers is improved. As the common material, the main material and the curing agent are more effective.

【0011】本発明においては、バインダ成分の接続時
の溶融粘度が、絶縁性接着層に比べ同等以下であること
を特徴とする。この点について、図4〜5を用いて説明
する。図4は、バインダ成分4と絶縁性接着層2との加
熱時の溶融粘度を示す模式説明図である。本願は、接続
時の温度下でバインダ成分4(A)が絶縁性接着層2
(B)に比べ相対的に同等以下であり、好ましくはこの
時の(A)と(B)の粘度の差を0.1〜1000ポイ
ズ程度とし、より好ましくは1〜200ポイズとするこ
とが特徴である。粘度の差が大き過ぎると電極と粒子と
の接触が不十分になりやすい。後述する図5でも説明す
るが、接続時の接触と流動過程のバランスから電極上に
粒子を保持し、かつ電極と粒子との接触を有効に得るた
めに好ましい粘度範囲が存在する。同様な理由により、
接続時の溶融粘度は、バインダ成分が500ポイズ以下
で行うことが好ましく、この時、絶縁性接着層が100
0ポイズ以下であることがより好ましい。
The present invention is characterized in that the melt viscosity at the time of connecting the binder component is equal to or less than that of the insulating adhesive layer. This point will be described with reference to FIGS. FIG. 4 is a schematic explanatory diagram showing the melt viscosity of the binder component 4 and the insulating adhesive layer 2 during heating. In the present application, the binder component 4 (A) is the insulating adhesive layer 2 under the temperature at the time of connection.
It is relatively equal to or less than that of (B), and the difference in viscosity between (A) and (B) at this time is preferably about 0.1 to 1000 poise, more preferably 1 to 200 poise. It is a feature. If the difference in viscosity is too large, the contact between the electrode and the particles tends to be insufficient. As will be described later with reference to FIG. 5, there is a preferable viscosity range in order to hold the particles on the electrode and effectively obtain the contact between the electrode and the particle from the balance of the contact at the time of connection and the flow process. For similar reasons,
The melt viscosity at the time of connection is preferably 500 poise or less for the binder component, and the insulating adhesive layer has a viscosity of 100 poise or less.
It is more preferably 0 poise or less.

【0012】図5(a)に示す接触過程で、まず導電材
料3が相対的に溶融粘度が、同等以上の絶縁性接着層2
に埋め込まれあるいは一部が捕捉された状態で、導電材
料3の位置が保持される。次いで図5(b)の流動過程
において、絶縁性の接着層の軟化により導電材料3が突
出電極12と接触し、平面電極13との間で導電可能と
なる。バインダ成分の接続時の溶融粘度が絶縁性接着層
に比べ、低粘度である好ましい実施態様の場合、絶縁性
接着層2は、導電材料3の保持が可能で隣接する突出電
極間のスペースを気泡の無い状態で接続できる。この場
合、絶縁性接着層2の軟化促進のために、接続部材の絶
縁性接着層が突出した電極側となるように配置し、絶縁
性接着層側に熱源を配し加熱加圧することがさらに好ま
しい。この時、加熱加圧工程を2段階以上に分割し、必
要に応じて通電検査工程および/またはリペア工程とを
含む電極の接続方法とすることも可能である。加熱加圧
工程を2段階以上に分解することで、接着剤の硬化反応
に伴う流動過程の粘度制御が可能になるので、気泡の無
い良好な接続が可能となる。加えて硬化型接着剤の問題
点であるリペア性の付与が可能となる。
In the contact process shown in FIG. 5 (a), first, the conductive adhesive material 3 has an insulating adhesive layer 2 whose melt viscosity is relatively equal or higher.
The position of the conductive material 3 is retained in a state where the conductive material 3 is embedded or partially captured. Next, in the flow process of FIG. 5B, the conductive material 3 comes into contact with the protruding electrodes 12 due to the softening of the insulating adhesive layer, and the conductive material 3 becomes conductive with the planar electrode 13. In a preferred embodiment in which the melt viscosity at the time of connecting the binder component is lower than that of the insulating adhesive layer, the insulating adhesive layer 2 is capable of holding the conductive material 3 and bubbles the space between adjacent protruding electrodes. It can be connected without. In this case, in order to accelerate the softening of the insulating adhesive layer 2, the insulating adhesive layer of the connection member may be arranged so as to be on the protruding electrode side, and a heat source may be arranged on the insulating adhesive layer side to apply heat and pressure. preferable. At this time, the heating and pressurizing step may be divided into two or more steps, and an electrode connecting method including an electric current inspecting step and / or a repair step may be performed as necessary. By decomposing the heating / pressurizing step into two or more steps, it is possible to control the viscosity of the flow process associated with the curing reaction of the adhesive, so that good connection without bubbles can be achieved. In addition, repairability, which is a problem of curable adhesives, can be imparted.

【0013】通電検査工程は、接続電極の保持が可能な
程度に、接続部材の凝集力を増加せしめ、あるいは電極
接続部を加圧しながら行うことができる。通電極検査
は、例えば両電極からリード線を取り出し接続抵抗の測
定や動作試験により可能である。この時、導電材料3と
電極との接触状態の外観検査も、併用もしくは独立して
行うことも出来る。リペア性とは、不要部の接着剤を除
去して溶剤等で清浄化し再接続することである。一般的
に硬化型接着剤は、硬化終了後に網状構造が発達し、熱
や溶剤等に不溶不融性となり、清浄化が極めて困難なた
め従来から問題視されていた。加熱加圧工程の第一段階
で、例えば導電材料3が突出電極12と接触し、平面電
極13との間で導通可能な状態で両電極の通電検査を行
う。この時、不良電極の接続部があれば、この状態でリ
ペアし再接続を行う。接着剤は、未硬化あるいは硬化反
応の不十分な状態なので、剥離し易く溶剤にも浸され易
くリペア作業が容易である。
The energization inspection step can be performed while increasing the cohesive force of the connection member or pressurizing the electrode connection portion to the extent that the connection electrode can be held. The through electrode inspection can be performed by, for example, taking out lead wires from both electrodes and measuring a connection resistance or an operation test. At this time, the visual inspection of the contact state between the conductive material 3 and the electrode can be performed together or independently. The repairability is to remove the adhesive in unnecessary portions, clean it with a solvent or the like, and reconnect it. Generally, a curable adhesive has been regarded as a problem since a net-like structure develops after completion of curing and becomes insoluble and infusible in heat, a solvent, etc., and cleaning is extremely difficult. In the first step of the heating and pressurizing step, for example, the conductive material 3 is in contact with the projecting electrode 12 and an electric conduction inspection of both electrodes is performed in a state where the conductive material 3 and the planar electrode 13 can conduct electricity. At this time, if there is a defective electrode connection portion, repair and reconnection are performed in this state. Since the adhesive is in an uncured state or in a state where the curing reaction is insufficient, it is easily peeled off, immersed in a solvent, and repair work is easy.

【0014】溶融粘度の測定法としては、バインダ成分
4と絶縁性接着層2とを相対的に比較できれば良く特に
規定しないが、同一の方法とすることが好ましく、例え
ば高温下の測定が可能な一般的な回転式粘度計を使用で
きる。この時、測定時に反応が進行し粘度の変化が生じ
る例えば熱硬化系配合の場合は、硬化剤を除去したモデ
ル配合での測定値を採用出来る。バインダ成分4と絶縁
性接着層2との接続時の溶融粘度に差を設ける方法とし
ては、材料の分子量や分子の絡み合いよる固有粘度の組
み合わせや、増粘材としての充填剤の選択、および硬化
系における反応速度の相違制御等が一般的である。本発
明の接続部材料の製法としては、例えば導電性接着層1
と、絶縁性接着層2をラミネートしたり、積層して順次
塗工する等の方法が採用できる。
The method of measuring the melt viscosity is not particularly limited as long as it can relatively compare the binder component 4 and the insulating adhesive layer 2, but the same method is preferable, and for example, measurement at high temperature is possible. A general rotary viscometer can be used. At this time, for example, in the case of a thermosetting compound in which the reaction proceeds and the viscosity changes during measurement, the measured value in the model compound without the curing agent can be adopted. As a method of providing a difference in melt viscosity at the time of connecting the binder component 4 and the insulating adhesive layer 2, a combination of the molecular weight of the material and the intrinsic viscosity due to the entanglement of molecules, selection of a filler as a thickener, and curing It is common to control the difference in reaction rate in the system. As the method for producing the material of the connecting portion of the present invention, for example, the conductive adhesive layer 1
Then, a method of laminating the insulating adhesive layer 2 or laminating and sequentially applying the layers can be adopted.

【0015】本発明の接続部材を用いた電極の接続構造
とその製法について、図6〜8により説明する。図6
は、チップ基板11に形成された突出電極12と、基板
13の平面電極14とが、本発明の接続部材を介して接
続された構造である。すなわち、相対峙する電極列間の
少なくとも一方が突出した電極列間の接続構造であって
相対峙する電極間12−14間に導電材料3が存在し、
かつ突出電極12の周囲15よりも導電材料の密度が高
い状態で存在し、相対峙する電極列間が接続される。ま
た、絶縁性接着層2が突出電極12の少なくとも突出す
る電極の周囲15を覆っている。ここに平面電極14
は、基板11面からの凹凸がないか、あっても数μm以
下とわずかな場合をいう。これらを例示すると、アディ
ティブ法や薄膜法で得られた電極類が代表的である。
An electrode connection structure using the connection member of the present invention and a manufacturing method thereof will be described with reference to FIGS. FIG.
Is a structure in which the protruding electrode 12 formed on the chip substrate 11 and the planar electrode 14 of the substrate 13 are connected via the connecting member of the present invention. That is, at least one of the electrode rows facing each other has a connecting structure between the protruding electrode rows, and the conductive material 3 is present between the electrode rows 12-14 facing each other.
In addition, the conductive material exists in a state where the density of the conductive material is higher than that of the periphery 15 of the protruding electrode 12, and the electrode rows facing each other are connected to each other. Moreover, the insulating adhesive layer 2 covers at least the periphery 15 of the protruding electrode 12 of the protruding electrode 12. Here, the planar electrode 14
Indicates that there is no unevenness from the surface of the substrate 11, or even if there is, there is only a few μm or less. To exemplify these, the electrodes obtained by the additive method or the thin film method are typical.

【0016】図7は、基板に形成された電極が突出電極
12と12’同士の場合である。すなわち、図2で示し
た両面に絶縁性接着層2および2’を有する接続部材を
介して接続した構造である。絶縁性接着層2および2’
は、それぞれ突出電極12と12’の突出する電極の周
囲を覆っており、また、チップ基板面11および基板面
13と接している。図8は、基板に形成された電極が突
出電極12と凹状電極16の場合である。この場合も凹
状電極16を図6に示した平面電極14に置き換えた形
で可能である。ここに凹状電極16の例として、例えば
半導体チップ類の突出電極(バンプ)形成前のAlパッ
ド等があり、不要部は絶縁層18で被覆される。絶縁層
18はシリカ、窒化ケイ素、ポリイミド等が使用され、
厚みは数μmが一般的である。図8の場合、チップ類に
突出電極が形成不要であり、低コスト化が可能である。
FIG. 7 shows the case where the electrodes formed on the substrate are the protruding electrodes 12 and 12 '. That is, it is a structure in which both surfaces shown in FIG. 2 are connected via the connecting members having the insulating adhesive layers 2 and 2 ′. Insulating adhesive layers 2 and 2 '
Respectively cover the periphery of the protruding electrodes of the protruding electrodes 12 and 12 ′, and are in contact with the chip substrate surface 11 and the substrate surface 13. FIG. 8 shows a case where the electrodes formed on the substrate are the protruding electrode 12 and the concave electrode 16. Also in this case, the concave electrode 16 can be replaced with the flat electrode 14 shown in FIG. An example of the concave electrode 16 is, for example, an Al pad before forming a protruding electrode (bump) of a semiconductor chip or the like, and an unnecessary portion is covered with an insulating layer 18. The insulating layer 18 is made of silica, silicon nitride, polyimide, etc.
The thickness is generally several μm. In the case of FIG. 8, it is not necessary to form protruding electrodes on the chips, and the cost can be reduced.

【0017】図6〜8においては、導電性接着層1と絶
縁性接着層2が境界を形成している場合を図示したが両
層は混合されても良く、また図9のように突出した電極
12の頂部17から基板11側にかけて、導電材料3の
密度が傾斜的に薄くなる構成でも良い。図6〜8におい
て、チップ基板11としては、シリコン、ガリウム−ヒ
素、ガリウム−リン、水晶、サファイア、ガ−ネット、
フェライト等の半導体類がある。基板13としては、ポ
リイミドやポリエステル等のプラスチックフィルム、ガ
ラス繊維/エポキシ等の複合体、シリコン等の半導体、
ガラスやセラミックス等の無機質等を例示できる。突出
電極12は、バンプ類の他に各種回路類や端子類も含む
ことができる。なお、図6〜8で示した各種電極類は、
それぞれ任意に組み合わせて適用できる。ここにチップ
基板11の突出電極12は、半導体チップの接続用電極
面の長径と短径の比(L/D)が20以下であることが
好ましく、1〜10であることがより好ましい。この理
由は、本発明の接続部材を用いた接続後の電極上の導電
粒子の保持性が、L/Dの上記範囲内で良好なことによ
る。
6 to 8 show the case where the conductive adhesive layer 1 and the insulating adhesive layer 2 form a boundary, but both layers may be mixed, and they protrude as shown in FIG. The density of the conductive material 3 may be gradually decreased from the top 17 of the electrode 12 to the substrate 11 side. 6 to 8, as the chip substrate 11, silicon, gallium-arsenic, gallium-phosphorus, quartz, sapphire, garnet,
There are semiconductors such as ferrite. As the substrate 13, plastic films such as polyimide and polyester, composites such as glass fiber / epoxy, semiconductors such as silicon,
Examples include inorganic substances such as glass and ceramics. The protruding electrode 12 can include various circuits and terminals in addition to bumps. The various electrodes shown in FIGS.
They can be applied in any combination. Here, in the protruding electrode 12 of the chip substrate 11, the ratio (L / D) of the major axis and the minor axis of the connecting electrode surface of the semiconductor chip is preferably 20 or less, and more preferably 1 to 10. This is because the retention of the conductive particles on the electrode after connection using the connection member of the present invention is good within the above range of L / D.

【0018】接続後の電極上の導電粒子の保持性につい
て、多層の接続部材の構成と、電極接続面の長径と短径
の比(L/D)とに極めて特徴的な事実の存在する理由
については十分に明らかとなっていないが、接着剤の流
動する際の方向性と熱伝達性の影響と考えられる。本発
明の接続部材を用いた電極の接続方法は、接続部材の絶
縁性接着層2が突出した電極12側となるように配置
し、バインダ成分と絶縁性の接着層との接続時の溶融粘
度が絶縁性の接着層に比べて、相対的にバインダ成分の
方が低い条件下で加熱加圧する。
Regarding the retention of the conductive particles on the electrode after connection, there is a very characteristic fact in the structure of the multilayer connecting member and the ratio of the major axis to the minor axis (L / D) of the electrode connecting surface. Is not fully clarified, but it is considered to be the influence of the directionality and heat transferability of the adhesive when it flows. The electrode connecting method using the connecting member of the present invention is arranged so that the insulating adhesive layer 2 of the connecting member is on the side of the electrode 12 protruding, and the melt viscosity at the time of connecting the binder component and the insulating adhesive layer. Is heated and pressed under the condition that the binder component is relatively lower than that of the insulating adhesive layer.

【0019】[0019]

【作用】本発明によれば、バインダ成分の接続時の溶融
粘度が絶縁性接着層に比べ、同等以下であるので、電極
の接続時に、導電性接着層1の導電材料3が相対的に溶
融粘度が同等以上の絶縁性接着層2に埋め込まれ、ある
いは一部が捕捉された状態で接触し、突出電極12上に
導電材料3の位置が保持される。次いで、絶縁性の接着
層の軟化流動により、導電材料3が突出電極12と接触
し導通可能となる。この時絶縁性接着層2は、バインダ
成分4に比べ粘度が高く、導電材料3の保持が可能であ
り、隣接する突出電極間のスペース部分を気泡の無い状
態で接続できる。本発明によれば、半導体チップ等の接
続用電極面の長径と短径の比(L/D)が小さな場合、
微小な突出電極12上に多くの導電材料3が確実に保持
されるので接続信頼性が高く、また高価な導電材料を効
率良く適用できるので省資源的である。
According to the present invention, since the melt viscosity at the time of connecting the binder component is equal to or less than that of the insulating adhesive layer, the conductive material 3 of the conductive adhesive layer 1 is relatively melted at the time of connecting the electrodes. The conductive material 3 is held on the protruding electrode 12 by being embedded in the insulating adhesive layer 2 having a viscosity equal to or higher than that of the insulating adhesive layer 2 or being in contact with the insulating adhesive layer 2 partially captured. Then, due to the softening flow of the insulating adhesive layer, the conductive material 3 comes into contact with the protruding electrodes 12 and becomes conductive. At this time, the insulating adhesive layer 2 has a higher viscosity than the binder component 4, can hold the conductive material 3, and can connect the space portion between adjacent protruding electrodes without bubbles. According to the present invention, when the ratio of the major axis to the minor axis (L / D) of the connecting electrode surface of a semiconductor chip or the like is small,
Since many conductive materials 3 are surely held on the minute protruding electrodes 12, connection reliability is high, and an expensive conductive material can be applied efficiently, which is resource saving.

【0020】本発明によれば、突出電極12上に導電材
料3が確実に保持され導通可能となるので、導通検査の
信頼性が向上する。接着剤は、未硬化あるいは硬化反応
の不十分な状態で導通検査可能なのでリペア作業が容易
である。絶縁性接着層2は、突出した電極12側となる
ように配置するので、隣接電極間の絶縁性と分解能が向
上する。加えて、絶縁性接着層2の溶融粘度が高い構成
の場合に、接続圧力が加わらないので隣接電極間に導電
材料3が一層流入しにくい。導電性接着層1の導電材料
3は、全面に均一に分散されてなるので、導電粒子と電
極との正確な位置合わせが不要なことから作業性に優れ
る。接着層は、その目的に応じ、例えば電極基板の材質
に適合した接着性を示す組み合わせが可能なことから材
料の選択肢が拡大し、接続部の気泡減少等により、やは
り接続信頼性が向上する。また一方を溶剤に可溶性もし
くは膨潤性としたり、あるいは耐熱性に差を持たせるこ
とで、一方の基板面から優先的に剥離可能とし、再接続
するいわゆるリペア性を付与することも可能となる。あ
るいは電極基板の材質にに適合した任意の組み合わせと
することも可能であり、電極と導電粒子の接触が得やす
く、製法も簡単である。また、接着層を接続部の外には
み出させ封止材的作用により、補強や防湿効果を得るこ
ともできる。
According to the present invention, since the conductive material 3 is securely held on the protruding electrode 12 and can be conducted, the reliability of the conduction test is improved. The adhesive can be inspected for continuity in an uncured state or in an insufficiently cured state, so that repair work is easy. Since the insulating adhesive layer 2 is arranged so as to be on the side of the protruding electrode 12, the insulating property between adjacent electrodes and the resolution are improved. In addition, when the insulating adhesive layer 2 has a high melt viscosity, the connection pressure is not applied, so that the conductive material 3 is more difficult to flow between the adjacent electrodes. Since the conductive material 3 of the conductive adhesive layer 1 is uniformly dispersed on the entire surface, it is not necessary to accurately align the conductive particles and the electrodes, and therefore workability is excellent. Depending on its purpose, the adhesive layer can be combined, for example, with an adhesive property suitable for the material of the electrode substrate, so that the choice of materials is expanded, and the connection reliability is also improved due to the reduction of bubbles in the connection portion. Further, by making one of them soluble or swellable in a solvent, or by giving a difference in heat resistance, it is possible to preferentially separate from one substrate surface, and it is also possible to provide so-called repairability for reconnection. Alternatively, any combination suitable for the material of the electrode substrate can be used, and it is easy to obtain contact between the electrodes and the conductive particles, and the manufacturing method is also simple. Further, the adhesive layer can be made to stick out of the connecting portion to act as a sealing material, so that reinforcement and moistureproof effects can be obtained.

【0021】[0021]

【実施例】以下実施例でさらに詳細に説明するが、本発
明はこれに限定されない。 実施例1 (1)導電性接着層の作製 フェノキシ樹脂(高分子量エポキシ樹脂)とマイクロカ
プセル型潜在性硬化剤を含有する液状エポキシ樹脂(エ
ポキシ当量185)の比率を30/70とし、酢酸エチ
ルの30%溶液を得た。この溶液に、粒径4±0.2μ
mのポリスチレン系粒子にNi/Auの厚さ0.2/
0.02μmの金属被覆を形成した導電性粒子を8体積
%添加し、混合分散した。この分散液をセパレータ(シ
リコーン処理ポリエチレンテレフタレートフィルム、厚
み40μm)にロールコータで塗布し、110℃で20
分乾燥し、厚み5μmの導電性接着層を得た。この接着
層の硬化剤を除去したモデル配合の粘度を、デジタル粘
度計HV−8(株式会社レスカ製)により測定した。1
50℃における粘度は80ポイズであった。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. Example 1 (1) Preparation of conductive adhesive layer The ratio of phenoxy resin (high molecular weight epoxy resin) and liquid epoxy resin containing a microcapsule type latent curing agent (epoxy equivalent 185) was 30/70, and ethyl acetate A 30% solution was obtained. Particle size 4 ± 0.2μ
m / polystyrene-based particles with a thickness of Ni / Au of 0.2 /
8% by volume of conductive particles having a metal coating of 0.02 μm were added and mixed and dispersed. This dispersion was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater, and was applied at 110 ° C. for 20 minutes.
After minute drying, a conductive adhesive layer having a thickness of 5 μm was obtained. The viscosity of the model formulation in which the curing agent of the adhesive layer was removed was measured with a digital viscometer HV-8 (manufactured by RESCA CORPORATION). 1
The viscosity at 50 ° C. was 80 poise.

【0022】(2)絶縁性接着層の形成と接続部材の作
製 (1)の配合比を40/60とし導電性接着層から導電
性粒子を除去し、厚み15μmのシートを前記(1)と
同様に作製した。まず(1)の導電性接着層面と(2)
の接着層面とをゴムロール間で圧延しながらラミネート
した。以上で図1の2層構成の厚みが20μmの多層接
続部材を得た。前記と同様に測定した絶縁性接着層の1
50℃における粘度は280ポイズであった。したがっ
て150℃における導電性接着層と絶縁性接着層との粘
度の差は、200ポイズである。
(2) Formation of Insulating Adhesive Layer and Preparation of Connection Member The compounding ratio of (1) was set to 40/60, conductive particles were removed from the conductive adhesive layer, and a sheet having a thickness of 15 μm was formed as the above (1). It produced similarly. First, the conductive adhesive layer surface of (1) and (2)
The adhesive layer surface and the adhesive layer surface were laminated while being rolled between rubber rolls. As described above, a multi-layer connection member having a two-layer structure of FIG. One of the insulating adhesive layers measured as described above
The viscosity at 50 ° C. was 280 poise. Therefore, the difference in viscosity between the conductive adhesive layer and the insulating adhesive layer at 150 ° C. is 200 poise.

【0023】(3)接続 評価用ICチップ(シリコン基板、2×12mm、高さ
0.5mm、長辺側2辺にバンプと呼ばれる50μm
φ、高さ20μmの金電極が300個形成)と、ガラス
1.1mm上に酸化インジウム厚み0.2μm(IT
O、表面抵抗20Ω/□)の薄膜回路を有する平面電極
とを接続した。ガラス側のITO電極を前記ICチップ
のバンプ電極サイズに対応させ周辺に測定用のリ−ドを
引き出した。接続部材をICチップの大きさよりも若干
大きい2.5×14mmに切断し、平面電極側に導電性
接着層がくるようにして仮接続した。基板が平滑である
ことに加え接続部材の有する粘着性により、貼り付けが
容易でこの後のセパレータ剥離も簡単であった。次にI
Cチップのバンプと、平面電極とを位置合わせし、15
0℃、30kgf/mm2 、15秒で加熱加圧し接続体
を得た。この時接続装置の熱源は絶縁性の接着層側に配
置し、平面電極側に導電性接着層を配置した。
(3) Connection IC chip for evaluation (silicon substrate, 2 × 12 mm, height 0.5 mm, 50 μm called bump on two long sides)
φ, 300 gold electrodes with a height of 20 μm are formed), and indium oxide thickness of 0.2 μm (IT
O, a flat electrode having a thin film circuit having a surface resistance of 20 Ω / □) was connected. The ITO electrode on the glass side was made to correspond to the bump electrode size of the IC chip, and a measurement lead was drawn out to the periphery. The connection member was cut into 2.5 × 14 mm, which was slightly larger than the size of the IC chip, and the conductive adhesive layer was placed on the plane electrode side for temporary connection. Due to the smoothness of the substrate and the adhesiveness of the connecting member, the attachment was easy and the subsequent separation of the separator was easy. Then I
Align the bumps on the C chip with the planar electrodes, and
A connector was obtained by heating and pressurizing at 0 ° C., 30 kgf / mm 2 and 15 seconds. At this time, the heat source of the connecting device was arranged on the insulating adhesive layer side, and the conductive adhesive layer was arranged on the plane electrode side.

【0024】(4)評価 この接続体の断面を研磨し顕微鏡で観察したところ、図
6相当の接続構造であった。隣接電極間のスペースは気
泡混入がなく粒子が球状であったが、電極上は粒子が圧
縮変形され上下電極と接触保持されていた。相対峙する
電極間を接続抵抗、隣接する電極間を絶縁抵抗として評
価したところ、接続抵抗は1Ω以下、絶縁抵抗は1010
Ω以上であり、これらは85℃、85%RH1000時
間処理後も変化が殆どなく良好な長期信頼性を示した。
本実施例における電極上(50μmφ=1962.5μ
m2 )の接続に寄与している有効平均粒子数は、20個
(最大23個、最小18個、以下同様に表示)であっ
た。接続に寄与している有効粒子とは、接続面をガラス
側から顕微鏡(×100)で観察し、電極との接触によ
り光沢を有しているものとした。またL/Dは50μm
φ(直径)のなので1.0である。本実施例では、バン
プ上の粒子は圧縮変形され上下電極と接触保持されてい
た。隣接バンプ間に気泡混入がなく、良好な長期信頼性
を示した。導電粒子は、相対峙する電極間距離のばらつ
きに応じて粒子の変形度が異なり、部分的にバンプに食
い込むものも見られ、全電極において良好な接続を得
た。
(4) Evaluation When the cross section of this connection body was polished and observed with a microscope, the connection structure was equivalent to that shown in FIG. In the space between the adjacent electrodes, particles were spherical without inclusion of air bubbles, but the particles were compressed and deformed on the electrodes and held in contact with the upper and lower electrodes. When evaluating the resistance between the electrodes facing each other and the insulation resistance between the adjacent electrodes, the connection resistance was 1Ω or less and the insulation resistance was 10 10
Ω or more, and these showed almost no change even after treatment at 85 ° C. and 85% RH for 1000 hours, and showed good long-term reliability.
On the electrode in this example (50 μmφ = 1962.5 μ
The effective average number of particles contributing to the connection of m2) was 20 (maximum 23 particles, minimum 18 particles, and so on). The effective particles contributing to the connection are those having a luster due to contact with the electrodes when the connection surface is observed from the glass side with a microscope (× 100). L / D is 50 μm
Since it is φ (diameter), it is 1.0. In this example, the particles on the bumps were compressed and deformed and held in contact with the upper and lower electrodes. There was no air bubble mixing between adjacent bumps, showing good long-term reliability. The conductive particles differ in the degree of deformation of the particles according to the variation in the relative distance between the electrodes, and some particles partially penetrate the bumps, and good connection was obtained in all the electrodes.

【0025】比較例1 実施例1と同様であるが、厚みが20μmの従来構成の
単層の導電性接着層を得た。実施例1と同様に評価した
ところ、電極上(50μmφ)の粒子数は最大13個、
最小0個であり、電極上に有効粒子の無いものが見ら
れ、また実施例1に比べ最大と最小のばらつきが大きか
った。また、接続体の絶縁抵抗を測定したところショー
ト不良が発生した。接続時に導電粒子が電極上から流出
し、隣接電極間(スペース部)での絶縁性が保持できな
くなったと見られる。
Comparative Example 1 The same procedure as in Example 1 was performed, but a single-layer conductive adhesive layer having a conventional structure and a thickness of 20 μm was obtained. When evaluated in the same manner as in Example 1, the maximum number of particles on the electrode (50 μmφ) is 13,
The number was 0 at the minimum, there were no effective particles on the electrode, and the maximum and minimum variations were large as compared with Example 1. Further, when the insulation resistance of the connected body was measured, a short circuit failure occurred. It is considered that the conductive particles flowed out from the electrodes at the time of connection, and the insulation between adjacent electrodes (space portion) could not be maintained.

【0026】実施例2 実施例1の導電性接着層の他の面に、さらに同様に絶縁
性接着層を形成し、図2の3層構成の多層接続部材を得
た。また、実施例1のガラス平面電極に代えて、ポリイ
ミドフィルム上に、高さ18μmの銅の回路を有する2
層FPC回路板とした。実施例1と同様に接続し、図7
相当の接続体を得た。実施例1と同様に評価したところ
良好な接続特性を示した。電極上の有効粒子数は、突出
電極同士の接続なので粒子が流出しやすい構成にもかか
わらず、全電極において10個以上の確保が可能であっ
た。
Example 2 An insulating adhesive layer was similarly formed on the other surface of the conductive adhesive layer of Example 1 to obtain a multi-layered connecting member having a three-layer structure shown in FIG. Further, in place of the glass flat electrode of Example 1, a copper circuit having a height of 18 μm is provided on the polyimide film.
It was a layer FPC circuit board. 7 is connected in the same manner as in Example 1, and FIG.
I got a considerable connection. When evaluated in the same manner as in Example 1, excellent connection characteristics were shown. As for the number of effective particles on the electrodes, it was possible to secure 10 or more effective particles on all the electrodes, although the protruding electrodes were connected to each other, although the particles could easily flow out.

【0026】実施例3〜5および比較例2〜3 実施例1と同様であるが、絶縁性接着層のフェノキシ樹
脂と液状エポキシ樹脂の配合比を変えることで、両層の
150℃における粘度の差を変化させた。結果を前述実
施例1と共に表1に示す。各実施例では、電極上の有効
粒子数が多くばらつきも比較的少なく、実施例1と同様
に良好な接続特性を示した。比較例2では、粘度の差が
大きすぎるため絶縁性接着層から導電粒子が露出できず
に電極上に有効粒子が見られず、接続が不可能であっ
た。比較例3は、接続部材の構成を実施例1と逆にした
従来から知られている2層構成であるが、有効粒子数が
少なく電極上に有効粒子の無いものが見られ、また実施
例1に比べ最大と最小のばらつきが大きかった。
Examples 3 to 5 and Comparative Examples 2 to 3 As in Example 1, but the viscosity of both layers at 150 ° C. was changed by changing the compounding ratio of the phenoxy resin and the liquid epoxy resin in the insulating adhesive layer. The difference has changed. The results are shown in Table 1 together with Example 1 described above. In each of the examples, the number of effective particles on the electrode was large and the variation was relatively small, and good connection characteristics were exhibited as in Example 1. In Comparative Example 2, since the difference in viscosity was too large, the conductive particles could not be exposed from the insulating adhesive layer, effective particles were not seen on the electrodes, and connection was impossible. Comparative Example 3 is a conventionally known two-layer structure in which the structure of the connecting member is the reverse of that of Example 1, but the number of effective particles is small and some have no effective particles on the electrodes. There was a large variation between the maximum and the minimum in comparison with 1.

【0027】[0027]

【表1】 ──────────────────────────────── バインダ粘度 粘度の差 電極上の有効粒子数 (ポイズ) (ポイズ) (個/50μmφ) ──────────────────────────────── 実施例3 200 0 13(11〜15) 実施例4 200 1 19(17〜22) 実施例1 80 200 20(18〜23) 実施例5 80 1000 16(16〜22) 比較例2 80 10000 なし 比較例3 200 −120 6(0〜14) ────────────────────────────────[Table 1] ──────────────────────────────── Binder viscosity Viscosity difference Effective particle number on the electrode (poise) (Poise) (Pieces / 50 μmφ) ──────────────────────────────── Example 3 200 13 (11-15) ) Example 4 200 1 19 (17-22) Example 1 80 200 20 (18-23) Example 5 80 1000 16 (16-22) Comparative Example 2 80 10000 None Comparative Example 3 200-1206 (0) 14) ────────────────────────────────

【0028】比較例4〜5 平行電極の接続として実施例2のFPC回路板同士を接
続(電極幅D=50μm、接続幅L=1500μm、L
/D=30)した。比較例4は、実施例1の接続部材に
よる接続であるが、50μmφに換算した電極上の有効
粒子数は9個(0〜16)と実施例1に比べ1/2以下
であった。比較例5は、比較例3の接続部材による接続
であるが、有効粒子数は18個(14〜24)と比較例
3に比べて向上した。これらの結果から,L/Dの大き
な回路板のような平行電極の接続の場合と、半導体チッ
プ電極のようなL/Dの小さなドット状電極の場合とで
は、接続部材の最適構成が異なることが分かった。この
理由については不明であるが、接続時の熱伝達性や接着
剤の流動がL/Dの影響で変化するためと考えられる。
Comparative Examples 4 to 5 The FPC circuit boards of Example 2 were connected as parallel electrodes (electrode width D = 50 μm, connection width L = 1500 μm, L).
/ D = 30). Comparative Example 4 is a connection by the connecting member of Example 1, but the number of effective particles on the electrode converted to 50 μmφ was 9 (0 to 16), which was 1/2 or less as compared with Example 1. Comparative Example 5 is a connection by the connecting member of Comparative Example 3, but the number of effective particles is 18 (14 to 24), which is improved as compared with Comparative Example 3. From these results, the optimum configuration of the connecting member is different between the case of connecting parallel electrodes such as a circuit board having a large L / D and the case of connecting dot electrodes having a small L / D such as a semiconductor chip electrode. I understood. The reason for this is unknown, but it is considered that the heat transfer property at the time of connection and the flow of the adhesive change due to the influence of L / D.

【0029】実施例6〜8 実施例1と同様であるが、ICチップ接続面のバンプ形
状を変化させた。バンプは長径をICチップの中央に向
けた。結果を表2に示す。L/D=1〜10の各実施例
では、電極上の有効粒子数が多く、ばらつきが比較的少
なく、実施例1と同様に良好な接続特性を示した。
Examples 6 to 8 Same as Example 1, but the bump shape on the IC chip connection surface was changed. The long diameter of the bump was oriented toward the center of the IC chip. Table 2 shows the results. In each of the examples of L / D = 1 to 10, the number of effective particles on the electrode was large, the variation was relatively small, and good connection characteristics were exhibited as in Example 1.

【0030】[0030]

【表2】 ──────────────────────────────── バンプ形状 長径と短径の比 電極上の有効粒子数 (μm) (L/D) (個/50μmφ) ──────────────────────────────── 実施例6 50×50 1.41 24(22〜27) 実施例7 20×100 5.0 162(141〜182) 実施例8 20×200 10.0 245(228〜253) ────────────────────────────────[Table 2] ──────────────────────────────── Bump shape Ratio of major axis to minor axis Number of effective particles on the electrode (Μm) (L / D) (pieces / 50 μmφ) ──────────────────────────────── Example 6 50 × 50 1.41 24 (22 to 27) Example 7 20 × 100 5.0 162 (141 to 182) Example 8 20 × 200 10.0 245 (228 to 253) ─────────── ──────────────────────

【0031】実施例9 実施例1と同様であるが、ICチップ接続面のバンプを
形成しなかった。すなわち、Al配線の必要部にパッド
が形成され、パッド以外は厚み1μmの絶縁層(この場
合SiO2 )で覆われた凹状電極の半導体チップであ
り、図8の構成である。この場合、半導体チップに導電
性接着層側を仮接続した。本実施例では実施例1と同様
に良好な接続特性を示し、チップ類への突出電極が形成
不要であり、極めて経済的であった。
Example 9 The same as Example 1, except that bumps on the IC chip connection surface were not formed. That is, it is a semiconductor chip of a concave electrode in which a pad is formed in a necessary portion of the Al wiring, and a portion other than the pad is covered with an insulating layer (SiO2 in this case) having a thickness of 1 .mu.m, which has the structure of FIG. In this case, the conductive adhesive layer side was temporarily connected to the semiconductor chip. In this example, similar to Example 1, good connection characteristics were exhibited, and it was not necessary to form protruding electrodes on the chips, which was extremely economical.

【0032】実施例10 実施例2の接続部材と同様であるが、導電性粒子の粒子
径を7μmとし導電性接着層厚みを7μmとした。また
絶縁性接着層の厚みを片側25μm、他の面を50μm
に形成した。電極は、QFP形ICのリード(厚み10
0μm、ピッチ300μm、電極幅350μm、接続幅
3000μm、L/D=8.6)であり、ガラスエポキ
シ基板上の銅の厚み35μmの端子と接続した。本構成
は図7類似であるが、ICのリード側(片側)に基板の
ない構成である。本実施例は、高さの大きな電極同士の
接続であるが、電極ずれがなく良好な接続特性を示し
た。導電性シート中の導電材料は図示していないが、粒
子は圧縮変形され上下電極と接触保持されていた。隣接
電極間に気泡混入がなく、良好な長期信頼性を示した。
本実施例では、基板のない部分もリード高さに沿って接
着層が形成され、リードを固定できた。電極上の有効粒
子数は、全電極において10個以上の確保が可能であっ
た。
Example 10 The same as the connecting member of Example 2, except that the particle size of the conductive particles was 7 μm and the thickness of the conductive adhesive layer was 7 μm. The thickness of the insulating adhesive layer is 25 μm on one side and 50 μm on the other side.
Formed. The electrodes are QFP type IC leads (thickness 10
0 μm, pitch 300 μm, electrode width 350 μm, connection width 3000 μm, L / D = 8.6), which was connected to a terminal of copper thickness 35 μm on a glass epoxy substrate. This configuration is similar to that of FIG. 7, but has no substrate on the lead side (one side) of the IC. In this example, electrodes having a large height were connected to each other, but good connection characteristics were exhibited without any electrode displacement. Although the conductive material in the conductive sheet is not shown, the particles were compressed and deformed and held in contact with the upper and lower electrodes. There were no bubbles mixed between adjacent electrodes, and good long-term reliability was shown.
In this example, the adhesive layer was formed along the lead height even in the portion without the substrate, and the lead could be fixed. The number of effective particles on the electrodes could be 10 or more for all the electrodes.

【0033】実施例11〜12 実施例1と同様であるが、ガラス基板上に5個のICチ
ップを搭載できる基板に変更し、加熱加圧工程を2段階
とした。まず、150℃、20kgf/mm2で、2秒
後に加圧しながら各接続点の接続抵抗をマルチメータで
測定検査した(実施例11)。同様であるが他の一方
は、150℃、20kgf/mm2 、3秒後に接続装置
から除去した。加熱加圧により接着剤の凝集力が向上し
たので、各ICチップは、ガラス側に仮固定が可能で無
加圧で同様に検査(実施例12)した。両実施例ともに
1個のICチップが異常であった。そこで異常チップを
剥離して新規チップで前記同様の接続を行ったところ、
いずれも良好であった。両実施例ともに接着剤は硬化反
応の不十分な状態なので、チップの剥離や、その後のア
セトンを用いた清浄化も極めて簡単であり、リペア作業
が容易であった。以上の通電検査工程およびリペア工程
の後で、150℃、20kgf/mm2、15秒で接続
したところ、両実施例ともに良好な接続特性を示した。
バンプ上の有効粒子数は、全電極において19個以上の
確保が可能であった。本実施例では実施例1に比べバン
プ上の有効粒子数が増加し、電極上からの流出が少な
い。加熱加圧工程を2段階としたので、粒子の保持性が
さらに向上したと見られる。
Examples 11 to 12 Similar to Example 1, except that the glass substrate was changed to a substrate on which five IC chips could be mounted, and the heating and pressing process was performed in two stages. First, the connection resistance at each connection point was measured and inspected with a multimeter while applying pressure at 150 ° C. and 20 kgf / mm 2 for 2 seconds (Example 11). The same but the other one was removed from the connecting device after 3 seconds at 150 ° C., 20 kgf / mm 2. Since the cohesive force of the adhesive was improved by heating and pressurizing, each IC chip can be temporarily fixed to the glass side and was similarly inspected without pressing (Example 12). In both examples, one IC chip was abnormal. Therefore, when the abnormal chip was peeled off and a new chip was connected in the same way as above,
All were good. In both examples, the adhesive was in a state of insufficient curing reaction, so that chip peeling and subsequent cleaning using acetone were extremely simple, and the repair work was easy. After the energization inspection step and the repair step described above, connection was performed at 150 ° C., 20 kgf / mm 2, and 15 seconds, and both examples showed good connection characteristics.
The number of effective particles on the bumps could be ensured to be 19 or more in all electrodes. In this embodiment, the number of effective particles on the bumps is increased and the outflow from the electrodes is smaller than that in the first embodiment. Since the heating and pressurizing step is performed in two stages, it seems that the retention of particles is further improved.

【0034】実施例13 実施例1の接続部材と同様であるが、導電粒子を表面に
凹凸有するカルボニルニッケル(平均粒径3μm)と
し、添加量4体積%、導電性接着層の厚みを5μmに変
更した。また絶縁性接着層をカルボキシル変性SEBS
(スチレン−エチレン−ブチレン−スチレンブロック共
重合体)とマイクロカプセル型潜在性硬化剤を含有する
液状エポキシ樹脂(エポキシ当量185)の比率を20
/80とし、厚み15μmのシートを前記と同様に作製
し、前記導電性接着層面とラミネートした。同様に測定
した150℃における粘度は100ポイズであった。し
たがって導電性接着層と絶縁性接着層との粘度の差は2
0ポイズである。実施例1と同様に評価したところ、電
極に導電粒子の先端が食い込んでおり、電極上の有効粒
子数は、100個以上が確保できた。接続抵抗、絶縁抵
抗、長期信頼性ともに良好あった。本実施例では、導電
性接着層と絶縁性接着層とで、高分子成分を変えたので
接着後に、絶縁性接着層側の面から綺麗に剥離可能であ
った。このことは、リペア作業の容易さを意味する。導
電性接着層と絶縁性接着層とのTMA(熱機械分析)に
よる引っ張り法で求めたTg(ガラス転移点)は、前者
が125℃、後者が100℃であった。これはリペア作
業において剥離温度を高温とした場合、接着層の耐熱性
の差を利用して剥離可能であり、凝集力の差を設け易い
ことから剥離作業に有効である。
Example 13 Similar to the connecting member of Example 1, except that the conductive particles were carbonyl nickel having an uneven surface (average particle size 3 μm), the addition amount was 4% by volume, and the thickness of the conductive adhesive layer was 5 μm. changed. In addition, the insulating adhesive layer is a carboxyl-modified SEBS
The ratio of the (styrene-ethylene-butylene-styrene block copolymer) and the liquid epoxy resin (epoxy equivalent 185) containing the microcapsule type latent curing agent is 20.
A sheet having a thickness of / 80 and a thickness of 15 μm was prepared in the same manner as above, and laminated on the surface of the conductive adhesive layer. Similarly measured viscosity at 150 ° C. was 100 poise. Therefore, the difference in viscosity between the conductive adhesive layer and the insulating adhesive layer is 2
0 poise. When evaluated in the same manner as in Example 1, the tips of the conductive particles bite into the electrode, and the number of effective particles on the electrode was 100 or more. The connection resistance, insulation resistance, and long-term reliability were all good. In this example, since the polymer components were changed between the conductive adhesive layer and the insulating adhesive layer, it was possible to cleanly peel off from the surface on the insulating adhesive layer side after bonding. This means that repair work is easy. The Tg (glass transition point) of the conductive adhesive layer and the insulating adhesive layer determined by a tensile method by TMA (thermo-mechanical analysis) was 125 ° C. for the former and 100 ° C. for the latter. This is effective for the peeling work because, when the peeling temperature is set to a high temperature in the repairing work, the peeling can be performed by utilizing the difference in heat resistance of the adhesive layer and the difference in cohesive force can be easily provided.

【0035】実施例14〜16 実施例1の接続部材と同様であるが、絶縁粒子として実
施例1の導電性粒子の核体であるポリスチレン系粒子を
1体積%、導電性接着層(実施例14)、絶縁性接着層
(実施例15)、および両層(実施例16)にそれぞれ
混合分散した。実施例1と同様に評価したところ、接続
抵抗、絶縁抵抗、長期信頼性ともに良好であった。絶縁
粒子の添加量が少ないので、各実施例で流動性に対する
影響は見られなかった。実施例14では、導電性粒子の
間に絶縁粒子が分散され導電性接着層のみの異方導電性
の分解能向上に有効であった。実施例15は、絶縁性接
着層の絶縁性保持に有効で、実施例16は、実施例14
〜15の両者の特徴を有していた。実施例14と16の
絶縁粒子は、電極間で導電粒子と同様に変形保持され
た。
Examples 14 to 16 Similar to the connecting member of Example 1, except that 1% by volume of polystyrene-based particles, which is the core of the conductive particles of Example 1, were used as insulating particles, and the conductive adhesive layer (Example) was used. 14), the insulating adhesive layer (Example 15), and both layers (Example 16) were mixed and dispersed. When evaluated in the same manner as in Example 1, the connection resistance, insulation resistance, and long-term reliability were all good. Since the amount of the insulating particles added was small, no influence was observed on the fluidity in each example. In Example 14, the insulating particles were dispersed between the conductive particles, and it was effective for improving the resolution of anisotropic conductivity of only the conductive adhesive layer. Example 15 is effective in maintaining the insulating property of the insulating adhesive layer, and Example 16 is the same as Example 14.
It had the characteristics of both .about.15. The insulating particles of Examples 14 and 16 were deformed and held between the electrodes similarly to the conductive particles.

【0036】実施例17 実施例1の接続部材と同様であるが、導電粒子の表面を
絶縁被覆処理を行った。すなわち、平均粒径4μmの導
電粒子の表面を、ガラス転移点127℃のナイロン樹脂
で厚み約0.2μm被覆し、添加量を15体積%に増加
した。実施例1と同様に評価したが、良好な接続特性を
示した。本実施例では、電極上の粒子数が著しく増加し
た。電極接続部は、接続時の熱圧による絶縁層およびバ
インダの軟化により導通可能であるが、隣接電極列のス
ペース部は熱圧が少なく導電材料の表面が絶縁層で被覆
されたままなので、絶縁性も良好であった。バンプ上の
有効粒子数は、全電極で30個以上の確保が可能であっ
た。本構成では、導電材料のバインダに対する濃度を高
密度に構成できた。
Example 17 Similar to the connecting member of Example 1, the surface of the conductive particles was subjected to insulation coating treatment. That is, the surface of the conductive particles having an average particle diameter of 4 μm was coated with a nylon resin having a glass transition point of 127 ° C. to a thickness of about 0.2 μm, and the addition amount was increased to 15% by volume. The same evaluation as in Example 1 was performed, but good connection characteristics were shown. In this example, the number of particles on the electrode was significantly increased. The electrode connection can be conducted by softening the insulating layer and the binder due to the heat pressure at the time of connection, but the space in the adjacent electrode row has a small heat pressure and the surface of the conductive material remains covered with the insulating layer. The property was also good. The number of effective particles on the bumps could be 30 or more for all electrodes. With this structure, the density of the conductive material with respect to the binder can be made high.

【0037】[0037]

【発明の効果】以上詳述したように本発明によれば、バ
インダ成分の接続時の溶融粘度が相対的に絶縁性の接着
層に比べて同等以下であることから、電極上からの流出
が少ない。したがって、高分解能かつ接続信頼性に優れ
た接続部材およびこれを用いた電極の接続構造並びに接
続方法が提供できる。
As described above in detail, according to the present invention, the melt viscosity of the binder component at the time of connection is equal to or less than that of the adhesive layer having a relatively insulating property. Few. Therefore, a connection member having high resolution and excellent connection reliability, an electrode connection structure using the same, and a connection method can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の接続部材を示す断面模式図。FIG. 1 is a schematic sectional view showing a connecting member of the present invention.

【図2】本発明の他の接続部材を示す断面模式図。FIG. 2 is a schematic cross-sectional view showing another connecting member of the present invention.

【図3】本発明における導電性接着層を示す断面模式
図。
FIG. 3 is a schematic sectional view showing a conductive adhesive layer in the present invention.

【図4】本発明における接着剤層の溶融粘度を示す線
図。
FIG. 4 is a diagram showing the melt viscosity of the adhesive layer in the present invention.

【図5】本発明における接続過程を示す説明図(a)
(b)。
FIG. 5 is an explanatory diagram (a) showing a connection process in the present invention.
(B).

【図6】本発明の接続部材を用いた電極の接続構造例を
示す断面模式図。
FIG. 6 is a schematic cross-sectional view showing an example of the electrode connection structure using the connection member of the present invention.

【図7】本発明の接続部材を用いた電極の接続構造例を
示す断面模式図。
FIG. 7 is a schematic cross-sectional view showing an example of an electrode connection structure using the connection member of the present invention.

【図8】本発明の接続部材を用いた電極の接続構造例を
示す断面模式図。
FIG. 8 is a schematic cross-sectional view showing an example of an electrode connection structure using the connection member of the present invention.

【図9】本発明の接続部材を用いた電極の接続構造例を
示す断面模式図。
FIG. 9 is a schematic cross-sectional view showing an example of the electrode connection structure using the connection member of the present invention.

【符号の説明】[Explanation of symbols]

1 導電性接着層 2 絶縁性接着層 3 導電材料 4 バインダ 5 セパレータ 11 チップ基板 12 突出電極 13 基板 14 平面電極 15 周囲 16 凹状電極 17 頂部 18 絶縁層 1 Conductive Adhesive Layer 2 Insulating Adhesive Layer 3 Conductive Material 4 Binder 5 Separator 11 Chip Substrate 12 Projecting Electrode 13 Substrate 14 Planar Electrode 15 Surrounding 16 Concave Electrode 17 Top 18 Insulating Layer

フロントページの続き (72)発明者 太田 共久 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内 (72)発明者 松岡 寛 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内 (72)発明者 渡辺 伊津夫 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 竹村 賢三 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 塩沢 直行 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 渡辺 治 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 小島 和良 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内Front page continuation (72) Inventor Kyokuhisa Ota 1150 Gozamiya, Shimodate City, Ibaraki Prefecture Goshomiya Plant, Hitachi Chemical Co., Ltd. (72) Hiroshi Matsuoka 1150 Goshomiya, Shimodate City, Ibaraki Prefecture Hitachi Chemical Industry Co., Ltd.Goshonomiya Plant (72) Inventor Itsuo Watanabe 48 Taidai, Tsukuba, Ibaraki Prefecture Hitachi Chemical Co., Ltd.Tsukuba Development Co., Ltd. (72) Inventor Kenzo Takemura 48 Wadai, Tsukuba, Ibaraki Hitachi Chemical Co., Ltd. In the Research Laboratory (72) Inventor Naoyuki Shiozawa 48, Taidai, Tsukuba-shi, Ibaraki Hitachi Chemical Co., Ltd.Inside the Tsukuba Development Laboratory (72) Inventor Osamu Watanabe 48, Wadai, Tsukuba-shi, Ibaraki In the Hitachi Chemical Co., Ltd. 72) Inventor Kayoshi Kojima 48 Tsudai, Tsukuba-shi, Ibaraki Hitachi Chemical Co., Ltd. Tsukuba Development Laboratory

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】導電材料とバインダとよりなる加圧方向に
導電性を有する接着層の少なくとも片面に絶縁性の接着
層が形成されてなる多層接続部材であって、バインダ成
分の接続時の溶融粘度が絶縁性接着層に比べ同等以下で
あることを特徴とする半導体チップ用の接続部材。
1. A multi-layer connection member comprising an adhesive layer made of a conductive material and a binder and having conductivity in the pressing direction, and an insulating adhesive layer formed on at least one surface of the adhesive layer. A connecting member for a semiconductor chip, which has a viscosity equal to or lower than that of an insulating adhesive layer.
【請求項2】バインダ成分の接続時の溶融粘度が500
ポイズ以下であることを特徴とする請求項1記載の接続
部材。
2. A melt viscosity at the time of connecting a binder component is 500.
The connecting member according to claim 1, which has a poise or less.
【請求項3】バインダ成分の接続時の溶融粘度が絶縁性
接着層に比べ0.1ポイズから1000ポイズ低いこと
を特徴とする請求項1記載の接続部材。
3. The connecting member according to claim 1, wherein the melt viscosity at the time of connecting the binder component is 0.1 to 1000 poises lower than that of the insulating adhesive layer.
【請求項4】バインダ成分と絶縁性接着層とが共通材料
を含有してなることを特徴とする請求項1記載の接続部
材。
4. The connecting member according to claim 1, wherein the binder component and the insulating adhesive layer contain a common material.
【請求項5】バインダ成分と絶縁性接着層とが接着性に
差を有してなることを特徴とする請求項1記載の接続部
材。
5. The connecting member according to claim 1, wherein the binder component and the insulating adhesive layer have a difference in adhesiveness.
【請求項6】バインダ成分および/または絶縁性接着層
に絶縁粒子を含有してなることを特徴とする請求項1記
載の接続部材。
6. The connecting member according to claim 1, wherein the binder component and / or the insulating adhesive layer contains insulating particles.
【請求項7】導電材料が導電粒子もしくは導電粒子の表
面に絶縁被覆を形成してなることを特徴とする請求項1
記載の接続部材。
7. The conductive material comprises conductive particles or an insulating coating formed on the surfaces of the conductive particles.
The connecting member as described in the above.
【請求項8】セパレータが絶縁性接着層に接してなるこ
とを特徴とする請求項1記載の接続部材。
8. The connecting member according to claim 1, wherein the separator is in contact with the insulating adhesive layer.
【請求項9】半導体チップの接続用電極面の長径と短径
の比(L/D)が20以下であることを特徴とする請求
項1記載の接続部材。
9. The connecting member according to claim 1, wherein the ratio (L / D) of the major axis and the minor axis of the connecting electrode surface of the semiconductor chip is 20 or less.
【請求項10】相対峙する電極列間の少なくとも一方が
突出した電極列間の接続構造であって、請求項1記載の
導電材料が相対峙する電極間に存在し、かつ絶縁性接着
層が突出電極の少なくとも基板側の周囲を覆ってなるこ
とを特徴とする電極の接続構造。
10. A connection structure between electrode rows in which at least one of the electrode rows facing each other is projected, and the conductive material according to claim 1 is present between the electrodes facing each other, and an insulating adhesive layer is provided. An electrode connection structure characterized by covering at least a substrate-side periphery of a protruding electrode.
【請求項11】突出した電極の頂部から基板側にかけて
導電材料の密度が傾斜的に薄いことを特徴とする請求項
10記載の電極の接続構造
11. The electrode connection structure according to claim 10, wherein the density of the conductive material is gradually reduced from the top of the protruding electrode to the substrate side.
【請求項12】少なくとも一方が突出した電極を有する
相対峙する電極列間に、請求項1記載の接続部材の絶縁
性接着層が突出した電極側となるように配置し、バイン
ダ成分と絶縁性の接着層との接続時の溶融粘度が絶縁性
の接着層に比べて、相対的にバインダ成分が低い条件下
で加熱加圧することを特徴とする電極の接続方法。
12. The insulating adhesive layer of the connecting member according to claim 1 is arranged between the opposing electrode rows having protruding electrodes, at least one of which is arranged so as to be on the protruding electrode side. The method for connecting electrodes, wherein heating and pressurization are performed under the condition that the melt viscosity at the time of connection with the adhesive layer is relatively lower than that of the insulating adhesive layer having a binder component.
【請求項13】絶縁性接着層側に熱源を配し加熱加圧す
ることを特徴とする請求項12記載の電極の接続方法。
13. The method of connecting electrodes according to claim 12, wherein a heat source is arranged on the side of the insulating adhesive layer and heating and pressurization are performed.
【請求項14】少なくとも一方が突出した電極を有する
相対峙する電極列間に、請求項1記載の接続部材の絶縁
性接着層が突出した電極側となるように配置し加熱加圧
してなる接続方法において、加熱加圧工程を2段階以上
に分割し、その間に接続電極の通電検査工程および/ま
たはリペア工程とを必要に応じて行うことを特徴とする
の電極の接続方法。
14. A connection formed by arranging the insulating adhesive layer of the connecting member according to claim 1 so that the insulating adhesive layer is on the protruding electrode side, and heating and pressurizing the electrode between the opposing electrode rows having at least one protruding electrode. In the method, the heating and pressurizing step is divided into two or more steps, and an energization inspection step and / or a repair step of the connecting electrode are performed as necessary during the step, the electrode connecting method.
【請求項15】接続電極の保持が可能な程度に接続部材
の凝集力を増加せしめて通電検査することを特徴とする
請求項14記載の電極の接続方法。
15. The method for connecting electrodes according to claim 14, wherein the current is inspected by increasing the cohesive force of the connection member to such an extent that the connection electrode can be held.
【請求項16】電極接続部を加圧しながら通電検査する
ことを特徴とする請求項14記載の電極の接続方法
16. The method for connecting electrodes according to claim 14, wherein the current is inspected while applying pressure to the electrode connecting portion.
JP12798196A 1995-02-07 1996-05-23 Connection member, electrode connection structure and connection method using the connection member Expired - Fee Related JP4032439B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12798196A JP4032439B2 (en) 1996-05-23 1996-05-23 Connection member, electrode connection structure and connection method using the connection member
TW85108849A TW311328B (en) 1995-02-07 1996-07-20 Connection sheet for interconnecting electrodes facing each other, and electrode connection structure and method using the connection sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12798196A JP4032439B2 (en) 1996-05-23 1996-05-23 Connection member, electrode connection structure and connection method using the connection member

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2006154625A Division JP2006339160A (en) 2006-06-02 2006-06-02 Thermosetting circuit connection member, connection structure of electrode using it and connection method of electrode
JP2007228012A Division JP2008031483A (en) 2007-09-03 2007-09-03 Connecting member, connecting structure of electrodes connected with the same, and connecting method
JP2007228030A Division JP4631889B2 (en) 2007-09-03 2007-09-03 Connection member, electrode connection structure and connection method using the connection member

Publications (2)

Publication Number Publication Date
JPH09312176A true JPH09312176A (en) 1997-12-02
JP4032439B2 JP4032439B2 (en) 2008-01-16

Family

ID=14973494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12798196A Expired - Fee Related JP4032439B2 (en) 1995-02-07 1996-05-23 Connection member, electrode connection structure and connection method using the connection member

Country Status (1)

Country Link
JP (1) JP4032439B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113919A (en) * 1998-08-03 2000-04-21 Sony Corp Electrical connection device and electrically connecting method
JP2000195584A (en) * 1998-12-25 2000-07-14 Sony Corp Electrical connection device and electrical connection method
JP2005200521A (en) * 2004-01-15 2005-07-28 Sony Chem Corp Adhesive film and method of manufacturing adhesive film
JP2006233203A (en) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd Anisotropically electroconductive adhesive film
JP2006233202A (en) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd Anisotropically electroconductive adhesive film for circuit connection
JP2007165052A (en) * 2005-12-12 2007-06-28 Sumitomo Bakelite Co Ltd Anisotropic conductive film
JP2007182062A (en) * 2006-01-04 2007-07-19 Ls Cable Ltd Multilayered anisotropic electroconductive film
JP2007214533A (en) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd Conductive bonding film and solar cell module
JP2007246551A (en) * 2006-03-13 2007-09-27 Sony Chemical & Information Device Corp Method for pasting adhesive layer, and adhesive film
WO2007125993A1 (en) * 2006-04-27 2007-11-08 Asahi Kasei Emd Corporation Electroconductive particle placement sheet and anisotropic elctroconductive film
JP2008031483A (en) * 2007-09-03 2008-02-14 Hitachi Chem Co Ltd Connecting member, connecting structure of electrodes connected with the same, and connecting method
JP2008034232A (en) * 2006-07-28 2008-02-14 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
WO2008026356A1 (en) * 2006-08-29 2008-03-06 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
JP2008060084A (en) * 2007-10-03 2008-03-13 Hitachi Chem Co Ltd Connecting member, and connection structure and connecting method of electrode using the connecting member
JP2008071748A (en) * 2006-08-16 2008-03-27 Sony Chemical & Information Device Corp Connecting method
WO2009013968A1 (en) * 2007-07-26 2009-01-29 Sony Chemical & Information Device Corporation Adhesive film, connecting method and connected body
JP2010034037A (en) * 2008-06-26 2010-02-12 Hitachi Chem Co Ltd Resin film sheet having conductive particles therein and electronic components electrically connected by the resin film sheet having conductive particles therein
JP2010257991A (en) * 2010-07-28 2010-11-11 Sony Chemical & Information Device Corp Method of manufacturing package, method of connecting same package, and anisotropic conductive film
JP2011049612A (en) * 2006-01-16 2011-03-10 Hitachi Chem Co Ltd Method of manufacturing solar cell module
JP2011061241A (en) * 2006-04-26 2011-03-24 Hitachi Chem Co Ltd Adhesive
JP2011150975A (en) * 2010-01-25 2011-08-04 Hitachi Chem Co Ltd Anisotropic conductive film
JP2011175970A (en) * 2011-02-07 2011-09-08 Hitachi Chem Co Ltd Circuit connecting material, and manufacturing method of connection structure of circuit member
WO2012086278A1 (en) * 2010-12-24 2012-06-28 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive adhesive film, connection structure and method for manufacturing same
JP2013010962A (en) * 2012-08-20 2013-01-17 Dexerials Corp Adhesive film
WO2014021457A1 (en) * 2012-08-03 2014-02-06 デクセリアルズ株式会社 Anisotropic conductive film and method for producing same
WO2014119547A1 (en) * 2013-01-30 2014-08-07 デクセリアルズ株式会社 Adhesive film and method for manufacturing electronic component
TWI456852B (en) * 2007-10-31 2014-10-11 Hitachi Chemical Co Ltd Connection structure of circuit member and connection method of circuit member
WO2016152791A1 (en) * 2015-03-20 2016-09-29 デクセリアルズ株式会社 Anisotropic conductive film and connection structure
JP2016178029A (en) * 2015-03-20 2016-10-06 デクセリアルズ株式会社 Anisotropic conductive film
JP2017147211A (en) * 2016-02-20 2017-08-24 デクセリアルズ株式会社 Anisotropic conductive film and connection structure
WO2019235589A1 (en) * 2018-06-06 2019-12-12 デクセリアルズ株式会社 Method for manufacturing connector and connection method
WO2019235596A1 (en) * 2018-06-06 2019-12-12 デクセリアルズ株式会社 Connector, method for manufacturing connector, and connection method
JP2019216098A (en) * 2018-06-06 2019-12-19 デクセリアルズ株式会社 Connector, method for manufacturing connector, and connection method
JP2019216097A (en) * 2018-06-06 2019-12-19 デクセリアルズ株式会社 Method for manufacturing connector and connection method
US10943879B2 (en) 2015-01-13 2021-03-09 Dexerials Corporation Bump-forming film, semiconductor device and manufacturing method thereof, and connection structure
WO2021206115A1 (en) * 2020-04-10 2021-10-14 昭和電工マテリアルズ株式会社 Adhesive composition, adhesive film, connected structure, and production method therefor

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113919A (en) * 1998-08-03 2000-04-21 Sony Corp Electrical connection device and electrically connecting method
JP2000195584A (en) * 1998-12-25 2000-07-14 Sony Corp Electrical connection device and electrical connection method
JP2005200521A (en) * 2004-01-15 2005-07-28 Sony Chem Corp Adhesive film and method of manufacturing adhesive film
JP2006233203A (en) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd Anisotropically electroconductive adhesive film
JP2006233202A (en) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd Anisotropically electroconductive adhesive film for circuit connection
JP2007165052A (en) * 2005-12-12 2007-06-28 Sumitomo Bakelite Co Ltd Anisotropic conductive film
JP2007182062A (en) * 2006-01-04 2007-07-19 Ls Cable Ltd Multilayered anisotropic electroconductive film
JP4513024B2 (en) * 2006-01-04 2010-07-28 エルジー イノテック カンパニー リミテッド Multilayer anisotropic conductive film
JP2011049612A (en) * 2006-01-16 2011-03-10 Hitachi Chem Co Ltd Method of manufacturing solar cell module
JP2007214533A (en) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd Conductive bonding film and solar cell module
JP2007246551A (en) * 2006-03-13 2007-09-27 Sony Chemical & Information Device Corp Method for pasting adhesive layer, and adhesive film
JP2011061241A (en) * 2006-04-26 2011-03-24 Hitachi Chem Co Ltd Adhesive
US8969707B2 (en) 2006-04-26 2015-03-03 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
JP2011066448A (en) * 2006-04-26 2011-03-31 Hitachi Chem Co Ltd Bonding tape and solar cell module using the same
JP2012216843A (en) * 2006-04-26 2012-11-08 Hitachi Chem Co Ltd Adhesive tape and solar cell module using the same
US8969706B2 (en) 2006-04-26 2015-03-03 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
WO2007125993A1 (en) * 2006-04-27 2007-11-08 Asahi Kasei Emd Corporation Electroconductive particle placement sheet and anisotropic elctroconductive film
US8247701B2 (en) 2006-04-27 2012-08-21 Asahi Kasei Emd Corporation Electroconductive particle placement sheet and anisotropic electroconductive film
JP2008034232A (en) * 2006-07-28 2008-02-14 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
JP2008071748A (en) * 2006-08-16 2008-03-27 Sony Chemical & Information Device Corp Connecting method
US9173302B2 (en) 2006-08-29 2015-10-27 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
WO2008026356A1 (en) * 2006-08-29 2008-03-06 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
WO2009013968A1 (en) * 2007-07-26 2009-01-29 Sony Chemical & Information Device Corporation Adhesive film, connecting method and connected body
KR101150613B1 (en) * 2007-07-26 2012-05-31 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Adhesive film, connecting method, and joined structure
US8158887B2 (en) 2007-07-26 2012-04-17 Sony Corporation Adhesive film, connecting method, and joined structure
JP2008031483A (en) * 2007-09-03 2008-02-14 Hitachi Chem Co Ltd Connecting member, connecting structure of electrodes connected with the same, and connecting method
JP2008060084A (en) * 2007-10-03 2008-03-13 Hitachi Chem Co Ltd Connecting member, and connection structure and connecting method of electrode using the connecting member
TWI456852B (en) * 2007-10-31 2014-10-11 Hitachi Chemical Co Ltd Connection structure of circuit member and connection method of circuit member
JP2010034037A (en) * 2008-06-26 2010-02-12 Hitachi Chem Co Ltd Resin film sheet having conductive particles therein and electronic components electrically connected by the resin film sheet having conductive particles therein
TWI415144B (en) * 2008-06-26 2013-11-11 Hitachi Chemical Co Ltd A resin film containing conductive particles and an electronic component electrically connected with a resin film containing conductive particles
JP2010284973A (en) * 2008-06-26 2010-12-24 Hitachi Chem Co Ltd Resin film sheet and electronic component
JP2011233530A (en) * 2008-06-26 2011-11-17 Hitachi Chem Co Ltd Resin film sheet and electronic component
CN102298988A (en) * 2008-06-26 2011-12-28 日立化成工业株式会社 Resin diaphragm having conductive particles inside and electronic components electrically connected by the same
JP4661985B2 (en) * 2008-06-26 2011-03-30 日立化成工業株式会社 Resin film sheet and electronic parts
JP4661986B2 (en) * 2008-06-26 2011-03-30 日立化成工業株式会社 Resin film sheet and electronic parts
JP2010267627A (en) * 2008-06-26 2010-11-25 Hitachi Chem Co Ltd Resin film sheet and electronic component
JP4623224B2 (en) * 2008-06-26 2011-02-02 日立化成工業株式会社 Resin film sheet and electronic parts
JP2010278013A (en) * 2008-06-26 2010-12-09 Hitachi Chem Co Ltd Resin film sheet, and electronic component
JP2011003544A (en) * 2008-06-26 2011-01-06 Hitachi Chem Co Ltd Resin film sheet including conductive particles and electronic component electrically connected with resin film sheet including conductive particles
TWI396626B (en) * 2008-06-26 2013-05-21 Hitachi Chemical Co Ltd Resin diaphragm, electronic parts and circuit connection material
JP2011150975A (en) * 2010-01-25 2011-08-04 Hitachi Chem Co Ltd Anisotropic conductive film
JP2010257991A (en) * 2010-07-28 2010-11-11 Sony Chemical & Information Device Corp Method of manufacturing package, method of connecting same package, and anisotropic conductive film
CN102668251A (en) * 2010-12-24 2012-09-12 索尼化学&信息部件株式会社 Anisotropic conductive adhesive film, connection structure and method for manufacturing same
KR101410185B1 (en) * 2010-12-24 2014-06-19 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film, connection structure and method of manufacturing the same
WO2012086278A1 (en) * 2010-12-24 2012-06-28 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive adhesive film, connection structure and method for manufacturing same
JP2011175970A (en) * 2011-02-07 2011-09-08 Hitachi Chem Co Ltd Circuit connecting material, and manufacturing method of connection structure of circuit member
WO2014021457A1 (en) * 2012-08-03 2014-02-06 デクセリアルズ株式会社 Anisotropic conductive film and method for producing same
JP2014043574A (en) * 2012-08-03 2014-03-13 Dexerials Corp Anisotropic conductive film and method for producing the same
JP2013010962A (en) * 2012-08-20 2013-01-17 Dexerials Corp Adhesive film
JP2014145055A (en) * 2013-01-30 2014-08-14 Dexerials Corp Adhesive film, and method for manufacturing electronic component
WO2014119547A1 (en) * 2013-01-30 2014-08-07 デクセリアルズ株式会社 Adhesive film and method for manufacturing electronic component
US10943879B2 (en) 2015-01-13 2021-03-09 Dexerials Corporation Bump-forming film, semiconductor device and manufacturing method thereof, and connection structure
WO2016152791A1 (en) * 2015-03-20 2016-09-29 デクセリアルズ株式会社 Anisotropic conductive film and connection structure
JP2016178029A (en) * 2015-03-20 2016-10-06 デクセリアルズ株式会社 Anisotropic conductive film
CN107431294A (en) * 2015-03-20 2017-12-01 迪睿合株式会社 Anisotropic conductive film and connecting structure body
US20180022968A1 (en) * 2015-03-20 2018-01-25 Dexerials Corporation Anisotropic conductive film and connection structure
CN114582545B (en) * 2015-03-20 2024-10-29 迪睿合株式会社 Anisotropic conductive film and connection structure
CN114582545A (en) * 2015-03-20 2022-06-03 迪睿合株式会社 Anisotropic conductive film and connection structure
JP2017147211A (en) * 2016-02-20 2017-08-24 デクセリアルズ株式会社 Anisotropic conductive film and connection structure
JP2019216097A (en) * 2018-06-06 2019-12-19 デクセリアルズ株式会社 Method for manufacturing connector and connection method
CN112166529A (en) * 2018-06-06 2021-01-01 迪睿合株式会社 Connection body, method for manufacturing connection body, and connection method
KR20210015863A (en) * 2018-06-06 2021-02-10 데쿠세리아루즈 가부시키가이샤 Connection method, connection method
KR20210015864A (en) * 2018-06-06 2021-02-10 데쿠세리아루즈 가부시키가이샤 Connection body, manufacturing method of connection body, connection method
JP2019216098A (en) * 2018-06-06 2019-12-19 デクセリアルズ株式会社 Connector, method for manufacturing connector, and connection method
WO2019235596A1 (en) * 2018-06-06 2019-12-12 デクセリアルズ株式会社 Connector, method for manufacturing connector, and connection method
US11901096B2 (en) 2018-06-06 2024-02-13 Dexerials Corporation Method for manufacturing connection body and method for connecting component
TWI845515B (en) * 2018-06-06 2024-06-21 日商迪睿合股份有限公司 Connector, method for manufacturing connector, and connecting method
US12034260B2 (en) 2018-06-06 2024-07-09 Dexerials Corporation Connection body, method for manufacturing connection body, and connection method
WO2019235589A1 (en) * 2018-06-06 2019-12-12 デクセリアルズ株式会社 Method for manufacturing connector and connection method
WO2021206115A1 (en) * 2020-04-10 2021-10-14 昭和電工マテリアルズ株式会社 Adhesive composition, adhesive film, connected structure, and production method therefor

Also Published As

Publication number Publication date
JP4032439B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP4032439B2 (en) Connection member, electrode connection structure and connection method using the connection member
US6034331A (en) Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
JP3656768B2 (en) Connection member, electrode connection structure using the connection member, and connection method
KR19990044151A (en) Strongly bonded substrate assembly for deformable electronics
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JP2006339160A (en) Thermosetting circuit connection member, connection structure of electrode using it and connection method of electrode
JP4661914B2 (en) Electrode connection method
KR100248582B1 (en) A connection sheet for interconnection electrodes facing each other, and electrode connection structure and method using the connection sheet
JPH08148211A (en) Connection member and structure and method for connecting electrode using the same
JP4595981B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP4631893B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP2010010142A (en) Thermosetting circuit connection member and connection structure of electrode using it and connecting method of electrode
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP4595980B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP4631889B2 (en) Connection member, electrode connection structure and connection method using the connection member
JPH09153516A (en) Semiconductor device and ic chip inspecting method
JP4473661B2 (en) Connecting member
JPH09147928A (en) Connecting member
JP2008031483A (en) Connecting member, connecting structure of electrodes connected with the same, and connecting method
JPH0955279A (en) Electrode connecting method and connection structure of electrode obtained by the method
JP3783791B2 (en) Connection member and electrode connection structure and connection method using the connection member
JP2004165659A (en) Method of connecting electrodes and connecting structure of electrodes obtained by the same
JP4670859B2 (en) Connection member and electrode connection structure using the same
JP2008112732A (en) Connecting method of electrode
JPH08148212A (en) Connection member and structure and method for connecting electrode using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees