JPH0931675A - Electric corrosion protection method using multiple booster type anodic protection and device therefor - Google Patents
Electric corrosion protection method using multiple booster type anodic protection and device thereforInfo
- Publication number
- JPH0931675A JPH0931675A JP7200252A JP20025295A JPH0931675A JP H0931675 A JPH0931675 A JP H0931675A JP 7200252 A JP7200252 A JP 7200252A JP 20025295 A JP20025295 A JP 20025295A JP H0931675 A JPH0931675 A JP H0931675A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- auxiliary
- converter
- galvanic anode
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F2213/00—Aspects of inhibiting corrosion of metals by anodic or cathodic protection
- C23F2213/20—Constructional parts or assemblies of the anodic or cathodic protection apparatus
- C23F2213/21—Constructional parts or assemblies of the anodic or cathodic protection apparatus combining at least two types of anodic or cathodic protection
Landscapes
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、現にカソード防食され
ている金属製施設に補助陰極または補助流電陽極を付設
し、該施設と該付設補助電極との間に発生する電圧を増
減圧して得られた任意の値の電圧を隣接する構造物の電
気防食用電源として利用する複合増圧方式の流電陽極に
よる電気防食法およびそのための装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides an auxiliary cathode or auxiliary galvanic anode to a metal facility which is currently cathodic protected, and increases or decreases the voltage generated between the facility and the attached auxiliary electrode. The present invention relates to a cathodic protection method using a galvanic anode of a composite pressure-increasing system in which the obtained voltage of any value is used as a cathodic protection power source for an adjacent structure, and a device therefor.
【0002】[0002]
【従来の技術】電気防食法は、海水中、河川水中や地中
等に設置された金属構造物や埋設管、あるいはコンクリ
ート構造物中の鉄筋、さらに工業用水や有機、無機の液
体に接する化学装置等の腐食を防止する方法として利用
され、港湾、橋梁等のインフラストラクチャや各分野の
産業での防食に多大の効果を上げている。2. Description of the Related Art The cathodic protection method is a chemical device in contact with metal structures or buried pipes installed in seawater, river water, underground, etc., or reinforcing bars in concrete structures, industrial water and organic or inorganic liquids. It is used as a method to prevent the corrosion of buildings, etc. and has a great effect on the corrosion protection in infrastructure such as ports and bridges and in industries in each field.
【0003】電気防食法の適用形態の一つとして、マグ
ネシウム、アルミニウムまたは亜鉛あるいはこれらのそ
れぞれの合金等の卑電位の流電陽極と、それより貴な電
位を有する対象被防食体との電位差(有効電位差)を駆
動力として、流電陽極から被防食体に防食電流を供給し
ている。そして、この流電陽極方式は、施工工事と保守
が容易なことと故障の起こりにくさから、現在では外部
電源方式に代わって広く適用されるようになり、特に海
水中の施設への適用は100%といってよい。外部電源
方式では不溶性陽極を用いるので、塩素や酸素等の強酸
化性のガスが発生しケーブルが損傷されることが多い。
さらに不測の停電で無防食になる等、保守の面倒さや信
頼性に問題があるが、高電圧を要する埋設管の防食等に
適用されている。As one of the application forms of the cathodic protection method, a potential difference between a galvanic anode having a base potential such as magnesium, aluminum, zinc, or an alloy of each of these, and a target corrosion-preventing substance having a noble potential higher than that ( An anticorrosion current is supplied from the galvanic anode to the anticorrosion body by using the effective potential difference) as a driving force. This galvanic anode method is now widely used in place of the external power source method because of its ease of construction work and maintenance, and its low risk of failure, and is especially applicable to facilities in seawater. It can be said to be 100%. Since an insoluble anode is used in the external power supply method, a strong oxidizing gas such as chlorine or oxygen is often generated and the cable is often damaged.
Furthermore, there is a problem of troublesome maintenance and reliability such as corrosion protection due to unexpected power failure, but it is applied to corrosion protection of buried pipes that require high voltage.
【0004】しかし、流電陽極の種類により固有の陽極
電位が決まっているため、それに基づく防食能に限界が
ある。流電陽極の陽極電位の代表的な値は、亜鉛系、ア
ルミニウム系およびマグネシウム系の陽極では、それぞ
れ−1.0V、−1.1Vおよび−1.5V(電位は飽
和甘汞電極基準、以下同様)とされており、一方、被防
食体が鉄鋼構造物の場合の防食電位は−0.8Vである
ので、上記流電陽極についての防食電流の駆動力となる
有効電位差はそれぞれ0.2V、0.3Vおよび0.7
Vとなる。環境の抵抗が海水のように低いときには、こ
れらの有効電位差で十分の防食電流が流せるのでいずれ
の陽極も使用可能である。しかし、汽水や淡水あるいは
土壌のように環境の比抵抗が数百〜数千Ωcmあるいは
それ以上にも及ぶ場合の閘門、送水管路や埋設管等の防
食では、陽極電位の最も卑なマグネシウム陽極を用いて
も有効電位差が不足で、十分な防食電流を確保すること
ができないことが多い。しかも、電流分布が局所化する
ので、多数の陽極の配置を必要とする。However, since the unique anode potential is determined by the type of galvanic anode, there is a limit to the anticorrosion ability based on that. Typical values of the anode potential of galvanic anodes are -1.0V, -1.1V and -1.5V for zinc-based, aluminum-based and magnesium-based anodes (potentials are based on the saturated sweet potato electrode, respectively). On the other hand, since the anticorrosion potential when the object to be protected is a steel structure is -0.8 V, the effective potential difference which is the driving force of the anticorrosion current for the galvanic anode is 0.2 V, respectively. , 0.3V and 0.7
V. When the environmental resistance is as low as seawater, any anode can be used because a sufficient anticorrosion current can flow with these effective potential differences. However, for corrosion protection of locks, water supply lines, buried pipes, etc. when the resistivity of the environment is several hundred to several thousand Ωcm or more like brackish water, fresh water, or soil, the most anodic magnesium anode is used. Even if is used, the effective potential difference is insufficient and it is often impossible to secure a sufficient anticorrosion current. Moreover, since the current distribution is localized, it is necessary to dispose a large number of anodes.
【0005】港湾施設には、岸壁や桟橋等の鉄筋コンク
リート構造物が多くあるが、常に海水の飛沫を浴びコン
クリート内の塩化物濃度の上昇による鉄筋の腐食、いわ
ゆる塩害が生じる。融雪塩の多用による橋梁床板や海砂
使用の建造物等にも塩害が生じるが、この際の鉄筋腐食
の防止にカソード防食法が有効であることはよく知ら
れ、塩害の発生したコンクリート構造物の補修後、再度
の腐食発生を防止するため、あるいは新設時や供用早期
から塩害の予防のためカソード防食法が適用されるよう
になってきている。この際、通常のポルトランドセメン
トであれば、コンクリートの電気抵抗があまり高くない
ので、亜鉛系陽極を用いて亜鉛、鉄筋間の約0.6Vの
電位差で防食効果を上げることができる。しかし、最近
は防食性のよいセメントが用いられるようになり、特に
有機質のポリマーセメント等が使用されると、コンクリ
ートの抵抗が著しく大きくなるので、この高環境抵抗に
対し亜鉛系陽極では有効電位差が不足で不十分な防食電
流しか流せない。陽極電位の卑なアルミニウム系やマグ
ネシウム系陽極では薄板状の製品が入手し難い。このよ
うな使用環境の抵抗の増大に対処するため、より卑電位
の流電陽極が要望されたにも拘らず、現在まで期待され
た陽極は見い出されていない。Many harbor facilities have reinforced concrete structures such as quays and piers, but they are always exposed to splashes of seawater and corrosion of the rebars, so-called salt damage, occurs due to an increase in chloride concentration in the concrete. Salt damage occurs to bridge floor boards and buildings using sea sand due to heavy use of snow melting salt, but it is well known that cathodic protection is effective for preventing rebar corrosion at this time, and concrete structures with salt damage are well known. After the repair, the cathodic protection method has come to be applied to prevent corrosion from occurring again or to prevent salt damage at the time of new construction or at the early stage of service. At this time, in the case of ordinary Portland cement, since the electric resistance of concrete is not so high, it is possible to improve the anticorrosion effect with a potential difference of about 0.6 V between zinc and the reinforcing bar by using a zinc-based anode. Recently, however, cement with good anticorrosive properties has come to be used, and particularly when organic polymer cement or the like is used, the resistance of concrete increases remarkably. Insufficient protection current can be applied due to lack. It is difficult to obtain thin plate-shaped products with aluminum-based or magnesium-based anodes that have a low anode potential. In order to cope with such an increase in the resistance of the use environment, although a galvanic anode having a lower base potential has been demanded, an expected anode has not been found until now.
【0006】より卑電位への陽極への変更でも問題が解
決しないとき、外部電源を利用する方法がある。すなわ
ち、通常の流電陽極法では直結されている陽極、被防食
体との接続を切り、この間に整流電源または電池を接続
して必要な電圧(極性は陽極側がプラス)を加えると、
被防食体から見てその電圧分だけ流電陽極の電位が見掛
け上卑方向に移行するので、有効電位差が増大する。There is a method of utilizing an external power supply when the problem cannot be solved even by changing the anode to a more base potential. That is, in the normal galvanic anode method, if the anode, which is directly connected, is disconnected from the body to be protected and a rectifying power source or battery is connected between them and a necessary voltage (polarity is positive on the anode side) is applied,
Since the potential of the galvanic anode apparently shifts in the base direction as much as the voltage of the corrosion-prevented body, the effective potential difference increases.
【0007】しかし、この電圧源が一次電池では長期間
の寿命は望めず、また非常に高価と二次電池では、充電
や電解液の補充等の面倒な保守が必要である。また商用
交流による整流電源には不測の停電があり、無防食の監
視が必要となる。従って、メンテナンスフリーの無停電
電源の出現が望まれている。However, if the voltage source is a primary battery, a long-term life cannot be expected, and if it is very expensive, a secondary battery requires troublesome maintenance such as charging and replenishment of electrolyte. In addition, there is an unexpected power outage in the rectification power source by commercial AC, and it is necessary to monitor without corrosion. Therefore, the emergence of a maintenance-free uninterruptible power supply is desired.
【0008】桟橋や港湾施設等の近傍には、鋼矢板や鋼
管杭等、電気防食が適用されている鋼構造物の施設があ
る。これらの施設は−0.8V程度の防食電位に維持さ
れているので、その施設の近傍の環境中に貴な電位で酸
素還元反応が進行する不動態金属、例えば銅、銅合金、
ステンレス鋼、チタン、チタン合金や導電性塗膜あるい
は炭素質物質等を補助陰極として浸漬すると、これらは
鋼構造物に対し陰極となって−0.5V程度の分極電位
で電流が取り出せるので、鋼構造物との間で約0.3V
の電圧が取り出せることとなる。チタン、タンタル、ニ
オブや銅等の耐食性金属を用いて得られるこの0.3V
の電圧を、そのまま上記鋼構造物の大気環境に接する部
分の防食に利用する電気防食法は既に提案されているが
(特公平3−77280号公報)、0.3Vでは、例え
ばコンクリート鉄筋の電気防食には不足であり、さらに
大きな電圧の獲得が望まれている。In the vicinity of a jetty, a harbor facility and the like, there are facilities for steel structures such as steel sheet piles and steel pipe piles to which cathodic protection is applied. Since these facilities are maintained at an anticorrosion potential of about -0.8 V, a passive metal, such as copper or a copper alloy, in which an oxygen reduction reaction proceeds at a noble potential in the environment near the facility.
When stainless steel, titanium, a titanium alloy, a conductive coating film, or a carbonaceous material is immersed as an auxiliary cathode, these become cathodes to the steel structure and current can be taken out at a polarization potential of about -0.5 V. About 0.3V between structure
The voltage of can be taken out. 0.3V obtained by using corrosion resistant metals such as titanium, tantalum, niobium and copper
Has already been proposed (corresponding to Japanese Patent Publication No. 3-77280), in which the above voltage is used as it is for the corrosion protection of the portion of the steel structure in contact with the atmospheric environment (Japanese Patent Publication No. 3-77280). It is insufficient for anticorrosion, and it is desired to obtain a larger voltage.
【0009】[0009]
【発明が解決しようとする課題】本発明は、これら従来
技術の課題を解決し、流電陽極方式のカソード防食にお
いて、環境抵抗が高くて既存の流電陽極では防食電流の
駆動力である有効電位差が不足のとき、有効電位差を増
大して被防食体の完全防食を可能ならしめる複合増圧方
式流電陽極による電気防食法およびそのための装置を提
供することを目的とするものである。SUMMARY OF THE INVENTION The present invention solves these problems of the prior art, and in the cathodic protection of the galvanic anode system, the environmental resistance is high and the existing galvanic anode is effective as a driving force for the corrosion current. It is an object of the present invention to provide a cathodic protection method using a galvanic composite pressure increasing type galvanic anode capable of increasing the effective electric potential difference to completely prevent corrosion of a body to be protected when the potential difference is insufficient, and an apparatus therefor.
【0010】[0010]
【課題を解決するための手段】本発明は、カソード防食
対象の被防食体の環境抵抗が高くて、既存の電流電極で
は有効電位差が不足して十分な防食電流を流すことがで
きないとき、被防食体の近くで現に電気防食が適用中の
金属製施設に補助電極を付設し、この両者間に発生する
電極を利用して、前記の流電電極の有効電位差を増大さ
せ、高い環境抵抗に打ち勝って必要な防食電流を供給し
完全防食を達成させるものである。SUMMARY OF THE INVENTION According to the present invention, when the environment resistance of the body to be protected by cathodic protection is high and the existing current electrode lacks an effective potential difference and a sufficient protection current cannot flow, Auxiliary electrodes are attached to a metal facility where cathodic protection is currently being applied near the anticorrosion body, and the electrodes generated between the two are used to increase the effective potential difference of the galvanic electrodes to increase the environmental resistance. It overcomes and supplies the necessary anticorrosion current to achieve complete anticorrosion.
【0011】例えば、港湾桟橋等の海洋沿岸のコンクリ
ート施設の鉄筋に対す流電電極方式のカソード防食法に
おいて、高抵抗のポリマーセメントが使用されているた
め、環境抵抗が高くて現用の亜鉛系流電陽極では有効電
位差が不足し、必要な防食電流が流せないとき、不足す
る電圧を防食対象の近傍において現に電気防食が適用中
の鋼矢板や鋼管杭等の鋼製施設に、既述のような例えば
銅、銅合金、ステンレス鋼、チタン、チタン合金や導電
性塗膜あるいは炭素質物質等の補助陰極を付設するか、
あるいは亜鉛系、アルミニウム系またはマグネシウム系
の補助流電陽極を付設し、補助陰極または補助流電陽極
と該金属製施設間に発生する電圧をDC・DCコンバー
タで昇圧または減圧して任意の値の直流電圧を得て、こ
れを流電陽極、鉄筋間に与え、この電圧分だけ流電陽極
の有効電位差を増大させ、高環境抵抗に打ち勝って必要
な防食電流を供給できるようにし、あるいは停電の恐れ
がない外部電源用電源として防食電流を供給させようと
いうものである。For example, in the cathodic protection method of the galvanic electrode system for the reinforcing bars of the concrete facilities on the ocean coast such as a harbor pier, since high-resistance polymer cement is used, the environmental resistance is high and the current zinc-based flow is high. When the effective potential difference is insufficient at the electrolytic anode and the necessary anticorrosion current cannot be applied, the insufficient voltage is applied to the steel facilities such as steel sheet piles and steel pipe piles where electrical protection is currently being applied near the anticorrosion target as described above. Such as copper, copper alloy, stainless steel, titanium, titanium alloy or a conductive coating or an auxiliary cathode of carbonaceous material, or
Alternatively, a zinc-based, aluminum-based, or magnesium-based auxiliary galvanic anode is attached, and the voltage generated between the auxiliary cathode or auxiliary galvanic anode and the metal facility is boosted or depressurized by a DC / DC converter to obtain an arbitrary value. Obtain a DC voltage and apply it between galvanic anode and rebar to increase the effective potential difference of galvanic anode by this voltage to overcome high environmental resistance and supply necessary anticorrosion current, or to prevent power failure. It is intended to supply an anticorrosion current as a power supply for an external power supply without fear.
【0012】既存または新設の電気防食適用施設が海水
中の鋼矢板や鋼管杭等の時、前述の材料の補助陰極では
約0.3V(電圧は大地に接地する鋼構造物を基準とす
る)で0.1A/m2程度の発生電流が取り出せる。し
かし、補助流電陽極を付設するときは、陽極電流密度は
1A/m2以上取り出せるので、補助陰極よりはるかに
小型の電極となり、付設が容易となる。しかも、マグネ
シウム系陽極を用いれば−0.7V程度の電圧が得ら
れ、補助陰極の約2.5倍の電圧が得られるが、極性は
マイナスである。この電圧を防食に利用するコンクリー
ト鉄筋やその他の防食対象は殆ど接地しているので、電
圧の極性を逆にするかあるいは電圧発生源の施設から絶
縁した電圧として電圧相互の短絡を防止する必要があ
る。従って、現状では補助陰極から取り出す0.3Vの
電圧しか利用することができず、さらに大きな電圧が利
用できることが望まれている。When the existing or newly installed facility for applying cathodic protection is steel sheet piles or steel pipe piles in seawater, the auxiliary cathode of the above-mentioned material is approximately 0.3 V (the voltage is based on the steel structure grounded to the ground). Can generate a generated current of about 0.1 A / m 2 . However, when the auxiliary galvanic anode is attached, the anode current density of 1 A / m 2 or more can be taken out, so that the electrode becomes a much smaller electrode than the auxiliary cathode and the attachment becomes easy. Moreover, if a magnesium-based anode is used, a voltage of about -0.7 V can be obtained, and a voltage about 2.5 times that of the auxiliary cathode can be obtained, but the polarity is negative. Since concrete reinforcing bars and other objects to be protected against corrosion that use this voltage are almost grounded, it is necessary to reverse the polarity of the voltage or to prevent short-circuiting between the voltages by isolating them from the facility of the voltage source. is there. Therefore, at present, only the voltage of 0.3 V taken out from the auxiliary cathode can be used, and it is desired that a larger voltage can be used.
【0013】本発明者は、補助陰極からの電圧を大きく
増幅し、また補助流電陽極の電圧の極性を反転して利用
できるようにするため、DC・DCコンバータを低入力
電圧用に改造して利用することにより、上記の課題を解
決し、目的の被防食体に隣接する電気防食適用の他施設
を利用して該被防食体を完全防食する電気防食法を確立
した。The present inventor remodels the DC / DC converter for a low input voltage in order to amplify the voltage from the auxiliary cathode greatly and to invert the polarity of the voltage of the auxiliary galvanic anode so that it can be used. The above problems have been solved by utilizing the above, and an electrocorrosion method for completely corroding the corrosion-prevented body was established by using another facility for applying the corrosion protection adjacent to the target corrosion-prevented body.
【0014】DC・DCコンバータは直流入力電圧を高
周波スイッチング回路で交流に変換後、昇圧または減圧
してから整流、平滑して任意の大きさ、任意の極性のし
かも入力回路(入力電圧)から絶縁することもできる定
電圧の直流出力電圧を取り出し得る電力変換器で、80
%程度の変換効率が得られる。従って、隣接電気防食施
設と補助電極間で発生する電圧をこのDC・DCコンバ
ータで変換することにより、補助陰極、補助流電陽極の
いずれの電極を使用する場合でも、目的施設での流電陽
極の有効電位差の増大や外部電源方式の電源としても利
用できる。The DC / DC converter converts a DC input voltage into an AC by a high frequency switching circuit, boosts or depressurizes it, and then rectifies it, smoothes it, and isolates it from an input circuit (input voltage) of arbitrary magnitude and polarity. A power converter that can output a constant DC output voltage that can be
% Conversion efficiency is obtained. Therefore, by converting the voltage generated between the adjacent cathodic protection facility and the auxiliary electrode with this DC / DC converter, the galvanic anode at the target facility can be used regardless of whether the auxiliary cathode or the auxiliary galvanic anode is used. It can also be used as a power source for an external power source system and an increase in the effective potential difference.
【0015】しかし、DC・DCコンバータは通常、入
力を電源として全回路が作動するように設計されている
ので、低入力電圧では作動しない。現在、変換可能な最
低入力電圧は一般に1V前後で、0.3Vもの低電圧を
変換できるものは見当たらない。本発明者はDC・DC
コンバータを低入力用とするため、入力のスイッチ回路
とそれの駆動回路を分離し、駆動回路は十分な作動電圧
のバックアップニ次電池で正常に作動させ、低い入力電
圧は低入力抵抗のスイッチ回路で確実かつ効率よく変
換、変圧させ、一方、同時に別個の小DC・DCコンバ
ータ(これの駆動回路も該二次電池で作動する)で低電
圧入力を昇圧して該二次電池を充電することにより、連
続的に0.3V程度もの低電圧の変換を可能にする改良
DC・DCコンバータを設計、開発した。However, since the DC / DC converter is usually designed so that the entire circuit operates by using the input as a power source, it does not operate at a low input voltage. Currently, the lowest input voltage that can be converted is generally around 1V, and no one can convert a voltage as low as 0.3V. The inventor is DC / DC
In order to make the converter for low input, the input switch circuit and its drive circuit are separated, the drive circuit is operated normally by a backup secondary battery with sufficient operating voltage, and the low input voltage is low input resistance switch circuit. To reliably and efficiently convert and transform, while at the same time charging a low voltage input by boosting a low voltage input with a separate small DC / DC converter (the driving circuit of which also operates with the secondary battery). Has designed and developed an improved DC-DC converter that can continuously convert a low voltage of about 0.3V.
【0016】本発明者は、電気防食適用中の金属製施設
(主に鋼構造物)と既述の金属等の補助陰極あるいは補
助流電陽極とを組み合わせた施設(以下、これを電防施
設電池という)から取り出せる−0.7〜+0.3Vの
低電圧を上記の改良DC・DCコンバータ装置(以下、
ここではコンバータと略称する)を用いて昇圧し、その
電圧を利用して他施設の流電陽極の有効電位差の増圧を
可能とし、高環境抵抗に拘らず、高抵抗コンクリート構
造物の鉄筋の完全防食ができることを確認した。The inventor of the present invention is a facility in which a metal facility (mainly a steel structure) being applied to cathodic protection is combined with an auxiliary cathode or an auxiliary galvanic anode of the above-mentioned metal or the like (hereinafter, referred to as an electric protection facility. A low voltage of -0.7 to +0.3 V that can be taken out from a battery) is applied to the above improved DC / DC converter device (hereinafter,
(Here, abbreviated as “converter”) is used to increase the voltage of the effective potential difference of galvanic anodes of other facilities by using that voltage. It was confirmed that complete corrosion protection was possible.
【0017】すなわち、本発明は、流電陽極方式のカソ
ード防食において、流電陽極と対象被防食体との間の環
境抵抗が大きくて防食電流が不足する場合、該被防食体
の近傍で現に電気防食適用中の金属製施設の環境中に付
設された補助陰極または補助流電陽極のいずれかと該金
属製施設との間に発生する電圧を、スイッチング方式の
DC・DCコンバータに入力し、昇圧または減圧して得
られる任意の値の出力電圧を、該金属製施設と連続また
は非連続の該被防食体と該流電陽極との間に与え、該流
電陽極の有効電位差を増大し、防食電流を増加させて被
防食体を完全防食することを特徴とする複合増圧方式流
電陽極による電気防食法にある。That is, according to the present invention, in the cathodic protection of the galvanic anode method, when the galvanic anode and the object to be corroded have a large environmental resistance and thus the anticorrosion current is insufficient, the anticorrosion is actually performed near the object to be corroded. The voltage generated between either the auxiliary cathode or auxiliary galvanic anode attached to the environment of the metal facility to which cathodic protection is applied and the metal facility is input to a switching DC / DC converter to boost the voltage. Or an output voltage of any value obtained by decompressing is applied between the metal facility and the continuous or discontinuous corrosion-protected object and the galvanic anode to increase the effective potential difference of the galvanic anode, This is a galvanic protection method using a galvanic anode with a composite pressure-increasing method, which is characterized by increasing the anticorrosion current to completely corrode the body to be protected.
【0018】また、本発明は、前記DC・DCコンバー
タが、電圧変換部と電源構成部よりなり、該両部にある
スイッチングトランジスタの駆動部を作動させる二次電
池を有し、該電源構成部において入力直流電圧を交流に
変換後、昇圧、整流して該二次電池を充電することによ
り、該電圧変換部を安定に連続作動させ、該二次電池電
圧より低い入力直流電圧を該電圧変換部で交流に変換
後、昇圧または減圧された任意の値であって、かつ入力
回路から絶縁されまたは入力回路に接続された直流電圧
として連続的に出力することを特徴とする電圧変換用ス
イッチング方式DC・DCコンバータにある。Further, in the present invention, the DC / DC converter includes a secondary battery which is composed of a voltage conversion section and a power source configuration section, and which operates a drive section of a switching transistor in the both sections. After converting the input DC voltage into AC, boosting and rectifying the DC voltage to charge the secondary battery, the voltage conversion unit is stably operated continuously, and the input DC voltage lower than the secondary battery voltage is converted into the voltage. Switching method for voltage conversion, characterized in that, after being converted to AC by the unit, it is continuously output as a DC voltage that has been boosted or depressurized and is insulated from the input circuit or connected to the input circuit. DC / DC converter.
【0019】以下、図面に基づき本発明を詳述する。図
1は、本発明に係る電防施設電池の電圧の変換による流
電陽極有効電位差の増圧法を利用した、カソード防食法
の原理を示す回路図である。The present invention will be described in detail below with reference to the drawings. FIG. 1 is a circuit diagram showing the principle of a cathodic protection method using a method of increasing the effective potential difference of a galvanic anode by converting the voltage of an electric protection facility battery according to the present invention.
【0020】電防施設電池1は補助陰極2(または補助
流電陽極2′)と電気防食適用中の施設3とから構成さ
れ、環境4中に設置される。5は施設3を電気防食する
ための流電陽極である。補助陰極2は、銅、銅合金、ス
テンレス鋼、チタン、チタン合金等の金属や導電性塗膜
あるいは炭素質物質から選択される貴電位で溶存酸素還
元能を有する電子伝導体である。また補助流電陽極2′
は、亜鉛、アルミニウムまたはマグネシウムあるいはこ
れらを基体金属とするぞれぞれの合金から選択された流
電陽極であるが、電防施設電池1の発生電圧の面から、
マグネシウム系流電陽極が好ましい。電気防食適用中の
施設3は、主に鋼矢板、鋼管杭、閘門、送水間や埋設管
等の鋼構造施設が多い。環境4は、海水、汽水または淡
水あるいは土壌等の電解質性媒質であって、導電性と溶
存酸素濃度の大きい海水が最も好ましいが、汽水、淡
水、土壌も発生電流、起電力で海水に及ばないものの、
電防施設電池1の設置環境になり得る。海水中でのこの
電防施設電池1の出力電圧は、付設電極(2または
2′)の種類で異なるが、通常−0.7V〜+0.3V
程度である。また施設3の電気防食用陽極5には、通
常、アルミニウム系流電陽極がよく用いられる。The electric protection facility battery 1 is composed of an auxiliary cathode 2 (or auxiliary galvanic anode 2 ') and a facility 3 which is under cathodic protection, and is installed in an environment 4. Reference numeral 5 is a galvanic anode for galvanic protection of the facility 3. The auxiliary cathode 2 is an electron conductor having a dissolved oxygen reducing ability at a noble potential selected from metals such as copper, copper alloys, stainless steel, titanium, and titanium alloys, conductive coatings, or carbonaceous substances. Auxiliary galvanic anode 2 '
Is a galvanic anode selected from zinc, aluminum, magnesium, or alloys containing each of these as the base metal. In terms of the generated voltage of the electric protection facility battery 1,
Magnesium galvanic anodes are preferred. Most of the facilities 3 that are applying cathodic protection are steel sheet piles, steel pipe piles, locks, steel structures between water transmission lines and buried pipes. Environment 4 is an electrolytic medium such as seawater, brackish water or freshwater, or soil, and is most preferably seawater having high conductivity and dissolved oxygen concentration, but brackish water, freshwater, and soil also do not reach seawater due to generated current or electromotive force. Though
The environment for installing the battery 1 of the anti-defense facility can be set. The output voltage of this protection facility battery 1 in seawater varies depending on the type of the attached electrode (2 or 2 '), but is usually -0.7V to + 0.3V.
It is a degree. An aluminum-based galvanic anode is often used as the cathodic protection anode 5 of the facility 3.
【0021】6は、電防施設電池1で発生した電圧を適
切な値の出力電圧になるように昇圧または減圧して一定
の値に自動調節するとともに、出力電圧を入力から絶縁
することのできる機能も有するコンバータ)で、電圧変
換部11〜17と電源構成部21〜27から構成され
る。6 is capable of automatically adjusting the voltage generated in the electric protection facility battery 1 to a constant value by boosting or reducing the voltage so that the output voltage has an appropriate value, and isolating the output voltage from the input. It also has a function), and is composed of voltage converters 11 to 17 and power supply components 21 to 27.
【0022】コンバータには種々の方式があるが、フラ
イバックトランス方式が回路構成も簡単であるので、小
型の防食用電源としては好ましく、電圧変換部にはこの
方式を、電源構成部にはインダクタンスコイルを用いる
フォワード方式が適当である。Although there are various types of converters, the flyback transformer type is preferable as a small anticorrosive power source because the circuit configuration is simple, and this type is used for the voltage conversion section and the inductance is used for the power source configuration section. The forward method using a coil is suitable.
【0023】電防施設電池1の発生電圧は、入力導線3
1、32でコンバータ6に入力され、入力電圧は電圧変
換部のフライバックトランス11と低オン抵抗のスイッ
チングトランジスタ12の直列回路に加えられる。スイ
ッチングトランジスタ12は、パルス幅制御方式の高周
波発振器で構成される駆動部13の交流により駆動され
てオン・オフを繰り返し、フライバックトランス11の
二次側に交流電圧を発生し、これが整流部14・平滑部
15により直流化されて、入力電圧に比して通常は昇
圧、時には減圧された出力電圧となる。この出力電圧は
抵抗16で分割され、その一部の電圧はカプラー17を
経て駆動部13にフィードバックされ、発振回路のパル
ス幅変調による周波数変化で出力電圧が一定になるよう
に制御する。カプラーは、出力電圧を入力回路から絶縁
しながらフィードバック電圧を駆動部に伝送するために
設けた。The voltage generated by the electric protection facility battery 1 depends on the input conductor 3
The input voltage is input to the converter 6 at 1 and 32, and the input voltage is added to the series circuit of the flyback transformer 11 and the low-on resistance switching transistor 12 of the voltage conversion unit. The switching transistor 12 is driven by an alternating current of a driving unit 13 composed of a high-frequency oscillator of a pulse width control system and repeatedly turned on and off to generate an alternating voltage on the secondary side of the flyback transformer 11, which rectifies the rectifying unit 14. The output voltage is converted into direct current by the smoothing unit 15 and is normally boosted and sometimes reduced in comparison with the input voltage. This output voltage is divided by the resistor 16, and a part of the voltage is fed back to the drive unit 13 via the coupler 17 and controlled so that the output voltage becomes constant by the frequency change due to the pulse width modulation of the oscillation circuit. The coupler is provided to transmit the feedback voltage to the driving unit while insulating the output voltage from the input circuit.
【0024】また、駆動部13の電源は1.5V〜数V
以上必要で、これは電源構成部のバックアップ二次電池
27から供給される。一方、該二次電池27は、電防施
設電池1からの低電圧入力を小容量のフォワード方式の
コンバータで昇圧した電圧で充電される。そのため、イ
ンダクタンスコイル21と直列のスイッチングトランジ
スタ22は、駆動部23からの高周波交流で入力電圧を
スイッチし、出力交流はダイオード24とコンデンサ2
5で平滑な直流となり、フィードバック抵抗26の設定
で二次電池27の充電に必要な電圧に制御される。The power source of the drive unit 13 is 1.5V to several V.
The above is necessary, and this is supplied from the backup secondary battery 27 of the power supply component. On the other hand, the secondary battery 27 is charged with a voltage obtained by boosting the low voltage input from the electric protection facility battery 1 by a small capacity forward type converter. Therefore, the switching transistor 22 in series with the inductance coil 21 switches the input voltage by the high frequency alternating current from the drive unit 23, and the output alternating current is the diode 24 and the capacitor 2.
The DC voltage becomes smooth at 5, and the voltage is controlled to the voltage required for charging the secondary battery 27 by setting the feedback resistor 26.
【0025】コンバータ6の入力回路の低インピーダン
ス側(コモン)は、インピーダンスの関係で補助電極2
または2′に接続されることは好ましくなく、接地され
ている施設3に常に入力導線32で接続されている必要
がある。よって、敷設した電極が補助陰極2の時は入力
導線31には正の電圧が、補助流電陽極2′が使用され
るときは負の電圧が印加される。コンバータ6は単極性
であるので、入力電圧の極性により回路を変更する必要
がある。図1は、補助陰極2を付設したときの正電圧用
のもので、この場合スイッチ回路のトランジスタには、
N型バイポーラ型かNチャンネル電界効果型のものが用
いられ、駆動部13および23はプラス電圧の二次電池
で作動する。一方、補助流電陽極2′が付設されるとき
は、入力電圧は−0.2V(亜鉛系陽極)〜−0.7V
(マグネシウム系陽極)となるので、スイッチングトラ
ンジスタはP型バイポーラ型かPチャンネル電界効果型
に変更すると同時に、駆動部13および23ならびに二
次電池27は、マイナス電圧で作動するものに直す必要
がある。また、ダイオード34とコンデンサ35も負電
圧出力とする。なお、補助陰極2を用いるときは、コン
バータの入出力は共に同極性であるため、入力と出力は
絶縁される必要はなく、電圧変換部にはフォワード方式
のスイッチ回路を用いてもよい。On the low impedance side (common) of the input circuit of the converter 6, the auxiliary electrode 2
Alternatively, it is not preferable to connect to 2 ', and it is necessary to always connect to the grounded facility 3 by the input conductor 32. Therefore, a positive voltage is applied to the input conductor 31 when the laid electrode is the auxiliary cathode 2, and a negative voltage is applied when the auxiliary galvanic anode 2'is used. Since the converter 6 is unipolar, it is necessary to change the circuit depending on the polarity of the input voltage. FIG. 1 is for a positive voltage when the auxiliary cathode 2 is attached. In this case, the transistor of the switch circuit is
An N-type bipolar type or an N-channel field effect type is used, and the driving units 13 and 23 operate with a positive voltage secondary battery. On the other hand, when the auxiliary galvanic anode 2'is attached, the input voltage is -0.2V (zinc type anode) to -0.7V.
Since it becomes a (magnesium-based anode), it is necessary to change the switching transistor to the P-type bipolar type or the P-channel field effect type, and at the same time, to change the driving units 13 and 23 and the secondary battery 27 to those operating at a negative voltage. . In addition, the diode 34 and the capacitor 35 also output a negative voltage. When the auxiliary cathode 2 is used, the input and output of the converter have the same polarity, and therefore the input and output do not need to be insulated, and a forward type switch circuit may be used for the voltage conversion unit.
【0026】コンバータ6は電力変換器であり、入力電
圧を昇圧すると、その昇圧割合に反比例して出力電流が
減少するので、昇圧した出力電圧を必要とするときは、
電圧発生系は十分な電力を供給できる電流容量を有する
ことが必要となる。The converter 6 is a power converter. When the input voltage is boosted, the output current decreases in inverse proportion to the boosting ratio. Therefore, when the boosted output voltage is required,
The voltage generation system needs to have a current capacity capable of supplying sufficient electric power.
【0027】このように、コンバータの改良により低入
力電圧を効率よく数V以上までも昇圧することができる
ので、この電圧で外部電源方式のカソード防食も可能で
あり、例えば、鋼矢板等の飛沫帯防食等のための、停電
の恐れのないメンテナンスフリーの電源ともなし得る。As described above, since the low input voltage can be efficiently boosted up to several V or more by the improvement of the converter, the external power source type cathodic protection can be performed with this voltage, for example, the splash of steel sheet pile or the like. It can also be used as a maintenance-free power source that is free from the risk of blackouts, such as for erosion protection.
【0028】電防施設電池1で電流発生を続けている
と、よく知られていることであるが、補助陰極2の表面
に石灰質スケールが生成固着するので、補助陰極2の発
生電流が低下し必要な電流が確保できなくなる。特に海
水中ではこのスケール生成が著しく、汽水や淡水中でも
Ca2+およびMg2+の濃度に準じ、同様の発生電流の逓
減を生じる。そこで、補助陰極2表面でのスケールの析
出を防止し、正極の発生電流の低下防止と寿命の延伸を
図るため、本発明者は、ある種の吸水性高分子と接触す
る海水が、Cl-、SO 2- 4等のアニオンの濃度には何
等の変化もなかったが、Ca2+およびMg2+ならびにN
a+等のカチオンの濃度は10〜25%も減少するとい
う実験結果を得た。そこで、この吸水性高分子のイオン
選択性を利用して、アルカリ土類金属イオンの濃度を下
げてスケールの析出を減少させるべく、本発明において
は、この種のイオン選択性物質で補助陰極2表面を被覆
することも特徴としている。It is well known that the current is continuously generated in the battery 1 of the electric protection facility. However, since the calcareous scale is formed and adheres to the surface of the auxiliary cathode 2, the current generated by the auxiliary cathode 2 is lowered. The required current cannot be secured. Especially in seawater, this scale formation is remarkable, and even in brackish water and fresh water, the same gradual decrease in generated current occurs according to the concentrations of Ca 2+ and Mg 2+ . Therefore, in order to prevent the scale from being deposited on the surface of the auxiliary cathode 2, prevent the decrease of the current generated by the positive electrode, and extend the life of the auxiliary cathode 2, the present inventor has found that the seawater in contact with a certain water-absorbing polymer is Cl −. Although there was no change in any way the concentration of anions such as SO 2- 4, Ca 2+ and Mg 2+ and N
Experimental results have been obtained that the concentration of cations such as a + is reduced by 10 to 25%. Therefore, in order to reduce the concentration of alkaline earth metal ions and reduce scale deposition by utilizing the ion selectivity of this water-absorbing polymer, in the present invention, the auxiliary cathode 2 is made of this type of ion-selective substance. It is also characterized by coating the surface.
【0029】補助陰極2の電位や発生電流量は環境4の
溶存酸素量や補助陰極2での電流密度により異なる。海
水中での陰極の通常の使用電流密度は0.1A/m2程
度で、アンペアオーダーの発生電流を得るためにはかな
り大型の陰極の設置が必要である。そこで本発明では、
小型で表面積の大きい補助陰極として、粒状活性炭を用
いて表面積を拡大した炭素質充填体電極により、電圧発
生系の電流容量と起電力の増大を図ることも特徴として
いる。なお、上記充填体電極は、環境4中に全没する
か、または一部を大気中に露出させても良い。The potential of the auxiliary cathode 2 and the amount of generated current differ depending on the amount of dissolved oxygen in the environment 4 and the current density at the auxiliary cathode 2. Usually, the current density of the cathode used in seawater is about 0.1 A / m 2 , and it is necessary to install a considerably large cathode in order to obtain a generated current of amperes order. Therefore, in the present invention,
As a small-sized auxiliary cathode with a large surface area, a carbonaceous filler electrode having an expanded surface area using granular activated carbon is also characterized in that the current capacity and electromotive force of the voltage generating system are increased. The filler electrode may be entirely submerged in the environment 4, or a part thereof may be exposed to the atmosphere.
【0030】[0030]
【作用】環境抵抗の高い汽水、淡水または土壌或はコン
クリート中の金属構造物のカソード防食において、防食
対象の金属構造物に隣接する電気防食適用施設に貴電位
金属等の補助陰極または補助流電陽極のいずれかに設置
し、施設、補助電極間に発生する電圧を低入力用に改良
したDC・DCコンバータにより変圧して金属構造物と
流電陽極との間に加え、その電圧分だけ流電陽極の電位
を見掛け上卑にして現用の流電陽極の不足する有効電位
差を増大させ、高い環境抵抗に対抗して既存の流電陽極
での完全防食を可能ならしめる。[Function] In cathodic protection of metal structures in brackish water, fresh water or soil or concrete with high environmental resistance, auxiliary cathodic or auxiliary galvanic current of precious potential metal or the like is installed in a facility for applying cathodic protection adjacent to the metal structure to be protected. Installed on either of the anodes, the voltage generated between the facility and the auxiliary electrode is transformed by a DC / DC converter improved for low input and added between the metal structure and the galvanic anode, and the voltage corresponding to that voltage is applied. It makes the potential of the current anode apparently base and increases the lacking effective potential difference of the current current anode, and makes it possible to completely prevent corrosion in the existing current anode against high environmental resistance.
【0031】[0031]
【実施例】次に、実施例に基づいて、本発明を具体的に
説明する。実施例 高抵抗コンクリートで作られているため、亜鉛合金流電
陽極を用いても鉄筋を完全防食できなかったコンクリー
ト梁を試験体として、図1に示すように、アルミニウム
合金陽極5で電気防食されている海水中の鋼矢板3を電
防施設電池1の負極とし、補助陰極2としてのステンレ
ス鋼板を正極とする電防施設電池1を海水中で構成し、
発生電圧をコンバータ6で昇圧して、亜鉛合金陽極44
の有効電位差の増圧を図った。EXAMPLES Next, the present invention will be specifically described based on examples. EXAMPLE A concrete beam, which was made of high-resistance concrete and could not completely prevent corrosion of reinforcing bars even when a zinc alloy galvanic anode was used, was used as a test specimen, and as shown in FIG. The steel sheet pile 3 in seawater is used as the negative electrode of the electric protection facility battery 1, and the stainless steel plate as the auxiliary cathode 2 is used as the positive electrode.
The generated voltage is boosted by the converter 6, and the zinc alloy anode 44
The effective potential difference was increased.
【0032】補助陰極2には、ステンレス鋼板(表面
積:2m2)を5枚と、後述の充填体電極2本を用い、
電気防食適用の鋼矢板岸壁に対向させた。ステンレス鋼
板の4枚の表面は、吸水性高分子『アクアリックCS』
を耐水紙に薄く展開したシート状のアニオン選択性膜
(日本触媒化学工業社製)で覆い、1枚は比較のため裸
で用いた。この膜は、ポリアクリル酸塩系の吸水性高分
子であるが、本発明者は、前述のように、この高分子に
海水中でアルカリ土類金属イオンを吸着する性質を認
め、この高分子はカルシウムイオンやマグネシウムイオ
ン等を通過させないアニオン選択性のある、しかも電気
抵抗の低い隔膜となることを実験により確認したもので
ある。As the auxiliary cathode 2, five stainless steel plates (surface area: 2 m 2 ) and two below-mentioned filler electrodes are used.
It faced the steel sheet pile quay for cathodic protection. The surface of four stainless steel sheets is a water-absorbing polymer "Aqualic CS"
Was covered with a sheet-shaped anion-selective membrane (manufactured by Nippon Shokubai Kagaku Kogyo Co., Ltd.) thinly spread on water-resistant paper, and one sheet was used naked for comparison. This membrane is a polyacrylic acid salt-based water-absorbing polymer, but the present inventor has recognized that the polymer adsorbs alkaline earth metal ions in seawater as described above. Is experimentally confirmed to be a diaphragm having anion selectivity that does not allow passage of calcium ions and magnesium ions and has low electric resistance.
【0033】次に、小型補助陰極としての、粒状活性炭
で表面積を拡大した充填体電極の効果を評価するため、
炭素棒(1cmφ×100cm)を中心電極とし、これ
を布製袋(7cmφ×100cm)に収め、その間隙に
3〜7mmの粒状活性炭を密に充填して袋の両端を閉
じ、その2本を補助陰極とする試験を行った。この充填
体電極の見掛けの表面積の総計は0.4m2である。し
かし、この電極の実効表面積は、充填物質の粒径や充填
密度で異なるが、同じ見掛け表面積の平滑電極の15倍
程度あることが、カソード分極曲線の測定から評価され
ている。なお、この際、各補助電極の個々の分担電流が
計測できるようにした。Next, in order to evaluate the effect of a filler electrode having a surface area enlarged by granular activated carbon as a small auxiliary cathode,
A carbon rod (1 cmφ x 100 cm) was used as the center electrode, and this was placed in a cloth bag (7 cmφ x 100 cm), and the gap was tightly filled with granular activated carbon of 3 to 7 mm, and both ends of the bag were closed. A test using a cathode was performed. The total apparent surface area of this filler electrode is 0.4 m 2 . However, it has been evaluated from the measurement of the cathode polarization curve that the effective surface area of this electrode is about 15 times that of a smooth electrode having the same apparent surface area, although it depends on the particle size and packing density of the packing material. At this time, the individual shared current of each auxiliary electrode can be measured.
【0034】また、コンクリート梁のカソード防食試験
体は、高抵抗のポリマーセメント製のRCコンクリート
梁41で、鉄筋42は相互に導通を確認しながら通常の
密度で配筋した。コンクリート表面には、ベントナイ
ト、石膏および硫酸ナトリウムが6:3:1の割合の混
合物を水で練った半固体状のバックフィル43を10m
m厚みに塗布し、その上に亜鉛合金陽極板44(0.2
×100×100cm)を10枚載せた。各陽極は、電
流の均等配分のため、分配器45を経由して導線51で
コンバータ6の出力の正端子に接続され、一方、コンバ
ータ6の負端子は導線52で鉄筋に接続した。なお分配
器45は、各陽極への電流均等配分のための定電流性を
有する素子であり、5Ωの抵抗、トランジスタのベース
・エミッタ間の電圧を可変抵抗で調節する簡単な定電流
装置、トランジスタのベース電圧を演算増器で調節する
精密な定電流装置等を用いて、電流分配の安定性も試験
した。Further, the cathodic protection test piece of the concrete beam was an RC concrete beam 41 made of high resistance polymer cement, and the reinforcing bars 42 were arranged at a normal density while confirming mutual conduction. On the concrete surface, 10 m of a semi-solid backfill 43 obtained by kneading a mixture of bentonite, gypsum and sodium sulfate in a ratio of 6: 3: 1 with water.
m thickness, and the zinc alloy anode plate 44 (0.2
10 sheets of (× 100 × 100 cm) were placed. Each anode was connected to the positive terminal of the output of the converter 6 via the conductor 45 via the distributor 45, for equal distribution of the current, while the negative terminal of the converter 6 was connected to the rebar by the conductor 52. Note that the distributor 45 is an element having a constant current characteristic for evenly distributing the current to each anode, and is a simple constant current device that adjusts the resistance of 5Ω and the voltage between the base and emitter of the transistor with a variable resistor, the transistor. The stability of current distribution was also tested by using a precision constant current device or the like that adjusts the base voltage of the device with an operational amplifier.
【0035】防食試験は、このコンクリートで十分な防
食電流を得るためには1.7V以上の有効電位差(外部
加電圧:1.1V)が必要なことが別個の試験で判明し
ているので、コンバータ6の出力電圧は1.3Vに設定
した。完全防食の判定は、通電試験の途中で一時電流を
切り、4時間後までに鉄筋の電位に100mV以上の復
極が認められることを基準とした。In the anticorrosion test, it was found in a separate test that an effective potential difference of 1.7 V or more (external applied voltage: 1.1 V) is required to obtain a sufficient anticorrosion current with this concrete. The output voltage of the converter 6 was set to 1.3V. The judgment of complete anticorrosion was based on the fact that the temporary current was cut off during the energization test and that the repolarization potential of 100 mV or more was recognized by 4 hours later.
【0036】通電試験の開始直後から、各陽極の通過電
流は13〜14mAの範囲にあり、6か月の試験期間
中、毎週1回復極試験を行ったが、常に102〜110
mVの復極値が得られ、完全防食されていることが分か
った。よって、本発明の流電陽極有効電位差増圧法は、
効果的に働いていることが明らかとなった。Immediately after the start of the energization test, the passing current of each anode was in the range of 13 to 14 mA, and one recovery pole test was conducted every week during the 6-month test period.
A reversion value of mV was obtained, and it was found that the corrosion was completely prevented. Therefore, the galvanic anode effective potential difference pressure increasing method of the present invention,
It became clear that it worked effectively.
【0037】試験期間中、電防施設電池1の発生電圧は
大体0.3Vを維持し、全発生電流は800mA程度で
あった。また各電極の分担電流は、ステンレス鋼板では
ほぼ110mA/枚であったが、充填体電極では230
mA程度の発生電流が認められた。よって、充填体電極
は実効表面積が広く、電流容量が大きいことが分かっ
た。During the test period, the generated voltage of the electric protection facility battery 1 was maintained at about 0.3 V, and the total generated current was about 800 mA. The shared current of each electrode was about 110 mA / sheet for the stainless steel plate, but was 230 for the filler electrode.
A generated current of about mA was observed. Therefore, it was found that the filler electrode has a large effective surface area and a large current capacity.
【0038】また、3か月目と6か月目にステンレス鋼
板電極を海水から引き上げ、石灰質スケールの付着状況
を調べたところ、アニオン選択性膜を貼らなかったステ
ンレス鋼面にはスケールの析出が認められ、試験時間の
経過とともにその析出量は増加した。これに対し、アニ
オン選択性膜の下のステンレス鋼面ではスケールの析出
は殆ど認められなかった。Further, when the stainless steel plate electrode was pulled up from seawater at the 3rd and 6th months and the adhesion condition of the calcareous scale was examined, scale deposition was observed on the stainless steel surface on which the anion selective membrane was not adhered. The amount of precipitation increased with the passage of the test time. On the other hand, almost no scale deposition was observed on the stainless steel surface below the anion selective membrane.
【0039】次に、補助流電陽極2′としてマグネシウ
ム合金陽極(表面積:0.5m2)を2本設置し、P型
コンバータ6で変換して、同じくコンクリート梁試験体
の防食試験を行った。その結果、6か月試験で鉄筋の1
00mV復極は確保され、完全防食が確認された。この
間、電防施設電池1の発生電流の平均値は450mA
で、発生電圧は0.55V程度であった。Next, two magnesium alloy anodes (surface area: 0.5 m 2 ) were installed as the auxiliary galvanic anodes 2 ′, converted by the P-type converter 6, and the corrosion test of the concrete beam test body was also conducted. . As a result, in the 6-month test,
The 00 mV depolarization was secured, and complete corrosion protection was confirmed. During this period, the average value of the current generated by the electric protection facility battery 1 is 450 mA.
The generated voltage was about 0.55V.
【0040】[0040]
【発明の効果】以上説明したように、高抵抗環境中の被
防食体に隣接する電気防食適用施設に補助陰極または補
助流電陽極を設置し、発生電圧をDC・DCコンバータ
で変圧するのみで、長寿命でメンテナンスフリーの安価
な無停電電源が得られ、簡単に流電陽極の有効電位差を
増大することができる。よって、既存の流電陽極では有
効電位差の不足で防食できない高抵抗環境中の該被防食
体の完全防食が可能となる。さらに数Vの電圧を得て、
外部電源方式の電気防食法の電源としても利用できる。As described above, an auxiliary cathode or an auxiliary galvanic anode is installed in a facility for applying anticorrosion adjacent to a body to be protected in a high resistance environment, and the generated voltage is simply transformed by a DC / DC converter. An inexpensive uninterruptible power supply with long life and maintenance-free can be obtained, and the effective potential difference of the galvanic anode can be easily increased. Therefore, it becomes possible to completely prevent corrosion of the object to be protected in a high resistance environment where the existing galvanic anode cannot prevent corrosion due to lack of effective potential difference. And get a few volts more voltage,
It can also be used as a power source for an external power supply type cathodic protection method.
【図1】 本発明に係る電防施設電池電圧による流電陽
極有効電位差の増圧法の原理回路図。FIG. 1 is a principle circuit diagram of a method of increasing the effective potential difference of a galvanic anode by a battery voltage of an electric protection facility according to the present invention.
1:電防施設電池、2:補助陰極、2′:補助流電陽
極、3:電防適用施設、4:環境、5:電防適用施設防
食用流電陽極、6:低入力用DC・DCコンバータ、1
1:フライバックトランス、12:スイッチングトラン
ジスタ、13:駆動部、14:整流部、15:平滑部、
16:フィードバック電圧設定部、17:カプラー、2
1:インダクタンスコイル、22:スイッチングトラン
ジスタ、23:駆動部、24:ダイオード、25:コン
デンサ、26:フィードバック電圧設定部、27:バッ
クアップ二次電池、31:入力導線、32:入力導線、
41:コンクリート構造物、42:鉄筋、43:バック
フィル、44:亜鉛合金陽極、45:分配器、51:コ
ンバータ出力プラス導線、52:コンバータ出力マイナ
ス導線。1: Battery of anti-electrostatic facility, 2: Auxiliary cathode, 2 ': Auxiliary galvanic anode, 3: Electrostatic protective facility, 4: Environment, 5: Electrostatic protective facility galvanic anode for corrosion protection, 6: Low input DC / DC converter, 1
1: flyback transformer, 12: switching transistor, 13: drive unit, 14: rectification unit, 15: smoothing unit,
16: feedback voltage setting unit, 17: coupler, 2
1: Inductance coil, 22: Switching transistor, 23: Driving part, 24: Diode, 25: Capacitor, 26: Feedback voltage setting part, 27: Backup secondary battery, 31: Input lead wire, 32: Input lead wire,
41: concrete structure, 42: rebar, 43: backfill, 44: zinc alloy anode, 45: distributor, 51: converter output plus lead wire, 52: converter output minus lead wire.
Claims (6)
流電陽極と対象被防食体との間の環境抵抗が大きくて防
食電流が不足する場合、該被防食体の近傍で現に電気防
食適用中の金属製施設の環境中に付設された補助陰極ま
たは補助流電陽極のいずれかと該金属製施設との間に発
生する電圧を、スイッチング方式のDC・DCコンバー
タに入力し、昇圧または減圧して得られる任意の値の出
力電圧を、該金属製施設と連続または非連続の該被防食
体と該流電陽極との間に与え、該流電陽極の有効電位差
を増大し、防食電流を増加させて被防食体を完全防食す
ることを特徴とする複合増圧方式流電陽極による電気防
食法。1. In cathodic protection of galvanic anode method,
When the environmental resistance between the galvanic anode and the object to be protected is large and the anticorrosion current is insufficient, an auxiliary cathode attached in the environment of a metal facility currently being applied with anticorrosion in the vicinity of the object to be protected or The voltage generated between any of the auxiliary galvanic anodes and the metal facility is input to a switching DC / DC converter, and the output voltage of an arbitrary value obtained by boosting or reducing the pressure is used as the metal facility. Is applied between the corrosion-prevented material which is continuous or discontinuous with the galvanic anode and the galvanic anode to increase the effective potential difference of the galvanic anode, thereby increasing the anticorrosion current to completely corrode the corrosion-protected material. Cathodic protection method with composite booster galvanic anode.
鋼、チタン、チタン合金あるいは導電性塗膜や炭素質物
質から選択され、前記補助流電陽極が亜鉛、アルミニウ
ム、マグネシウムあるいはこれらを基体金属とするそれ
ぞれの合金から選択される請求項1に記載の電気防食
法。2. The auxiliary cathode is selected from copper, copper alloys, stainless steel, titanium, titanium alloys, conductive coatings and carbonaceous materials, and the auxiliary galvanic anode is zinc, aluminum, magnesium or a base metal thereof. The cathodic protection method according to claim 1, which is selected from respective alloys.
で被覆することを特徴とする請求項1または2に記載の
電気防食法。3. The cathodic protection method according to claim 1, wherein the surface of the auxiliary cathode is coated with an ion-selective substance.
粒状炭素質物質を詰めた充填体電極であり、該充填体電
極を前記環境中に全没するかまたは一部を大気中に露出
させる請求項1または2に記載の電気防食法。4. The auxiliary cathode is a filler electrode in which a granular carbonaceous material is filled around an insoluble central electrode, and the filler electrode is wholly immersed in the environment or partially exposed to the atmosphere. The cathodic protection method according to claim 1.
筋である請求項1〜4のいずれかに記載の電気防食法。5. The cathodic protection method according to claim 1, wherein the body to be protected is a reinforcing bar in reinforced concrete.
部と電源構成部よりなり、該両部にあるスイッチングト
ランジスタの駆動部を作動させる二次電池を有し、該電
源構成部において入力直流電圧を交流に変換後、昇圧、
整流して該二次電池を充電することにより、該電圧変換
部を安定に連続作動させ、該二次電池電圧より低い入力
直流電圧を該電圧変換部で交流に変換後、昇圧または減
圧された任意の値であって、かつ入力回路から絶縁され
または入力回路に接続された直流電圧として連続的に出
力することを特徴とする電圧変換用スイッチング方式D
C・DCコンバータ。6. The DC / DC converter includes a voltage conversion unit and a power supply constituent unit, and has a secondary battery for operating a driving unit of a switching transistor in both units, and an input DC voltage is provided in the power supply constituent unit. After converting to AC, boost,
By rectifying and charging the secondary battery, the voltage conversion unit is stably operated continuously, and an input DC voltage lower than the secondary battery voltage is converted into AC by the voltage conversion unit and then boosted or reduced in pressure. Switching method for voltage conversion D, which is an arbitrary value and is continuously output as a DC voltage which is insulated from the input circuit or connected to the input circuit
C / DC converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7200252A JPH0931675A (en) | 1995-07-14 | 1995-07-14 | Electric corrosion protection method using multiple booster type anodic protection and device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7200252A JPH0931675A (en) | 1995-07-14 | 1995-07-14 | Electric corrosion protection method using multiple booster type anodic protection and device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0931675A true JPH0931675A (en) | 1997-02-04 |
Family
ID=16421298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7200252A Pending JPH0931675A (en) | 1995-07-14 | 1995-07-14 | Electric corrosion protection method using multiple booster type anodic protection and device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0931675A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100360200B1 (en) * | 1998-12-22 | 2003-10-22 | 주식회사 삼공사 | Electric type control device |
JP2007076495A (en) * | 2005-09-14 | 2007-03-29 | Shimadzu Corp | Method for reducing underwater electric field in vessel corrosion prevention |
US7704372B2 (en) | 2004-04-29 | 2010-04-27 | Vector Corrosion Technologies Ltd. | Sacrificial anode assembly |
US7909982B2 (en) | 2005-03-16 | 2011-03-22 | Gareth Glass | Treatment process for concrete |
US8211289B2 (en) | 2005-03-16 | 2012-07-03 | Gareth Kevin Glass | Sacrificial anode and treatment of concrete |
USRE45234E1 (en) | 2004-11-23 | 2014-11-11 | Vector Corrosion Technologies Ltd | Cathodic protection system using impressed current and galvanic action |
US8999137B2 (en) | 2004-10-20 | 2015-04-07 | Gareth Kevin Glass | Sacrificial anode and treatment of concrete |
JP2019501277A (en) * | 2015-11-03 | 2019-01-17 | ベクター コロージョン テクノロジーズ エルティーディー. | Cathodic protection |
WO2021063507A1 (en) * | 2019-10-03 | 2021-04-08 | Volvo Penta Corporation | Marine salinity measuring arrangement and method |
-
1995
- 1995-07-14 JP JP7200252A patent/JPH0931675A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100360200B1 (en) * | 1998-12-22 | 2003-10-22 | 주식회사 삼공사 | Electric type control device |
USRE46862E1 (en) | 2004-04-29 | 2018-05-22 | Vector Corrosion Technologies Ltd. | Sacrificial anode assembly |
US7704372B2 (en) | 2004-04-29 | 2010-04-27 | Vector Corrosion Technologies Ltd. | Sacrificial anode assembly |
US8999137B2 (en) | 2004-10-20 | 2015-04-07 | Gareth Kevin Glass | Sacrificial anode and treatment of concrete |
USRE45234E1 (en) | 2004-11-23 | 2014-11-11 | Vector Corrosion Technologies Ltd | Cathodic protection system using impressed current and galvanic action |
US7909982B2 (en) | 2005-03-16 | 2011-03-22 | Gareth Glass | Treatment process for concrete |
US8349166B2 (en) | 2005-03-16 | 2013-01-08 | Gareth Glass | Treatment process for concrete |
US8211289B2 (en) | 2005-03-16 | 2012-07-03 | Gareth Kevin Glass | Sacrificial anode and treatment of concrete |
JP4626458B2 (en) * | 2005-09-14 | 2011-02-09 | 株式会社島津製作所 | Reduction method of underwater electric field in ship protection. |
JP2007076495A (en) * | 2005-09-14 | 2007-03-29 | Shimadzu Corp | Method for reducing underwater electric field in vessel corrosion prevention |
JP2019501277A (en) * | 2015-11-03 | 2019-01-17 | ベクター コロージョン テクノロジーズ エルティーディー. | Cathodic protection |
JP2020002468A (en) * | 2015-11-03 | 2020-01-09 | ベクター コロージョン テクノロジーズ エルティーディー. | Cathodic protection |
US10640877B2 (en) | 2015-11-03 | 2020-05-05 | Vector Remediation Ltd. | Cathodic corrosion protection |
WO2021063507A1 (en) * | 2019-10-03 | 2021-04-08 | Volvo Penta Corporation | Marine salinity measuring arrangement and method |
CN114450435A (en) * | 2019-10-03 | 2022-05-06 | 沃尔沃遍达公司 | Ocean salinity measuring device and method |
CN114450435B (en) * | 2019-10-03 | 2024-02-02 | 沃尔沃遍达公司 | Ocean salinity measuring device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bertolini et al. | Effectiveness of a conductive cementitious mortar anode for cathodic protection of steel in concrete | |
CN101142341B (en) | Concrete processing method | |
US8211289B2 (en) | Sacrificial anode and treatment of concrete | |
USRE45234E1 (en) | Cathodic protection system using impressed current and galvanic action | |
US7585397B2 (en) | Automatic potential control cathodic protection system for storage tanks | |
US7704372B2 (en) | Sacrificial anode assembly | |
EP0369557A1 (en) | Anti-fouling system for objects in contact with seawater | |
JPH0931675A (en) | Electric corrosion protection method using multiple booster type anodic protection and device therefor | |
EP2906735A1 (en) | System and method for providing corrosion protection of metallic structure using time varying electromagnetic wave | |
US4381981A (en) | Sacrificial cathodic protection system | |
JP3758714B2 (en) | Galvanic anode type cathodic protection method and apparatus therefor | |
US3360452A (en) | Cathodic protection system | |
KR102556808B1 (en) | Cathodic protection system and the method thereof | |
JP6071053B2 (en) | Method and apparatus for cathodic protection of structural metal materials | |
JPH0931674A (en) | Electric corrosion protection method using self booster type anodic protection and device therefor | |
JP3135777B2 (en) | Galvanic anode system, constant voltage type automatic cathodic protection method | |
CN209292485U (en) | An Adjustable External Power Supply Cathodic Protection System | |
JP2649090B2 (en) | Desalination method for RC / SRC structure | |
JP3135776B2 (en) | Galvanic anode method | |
JP2005113167A (en) | Efficient anticorrosion method, anticorrosion steel material and anticorrosion structure | |
JP3386898B2 (en) | Corrosion protection structure of the material to be protected | |
JP2649089B2 (en) | Desalination method for RC / SRC structure | |
JPH06173287A (en) | Corrosion resistant structure for offshore steel structure | |
George | Experimental setup to study the effect of pulse width modulated signal on impressed current cathodic system | |
KR102023553B1 (en) | Corrosion monitoring system |